Modeling and verifying reactive systems Temporal logics

Nicolas Markey

Lab. Specification et Verification ENS Cachan & CNRS, France

Outline of the course

1 Linear-time temporal logics

- Expressiveness of LTL and LTL+Past
- How hard is LTL verification?
- Algorithms for verifying LTL formulas

LTL and LTL+Past

Definition

$$LTL \ni \varphi ::= \top | p | \neg \varphi | \varphi \lor \psi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$LTL+Past \ni \varphi ::= \top | p | \neg \varphi | \varphi \lor \psi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi |$$
$$\mathbf{X}^{-1} \varphi | \varphi \mathbf{S} \varphi$$

LTL and LTL+Past

Definition

LTL
$$\ni \varphi ::= \top | p | \neg \varphi | \varphi \lor \psi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

LTL+Past $\ni \varphi ::= \top | p | \neg \varphi | \varphi \lor \psi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi |$
 $\mathbf{X}^{-1} \varphi | \varphi \mathbf{S} \varphi$

$$\varphi \mathbf{U} \psi : \langle \mathcal{S}, t \rangle \models \mathbf{X} \varphi \iff \exists u > t. (\langle \mathcal{S}, u \rangle \models \varphi \text{ and} \\ (\text{``next"} \varphi) \qquad \qquad \forall v > t. (v > u \lor v = u))$$

 $\begin{array}{ll} \varphi \; \mathbf{U} \; \psi : \; \langle \mathcal{S}, t \rangle \models \varphi \; \mathbf{U} \; \psi \; \Leftrightarrow \; \exists u > t. \; (\langle \mathcal{S}, u \rangle \models \psi \; \text{and} \\ (\varphi \; \text{``until"} \; \psi) \; & \forall v > t. \; (v < u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$

Lemma

LTL and LTL+Past can be translated in first-order logic (involving at most 3 variables).

Lemma

LTL and LTL+Past can be translated in first-order logic (involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))

First-order logic can be translated in LTL+Past and LTL.

Lemma

LTL and LTL+Past can be translated in first-order logic (involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))

First-order logic can be translated in LTL+Past and LTL.

Theorem LTL and LTL+Past are equally expressive.

Lemma

LTL and LTL+Past can be translated in first-order logic (involving at most 3 variables).

Lemma (Kamp (1968) and Gabbay et al. (1980))

First-order logic can be translated in LTL+Past and LTL.

Theorem

LTL and LTL+Past are equally expressive.

Example

$$F(a \land (b U c) S c) \equiv ...$$

Outline of the course

Linear-time temporal logics

- Expressiveness of LTL and LTL+Past
- How hard is LTL verification?
- Algorithms for verifying LTL formulas

Hardness of LTL verification

Theorem

Satisfiability of an LTL formula is PSPACE-hard.

Hardness of LTL verification

Theorem Satisfiability of an LTL formula is PSPACE-hard.

Proof. Encode a linear-bounded Turing machine as an LTL formula that is satisfiable if, and only if, the Turing machine halts on the empty input:

Hardness of LTL verification

Theorem Satisfiability of an LTL formula is PSPACE-hard.

Proof. Encode a linear-bounded Turing machine as an LTL formula that is satisfiable if, and only if, the Turing machine halts on the empty input:

LTL model-checking is PSPACE-hard.

Outline of the course

Linear-time temporal logics

- Expressiveness of LTL and LTL+Past
- How hard is LTL verification?
- Algorithms for verifying LTL formulas

Definition

A Büchi automaton is a 5-tuple $\mathcal{B} = \langle Q, Q_0, \Sigma, \rightarrow, F \rangle$ where

- Q is the set of states (or locations) of the automaton,
- $Q_0 \subseteq Q$ is the set of initial states,
- Σ is the alphabet,
- $\rightarrow \subseteq Q \times \Sigma \times Q$ is the transition relation,
- $F \subseteq Q$ is the set of repeated states

Definition

A Büchi automaton is a 5-tuple $\mathcal{B} = \langle Q, Q_0, \Sigma, \rightarrow, F \rangle$ where

- Q is the set of states (or locations) of the automaton,
- $Q_0 \subseteq Q$ is the set of initial states,
- Σ is the alphabet,
- $\rightarrow \subseteq Q \times \Sigma \times Q$ is the transition relation,

Q

Σ

• $F \subseteq Q$ is the set of repeated states

Example

$$= \{q_0, q_1\}, \ Q_0 = \{q_0\},$$

$$= \{(q_0, \text{green}, q_1), (q_1, \text{green}, q_1), (q_1, \text{green}, q_1), (q_1, \text{red}, q_0), (q_0, \text{red}, q_0)\},\$$

 $F = \{q_0\}.$

Definition

An (infinite) word $w_0 w_1 \dots$ is *accepted* by a Büchi automaton \mathcal{B} if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \dots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in *F* occurs infinitely often in π .

