
Modeling and verifying reactive systems
Temporal logics

Nicolas Markey

Lab. Specification et Verification
ENS Cachan & CNRS, France

Outline of the course

1 Linear-time temporal logics
Expressiveness of LTL and LTL+Past
How hard is LTL verification?
Algorithms for verifying LTL formulas

LTL and LTL+Past

Definition

LTL 3 ϕ ::= > | p | ¬ϕ | ϕ ∨ ψ | X ϕ | ϕ U ϕ

LTL+Past 3 ϕ ::= > | p | ¬ϕ | ϕ ∨ ψ | X ϕ | ϕ U ϕ |

X−1 ϕ | ϕ S ϕ

LTL and LTL+Past

Definition

LTL 3 ϕ ::= > | p | ¬ϕ | ϕ ∨ ψ | X ϕ | ϕ U ϕ

LTL+Past 3 ϕ ::= > | p | ¬ϕ | ϕ ∨ ψ | X ϕ | ϕ U ϕ |

X−1 ϕ | ϕ S ϕ

ϕ U ψ : 〈S, t〉 |= X ϕ ⇔ ∃u > t . (〈S,u〉 |= ϕ and
(“next” ϕ) ∀v > t . (v > u ∨ v = u))

ϕ U ψ : 〈S, t〉 |= ϕ U ψ ⇔ ∃u > t . (〈S,u〉 |= ψ and
(ϕ “until” ψ) ∀v > t . (v < u ⇒ 〈S, v〉 |= ϕ))

Expressiveness of LTL and LTL+Past

Lemma
LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Expressiveness of LTL and LTL+Past

Lemma
LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))
First-order logic can be translated in LTL+Past and LTL.

Expressiveness of LTL and LTL+Past

Lemma
LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))
First-order logic can be translated in LTL+Past and LTL.

Theorem
LTL and LTL+Past are equally expressive.

Expressiveness of LTL and LTL+Past

Lemma
LTL and LTL+Past can be translated in first-order logic
(involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))
First-order logic can be translated in LTL+Past and LTL.

Theorem
LTL and LTL+Past are equally expressive.

Example

F(a ∧ (b U c) S c) ≡ ...

Outline of the course

1 Linear-time temporal logics
Expressiveness of LTL and LTL+Past
How hard is LTL verification?
Algorithms for verifying LTL formulas

Hardness of LTL verification

Theorem
Satisfiability of an LTL formula is PSPACE-hard.

Hardness of LTL verification

Theorem
Satisfiability of an LTL formula is PSPACE-hard.

Proof. Encode a linear-bounded Turing machine as an LTL
formula that is satisfiable if, and only if, the Turing machine
halts on the empty input:

. q,# # # # #

1 configuration = n letters

. a q′,# # #

�

Hardness of LTL verification

Theorem
Satisfiability of an LTL formula is PSPACE-hard.

Proof. Encode a linear-bounded Turing machine as an LTL
formula that is satisfiable if, and only if, the Turing machine
halts on the empty input:

. q,# # # # #

1 configuration = n letters

. a q′,# # #

�

Corollary
LTL model-checking is PSPACE-hard.

Outline of the course

1 Linear-time temporal logics
Expressiveness of LTL and LTL+Past
How hard is LTL verification?
Algorithms for verifying LTL formulas

Büchi automata

Definition
A Büchi automaton is a 5-tuple B = 〈Q ,Q0,Σ,→,F〉 where

Q is the set of states (or locations) of the automaton,
Q0 ⊆ Q is the set of initial states,
Σ is the alphabet,
→ ⊆ Q × Σ ×Q is the transition relation,
F ⊆ Q is the set of repeated states

Example

q0 q1

green

red

red green

Büchi automata

Definition
A Büchi automaton is a 5-tuple B = 〈Q ,Q0,Σ,→,F〉 where

Q is the set of states (or locations) of the automaton,
Q0 ⊆ Q is the set of initial states,
Σ is the alphabet,
→ ⊆ Q × Σ ×Q is the transition relation,
F ⊆ Q is the set of repeated states

Example

q0 q1

green

red

red green
Q = {q0,q1}, Q0 = {q0},
Σ = {green, red},
→ = {(q0, green,q1), (q1, green,q1),

(q1, red,q0), (q0, red,q0)},
F = {q0}.

