Modeling and verifying reactive systems
Temporal logics

Nicolas Markey

Lab. Specification et Verification
ENS Cachan & CNRS, France

Outline of the course

0 Linear-time temporal logics
@ Expressiveness of LTL and LTL+Past

LTL and LTL+Past

Definition

LTLag:=T|p|l -@leVvy|Xe|pUep

LTL+Past> =T |p| =@l VY | Xp|pUg|
X'pleSe

LTL and LTL+Past

Definition

LTlLap:=T |p|l nple VY| Xe|pUgp

LTL+Pasts =T |p|l =l VY [Xe |l pUg|
X'pleSe

pUy: (SSHEXe © Ju>t ((Su)kE¢e and
(“next” @) Yv>t (v>uVv=u))

pUy: SSHhEeUY o FJu>t (S u) =y and
(¢ “until”) Yv>t (v<u = (SV)Ee)

Expressiveness of LTL and LTL+Past

Lemma

LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Expressiveness of LTL and LTL+Past

Lemma

LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))
First-order logic can be translated in LTL+Past and LTL.

Expressiveness of LTL and LTL+Past

Lemma

LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))
First-order logic can be translated in LTL+Past and LTL.

Theorem
LTL and LTL+Past are equally expressive.

Expressiveness of LTL and LTL+Past

Lemma

LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))
First-order logic can be translated in LTL+Past and LTL.

Theorem
LTL and LTL+Past are equally expressive.

Example

Fan(bUc)Sc)=..

Outline of the course

Q Linear-time temporal logics

@ How hard is LTL verification?

Hardness of LTL verification

Theorem
Satisfiability of an LTL formula is PSPACE-hard.

Hardness of LTL verification

Theorem
Satisfiability of an LTL formula is PSPACE-hard.

Proof. Encode a linear-bounded Turing machine as an LTL
formula that is satisfiable if, and only if, the Turing machine
halts on the empty input:

> Q,H#| HF| | H # > a At H

1 configuration = n letters

Hardness of LTL verification

Theorem
Satisfiability of an LTL formula is PSPACE-hard.

Proof. Encode a linear-bounded Turing machine as an LTL
formula that is satisfiable if, and only if, the Turing machine
halts on the empty input:

> Q,H#| HF| | H # > a At H

1 configuration = n letters

Corollary
LTL model-checking is PSPACE-hard.

Outline of the course

0 Linear-time temporal logics

@ Algorithms for verifying LTL formulas

Buchi automata

Definition

A Blchi automaton is a 5-tuple 8 = (Q, Qp, X, —, F) where
@ Q is the set of states (or locations) of the automaton,
@ Q C Q is the set of initial states,
@ Y is the alphabet,
@ — C QX X xQisthe transition relation,
@ F C Qs the set of repeated states

Buchi automata

Definition

A Blchi automaton is a 5-tuple 8 = (Q, Qp, X, —, F) where
@ Q is the set of states (or locations) of the automaton,

Qo C Q is the set of initial states,

Y is the alphabet,

— C Q X X x Q is the transition relation,

F C Q is the set of repeated states

Example
{90, a1}, Qo = {qo},

{green, red},

{(qo, green, g1), (g1, green, 1),
e a (q1,red, qO)r (q0/ red, CIO)},
F = {qo}

MO
[

green

green

H
()08
!
|

Buchi automata

Definition
An (infinite) word wgp wjy ... is accepted by a Blchi automaton 8
if there exists an infinite sequence © = ({y, ¢4, ...) of states s.t.:
@ {p € Qp,
e for each i, (¢, wj, €iiq) € —;

Buchi automata

Definition
An (infinite) word wgp wjy ... is accepted by a Blchi automaton 8
if there exists an infinite sequence © = ({y, ¢4, ...) of states s.t.:
o fo € Qo,
e for each i, (¢, wj, €iiq) € —;
@ at least one state in F occurs infinitely often in 7.

Buchi automata

Definition
An (infinite) word wgp wjy ... is accepted by a Blchi automaton 8
if there exists an infinite sequence © = ({y, ¢4, ...) of states s.t.:
@ £y € Qp,
e for each i, (¢, wj, €iiq) € —;
@ at least one state in F occurs infinitely often in 7.

We write L(8) for the set of words accepted by 8.

Buchi automata

Definition
An (infinite) word wgp wjy ... is accepted by a Blchi automaton 8
if there exists an infinite sequence © = ({y, ¢4, ...) of states s.t.:
o {b € (30,
e for each i, (¢, wj, €iiq) € —;
@ at least one state in F occurs infinitely often in 7.