Büchi automata

Definition
An (infinite) word w0 w1 ... is accepted by a Büchi automaton B
if there exists an infinite sequence π = (`0, `1, ...) of states s.t.:

`0 ∈ Q0,
for each i, (`i ,wi , `i+1) ∈ →;
at least one state in F occurs infinitely often in π.

Büchi automata

Definition
An (infinite) word w0 w1 ... is accepted by a Büchi automaton B
if there exists an infinite sequence π = (`0, `1, ...) of states s.t.:

`0 ∈ Q0,
for each i, (`i ,wi , `i+1) ∈ →;
at least one state in F occurs infinitely often in π.

Büchi automata

Definition
An (infinite) word w0 w1 ... is accepted by a Büchi automaton B
if there exists an infinite sequence π = (`0, `1, ...) of states s.t.:

`0 ∈ Q0,
for each i, (`i ,wi , `i+1) ∈ →;
at least one state in F occurs infinitely often in π.

We write L(B) for the set of words accepted by B.

Büchi automata

Definition
An (infinite) word w0 w1 ... is accepted by a Büchi automaton B
if there exists an infinite sequence π = (`0, `1, ...) of states s.t.:

`0 ∈ Q0,
for each i, (`i ,wi , `i+1) ∈ →;
at least one state in F occurs infinitely often in π.

We write L(B) for the set of words accepted by B.

Example

q0 q1

green

red

red green

green · redω ∈ L(B),

green · red · greenω < L(B).

From LTL+Past to Büchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)
Let ϕ a formula in LTL+Past. There exists a Büchi
automaton Bϕ s.t.

∀w ∈ (2AP)ω. w ∈ L(Bϕ) ⇔ w,0 |= ϕ.

Sketch of proof.

each state of the automaton corresponds to a set of
subformulas of ϕ (and negations thereof),
if a word w is accepted from a location q0, then any
subformula represented by that state holds initially
along w.

From LTL+Past to Büchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)
Let ϕ a formula in LTL+Past. There exists a Büchi
automaton Bϕ s.t.

∀w ∈ (2AP)ω. w ∈ L(Bϕ) ⇔ w,0 |= ϕ.

Sketch of proof.

each state of the automaton corresponds to a set of
subformulas of ϕ (and negations thereof),
if a word w is accepted from a location q0, then any
subformula represented by that state holds initially
along w.

From LTL+Past to Büchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)
Let ϕ a formula in LTL+Past. There exists a Büchi
automaton Bϕ s.t.

∀w ∈ (2AP)ω. w ∈ L(Bϕ) ⇔ w,0 |= ϕ.

Sketch of proof.

each state of the automaton corresponds to a set of
subformulas of ϕ (and negations thereof),
if a word w is accepted from a location q0, then any
subformula represented by that state holds initially
along w.

From LTL+Past to Büchi automata

Definition
The closure of ϕ, denoted by Cl(ϕ), is the smallest set of
formulas containing ϕ and closed under the following rules:

> and ⊥ are in Cl(ϕ),
¬ψ ∈ Cl(ϕ) iff ψ ∈ Cl(ϕ) (identifying ¬ ¬ψ with ψ),
if ψ1 ∧ ψ2 or ψ1 ∨ ψ2 is in Cl(ϕ), then ψ1 ∈ Cl(ϕ) and
ψ2 ∈ Cl(ϕ),
if X ψ1 is in Cl(ϕ), then so ψ1,
if ψ1 U ψ2 is in Cl(ϕ), then so are ψ1, ψ2, and X(ψ1 U ψ2),
if X−1 ψ1 is in Cl(ϕ), then so ψ1,
if ψ1 S ψ2 is in Cl(ϕ), then so are ψ1, ψ2, and
X−1(ψ1 S ψ2).

From LTL+Past to Büchi automata

Proposition
The size of Cl(ϕ) is at most 4|ϕ|.

From LTL+Past to Büchi automata

Proposition
The size of Cl(ϕ) is at most 4|ϕ|.

Proof.
By induction of the structure of ϕ:

clear if ϕ is an atomic formula,

From LTL+Past to Büchi automata

Proposition
The size of Cl(ϕ) is at most 4|ϕ|.