We write L(8) for the set of words accepted by 8.

Example
red green
‘ green ‘ green- red” e L(,@),
red green - red - green” ¢ L(B).

From LTL+Past to Buchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let ¢ a formula in LTL+Past. There exists a Blichi
automaton B, s.t.

Vwe (2. we L(B,) © w,0kE .

From LTL+Past to Blchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let ¢ a formula in LTL+Past. There exists a Blichi
automaton B, s.t.

Vwe (2. we L(B,) © w,0kE .

Sketch of proof.

@ each state of the automaton corresponds to a set of
subformulas of ¢ (and negations thereof),

From LTL+Past to Blchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let ¢ a formula in LTL+Past. There exists a Blichi
automaton B, s.t.

Vwe (2. we L(B,) © w,0kE .

Sketch of proof.

@ each state of the automaton corresponds to a set of
subformulas of ¢ (and negations thereof),

@ if a word w is accepted from a location qp, then any

subformula represented by that state holds initially
along w.

From LTL+Past to Buchi automata

Definition
The closure of ¢, denoted by Cl(¢), is the smallest set of
formulas containing ¢ and closed under the following rules:
@ T and L are in Cl(¢),
@ —y e Cl(p) iff p € Cl(¢) (identifying = = ¢ with),
@ if Y1 A Ppooryy VvV ¢aisin Cl(e), then ¢4 € Cl(¢p) and
2 € Cl(e),
if X1 is in Cl(¢p), then so ¢+,
if 1 U ¢z isin Cl(p), then so are ¢, P2, and X(¢1 U),
if X™" 4 is in Cl(¢), then so i,
if 1 S o isin Cl(¢), then so are 1, 2, and
X7(¢1 S ¢2).

From LTL+Past to Buchi automata

Proposition
The size of Cl(¢) is at most 4|¢|.

From LTL+Past to Blchi automata

Proposition
The size of Cl(¢) is at most 4|¢|.

Proof.
By induction of the structure of ¢:

@ clear if ¢ is an atomic formula,

From LTL+Past to Blchi automata

Proposition
The size of Cl(¢) is at most 4|¢|.

Proof.
By induction of the structure of ¢:

@ clear if ¢ is an atomic formula,
(*] if(p2¢1 A lpg Ol’(p:l)b1 \Y l,bg,thGﬂ

Cl(p) = Cl(y1) U Cl(Y2) U lp, = o).

From LTL+Past to Blchi automata

Proposition
The size of Cl(¢) is at most 4|¢|.

Proof.
By induction of the structure of ¢:

@ clear if ¢ is an atomic formula,
o if(p2¢1 A lpg Ol’(p:l)b1 \Y l,bg,thGﬂ

Cl(g) = Cl(y1) U Cl(Y2) U {p,).
o if ¢ = 1101 U 1102, then

Cl(p) = Cl(¢1) UCl(Y2) U{p, =9, X, = X p}.

From LTL+Past to Blchi automata

Proposition
The size of Cl(¢) is at most 4|¢|.

Proof.
By induction of the structure of ¢:

@ clear if ¢ is an atomic formula,
o if(p2¢1 A lpg Ol’(p:l)b1 \Y l,bg,thGﬂ

Cl(p) = Cl(1) U Cl(¢2) U {, ~).
o if ¢ = 1101 U 1102, then
Cl(p) = Cl(¢1) UCl(Y2) U{p, =9, X, = X p}.

@ the other cases are similar.

From LTL+Past to Buchi automata

Example

Consider formula ¢ = G(green = (Fred vV G green)).
Then:

Clip) = 1o, ~ o,
green = (Fred vV G™' green),

- (green = (Fred v G green)),
Fred v G green,

- (Fred v G green),

Fred, - Fred,XFred, - XFred,
G 'green, - G green,
X'G'green, - X'G " green,

green, - green,red, -red, T, L}.

From LTL+Past to Blchi automata

Definition
A subset S of Cl(¢) is maximal consistent if:
@ TES,
@ forany i € Cl(¢p), p € Siff = ¢ S,
@ forany ¢ =1 A Yo e Cl(p): v € S iff 1€ Sand iy € S,
@ forany ¢ =11 vV 2 € Cl(p): p € S iff p1 € Soriyp €S,

@ forany i = ¢y U o € Cl(¢):
Y e S iff Yo €S, orboth ¢4 and X(i1 U ¢2) arein S,

@ forany i =11 S Y € Cl(¢):
Y e S iff Yo €S, orboth ¢y and X7'(¢1 S ¢2) arein S.