Proof.
By induction of the structure of ϕ:

clear if ϕ is an atomic formula,
if ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2, then

Cl(ϕ) = Cl(ψ1) ∪ Cl(ψ2) ∪ {ϕ, ¬ϕ}.

From LTL+Past to Büchi automata

Proposition
The size of Cl(ϕ) is at most 4|ϕ|.

Proof.
By induction of the structure of ϕ:

clear if ϕ is an atomic formula,
if ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2, then

Cl(ϕ) = Cl(ψ1) ∪ Cl(ψ2) ∪ {ϕ, ¬ϕ}.

if ϕ = ψ1 U ψ2, then

Cl(ϕ) = Cl(ψ1) ∪ Cl(ψ2) ∪ {ϕ, ¬ϕ,X ϕ, ¬ X ϕ}.

From LTL+Past to Büchi automata

Proposition
The size of Cl(ϕ) is at most 4|ϕ|.

Proof.
By induction of the structure of ϕ:

clear if ϕ is an atomic formula,
if ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2, then

Cl(ϕ) = Cl(ψ1) ∪ Cl(ψ2) ∪ {ϕ, ¬ϕ}.

if ϕ = ψ1 U ψ2, then

Cl(ϕ) = Cl(ψ1) ∪ Cl(ψ2) ∪ {ϕ, ¬ϕ,X ϕ, ¬ X ϕ}.

the other cases are similar.

From LTL+Past to Büchi automata

Example
Consider formula ϕ = G(green ⇒ (F red ∨ G−1 green)).
Then:

Cl(ϕ) = {ϕ, ¬ϕ,

green ⇒ (F red ∨ G−1 green),

¬ (green ⇒ (F red ∨ G−1 green)),

F red ∨ G−1 green,

¬ (F red ∨ G−1 green),

F red, ¬ F red,X F red, ¬ X F red,
G−1 green, ¬ G−1 green,

X−1 G−1 green, ¬ X−1 G−1 green,

green, ¬ green, red, ¬ red,>,⊥}.

From LTL+Past to Büchi automata

Definition
A subset S of Cl(ϕ) is maximal consistent if:

> ∈ S,
for any ψ ∈ Cl(ϕ), ψ ∈ S iff ¬ψ < S,
for any ψ = ψ1 ∧ ψ2 ∈ Cl(ϕ): ψ ∈ S iff ψ1 ∈ S and ψ2 ∈ S,
for any ψ = ψ1 ∨ ψ2 ∈ Cl(ϕ): ψ ∈ S iff ψ1 ∈ S or ψ2 ∈ S,
for any ψ = ψ1 U ψ2 ∈ Cl(ϕ):
ψ ∈ S iff ψ2 ∈ S, or both ψ1 and X(ψ1 U ψ2) are in S,

for any ψ = ψ1 S ψ2 ∈ Cl(ϕ):
ψ ∈ S iff ψ2 ∈ S, or both ψ1 and X−1(ψ1 S ψ2) are in S.

From LTL+Past to Büchi automata

Example
The set

{ϕ, ¬ (green ⇒ (F red ∨ G−1 green)),

¬ (F red ∨ G−1 green),

¬ F red, ¬ X F red, ¬ G−1 green, ¬ X−1 G−1 green,

green, ¬ red}

is maximal consistent.

From LTL+Past to Büchi automata

Example
The set

{ϕ, ¬ (green ⇒ (F red ∨ G−1 green)),

¬ (F red ∨ G−1 green),

¬ F red, ¬ X F red, ¬ G−1 green, ¬ X−1 G−1 green,

green, ¬ red}

is maximal consistent.

Proposition

There are at most 24|ϕ| maximal consistent subsets of Cl(ϕ).

From LTL+Past to Büchi automata

Example
The set

{ϕ, ¬ (green ⇒ (F red ∨ G−1 green)),

¬ (F red ∨ G−1 green),

¬ F red, ¬ X F red, ¬ G−1 green, ¬ X−1 G−1 green,

green, ¬ red}

is maximal consistent.

Proposition

There are at most 24|ϕ| maximal consistent subsets of Cl(ϕ).

Maximal consistent subsets are the states of our Büchi
automaton.