From LTL+Past to Buchi automata

Example
The set

{p, = (green = (Fred v G™' green)),
- (Fred v G green),
- Fred, - XFred, - G'green, = X' G green,

green, ~ red}

is maximal consistent.

From LTL+Past to Buchi automata

Example
The set

{p, = (green = (Fred v G™' green)),
- (Fred v G green),
- Fred, - XFred, - G'green, = X' G green,

green, ~ red}

is maximal consistent.

Proposition
There are at most 24! maximal consistent subsets of Cl(¢).

From LTL+Past to Blchi automata

Example
The set

{p, = (green = (Fred v G™' green)),
- (Fred v G green),
- Fred, - XFred, - G'green, = X' G green,

green, —red}

is maximal consistent.

Proposition
There are at most 24! maximal consistent subsets of Cl(¢).

Maximal consistent subsets are the states of our Biichi
automaton.

From LTL+Past to Buchi automata
Given two maximal consistent subsets S and T of Cl(¢), and a
“letter” o C AP, there is a transition (S, g, T) iff:
@ forany p € AP, we have p € Siiff p € g,

@ for any subformula X ¢1 € Cl(¢):
XpiisinS iff p1 €T,

@ for any subformula X' ¢4 € Cl(¢):
p1isin S iff X'y e T.

From LTL+Past to Blchi automata

Given two maximal consistent subsets S and T of Cl(¢), and a
“letter” o C AP, there is a transition (S, g, T) iff:

@ forany p € AP, we have p € Siiff p € g,

@ for any subformula X ¢1 € Cl(¢):
XpiisinS iff o1 €T,

@ for any subformula X' ¢4 € Cl(¢):
p1isin S iff X' @y e T.

Example
S: T:
-~ XFred - Fred
- G'green - X "G 'green
green —red

From LTL+Past to Blchi automata

We use (generalized) Blchi acceptance condition is used to
enforce that eventualities eventually occur:

@ For each subformula ¢ = ¢4 U @2, we write
Fy={leQ | paelorycel

@ a word is accepted if it has a trajectory whose repeated
states intersect F, for each U-subformula .

From LTL+Past to Blchi automata

We use (generalized) Blchi acceptance condition is used to
enforce that eventualities eventually occur:

@ For each subformula ¢ = ¢4 U @2, we write
Fy={leQ | paelorycel
@ a word is accepted if it has a trajectory whose repeated

states intersect F, for each U-subformula .

@ initial states are those where all X-'-subformulas are false.

From LTL+Past to Blchi automata

We use (generalized) Blchi acceptance condition is used to
enforce that eventualities eventually occur:

@ For each subformula ¢ = ¢4 U @2, we write
Fy={leQ | paelorycel

@ a word is accepted if it has a trajectory whose repeated
states intersect F, for each U-subformula .

@ initial states are those where all X-'-subformulas are false.

Lemma

A word is accepted by this automaton if, and only if, it satisfies
the initial LTL+Past formula.

From LTL+Past to Blchi automata

Theorem

For any LTL+Past formula ¢, there exists a generalized Buichi
automaton A s.t.

@ a word is accepted by A iff if satisfies ¢;
@ A has at most 247! states.

From LTL+Past to Blchi automata

Theorem

For any LTL+Past formula ¢, there exists a generalized Buichi
automaton A s.t.

@ a word is accepted by A iff if satisfies ¢;
@ A has at most 249! states.

Proposition

A generalized Blchi automaton ‘A can be transformed in a
(standard) Blichi automaton 8 s.t.

0 L(A)=L(B),

° |B| < |AP.

An algorithm for LTL+Past satisfiability

Theorem
LTL+Past satisfiability can be achieved in PSPACE.

Proof.

@ we use the translation to Biichi automata, but not directly,
as it would require exponential space...

@ the algorithm non-deterministically guesses the accepting

path as follows:

@ guess and store one repeated state;

@ guess, step by step, a path from an initial state to the

repeated state;

@ guess, step by step, a path from the repeated state to itself.
Each time, only a polynomial amount of information has to
be stored. This algorithm is thus in PSPACE.

O

An algorithm for LTL+Past model-checking

Theorem
LTL+Past model-checking can be achieved in PSPACE.

Proof.

@ a Kripke structure can be seen as an automaton: it suffices
to label each transition with the set of atomic propositions
that hold in its source state;

@ it then suffices to compute the product of this automaton
with the automaton A, the language of the resulting
automaton is empty if, and only if, all the paths in the
original Kripke structure satisfy formula ¢.

	Linear-time temporal logics
	Expressiveness of LTLand LTL+Past
	How hard is LTLverification?
	Algorithms for verifying LTLformulas