From LTL+Past to Büchi automata
Given two maximal consistent subsets S and T of Cl(ϕ), and a
“letter” σ ⊆ AP, there is a transition (S , σ,T) iff:

for any p ∈ AP, we have p ∈ S iff p ∈ σ,
for any subformula X ϕ1 ∈ Cl(ϕ):

X ϕ1 is in S iff ϕ1 ∈ T ,
for any subformula X−1 ϕ1 ∈ Cl(ϕ):

ϕ1 is in S iff X−1 ϕ1 ∈ T .

Example

S:
...
¬ X F red
¬ G−1 green

green

T :
...
¬ F red
¬ X−1 G−1 green

¬ red

From LTL+Past to Büchi automata
Given two maximal consistent subsets S and T of Cl(ϕ), and a
“letter” σ ⊆ AP, there is a transition (S , σ,T) iff:

for any p ∈ AP, we have p ∈ S iff p ∈ σ,
for any subformula X ϕ1 ∈ Cl(ϕ):

X ϕ1 is in S iff ϕ1 ∈ T ,
for any subformula X−1 ϕ1 ∈ Cl(ϕ):

ϕ1 is in S iff X−1 ϕ1 ∈ T .

Example

S:
...
¬ X F red
¬ G−1 green

green

T :
...
¬ F red
¬ X−1 G−1 green

¬ red

From LTL+Past to Büchi automata
We use (generalized) Büchi acceptance condition is used to
enforce that eventualities eventually occur:

For each subformula ψ = ϕ1 U ϕ2, we write

Fψ = {l ∈ Q | ϕ2 ∈ l or ψ ∈ l}

a word is accepted if it has a trajectory whose repeated
states intersect Fψ for each U-subformula ψ.

initial states are those where all X−1-subformulas are false.

From LTL+Past to Büchi automata
We use (generalized) Büchi acceptance condition is used to
enforce that eventualities eventually occur:

For each subformula ψ = ϕ1 U ϕ2, we write

Fψ = {l ∈ Q | ϕ2 ∈ l or ψ ∈ l}

a word is accepted if it has a trajectory whose repeated
states intersect Fψ for each U-subformula ψ.

initial states are those where all X−1-subformulas are false.

From LTL+Past to Büchi automata
We use (generalized) Büchi acceptance condition is used to
enforce that eventualities eventually occur:

For each subformula ψ = ϕ1 U ϕ2, we write

Fψ = {l ∈ Q | ϕ2 ∈ l or ψ ∈ l}

a word is accepted if it has a trajectory whose repeated
states intersect Fψ for each U-subformula ψ.

initial states are those where all X−1-subformulas are false.

Lemma
A word is accepted by this automaton if, and only if, it satisfies
the initial LTL+Past formula.

From LTL+Past to Büchi automata

Theorem
For any LTL+Past formula ϕ, there exists a generalized Büchi
automaton A s.t.

a word is accepted by A iff if satisfies ϕ;
A has at most 24|ϕ| states.

From LTL+Past to Büchi automata

Theorem
For any LTL+Past formula ϕ, there exists a generalized Büchi
automaton A s.t.

a word is accepted by A iff if satisfies ϕ;
A has at most 24|ϕ| states.

Proposition
A generalized Büchi automaton A can be transformed in a
(standard) Büchi automaton B s.t.

L(A) = L(B),
|B| ≤ |A|

2.

An algorithm for LTL+Past satisfiability

Theorem
LTL+Past satisfiability can be achieved in PSPACE.

Proof.
we use the translation to Büchi automata, but not directly,
as it would require exponential space...

the algorithm non-deterministically guesses the accepting
path as follows:

guess and store one repeated state;
guess, step by step, a path from an initial state to the
repeated state;
guess, step by step, a path from the repeated state to itself.

Each time, only a polynomial amount of information has to
be stored. This algorithm is thus in PSPACE.

�

An algorithm for LTL+Past model-checking

Theorem
LTL+Past model-checking can be achieved in PSPACE.

Proof.
a Kripke structure can be seen as an automaton: it suffices
to label each transition with the set of atomic propositions
that hold in its source state;
it then suffices to compute the product of this automaton
with the automaton A¬ϕ: the language of the resulting
automaton is empty if, and only if, all the paths in the
original Kripke structure satisfy formula ϕ.

�

	Linear-time temporal logics
	Expressiveness of LTLand LTL+Past
	How hard is LTLverification?
	Algorithms for verifying LTLformulas