Definition

An (infinite) word $w_0 w_1 \dots$ is *accepted* by a Büchi automaton \mathcal{B} if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \dots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in *F* occurs infinitely often in π .

Definition

An (infinite) word $w_0 w_1 \dots$ is *accepted* by a Büchi automaton \mathcal{B} if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \dots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in *F* occurs infinitely often in π .

We write $\mathcal{L}(\mathcal{B})$ for the set of words accepted by \mathcal{B} .

Definition

An (infinite) word $w_0 w_1 \dots$ is *accepted* by a Büchi automaton \mathcal{B} if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \dots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in *F* occurs infinitely often in π .

We write $\mathcal{L}(\mathcal{B})$ for the set of words accepted by \mathcal{B} .

Example

 $green \cdot red^{\omega} \in \mathcal{L}(\mathcal{B}),$

green
$$\cdot$$
 red \cdot green ^{ω} $\notin \mathcal{L}(\mathcal{B})$.

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let φ a formula in LTL+Past. There exists a Büchi automaton \mathcal{B}_{φ} s.t.

$$\forall w \in (2^{AP})^{\omega}. \qquad w \in \mathcal{L}(\mathcal{B}_{\varphi}) \iff w, 0 \models \varphi.$$

Sketch of proof.

- each state of the automaton corresponds to a set of subformulas of φ (and negations thereof),
- if a word *w* is accepted from a location *q*₀, then any subformula represented by that state holds initially along *w*.

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let φ a formula in LTL+Past. There exists a Büchi automaton \mathcal{B}_{φ} s.t.

 $\forall w \in (2^{AP})^{\omega}. \qquad w \in \mathcal{L}(\mathcal{B}_{\varphi}) \iff w, 0 \models \varphi.$

Sketch of proof.

- each state of the automaton corresponds to a set of subformulas of φ (and negations thereof),
- if a word *w* is accepted from a location *q*₀, then any subformula represented by that state holds initially along *w*.

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let φ a formula in LTL+Past. There exists a Büchi automaton \mathcal{B}_{φ} s.t.

 $\forall w \in (2^{AP})^{\omega}. \qquad w \in \mathcal{L}(\mathcal{B}_{\varphi}) \iff w, 0 \models \varphi.$

Sketch of proof.

- each state of the automaton corresponds to a set of subformulas of φ (and negations thereof),
- if a word w is accepted from a location q₀, then any subformula represented by that state holds initially along w.

Definition

The closure of φ , denoted by $Cl(\varphi)$, is the smallest set of formulas containing φ and closed under the following rules:

- \top and \bot are in Cl(φ),
- $\neg \psi \in Cl(\varphi)$ iff $\psi \in Cl(\varphi)$ (identifying $\neg \neg \psi$ with ψ),
- if $\psi_1 \wedge \psi_2$ or $\psi_1 \vee \psi_2$ is in $Cl(\varphi)$, then $\psi_1 \in Cl(\varphi)$ and $\psi_2 \in Cl(\varphi)$,
- if **X** ψ_1 is in Cl(φ), then so ψ_1 ,
- if $\psi_1 \mathbf{U} \psi_2$ is in $Cl(\varphi)$, then so are ψ_1, ψ_2 , and $\mathbf{X}(\psi_1 \mathbf{U} \psi_2)$,
- if $\mathbf{X}^{-1} \psi_1$ is in $Cl(\varphi)$, then so ψ_1 ,
- if $\psi_1 \mathbf{S} \psi_2$ is in $Cl(\varphi)$, then so are ψ_1, ψ_2 , and $\mathbf{X}^{-1}(\psi_1 \mathbf{S} \psi_2)$.

Proposition

The size of $Cl(\varphi)$ is at most $4|\varphi|$.

Proposition

The size of $Cl(\varphi)$ is at most $4|\varphi|$.

Proof. By induction of the structure of φ :

• clear if φ is an atomic formula,

Proposition

The size of $Cl(\varphi)$ is at most $4|\varphi|$.

Proof.

By induction of the structure of φ :

• clear if φ is an atomic formula,

• if
$$\varphi = \psi_1 \land \psi_2$$
 or $\varphi = \psi_1 \lor \psi_2$, then

$$\operatorname{Cl}(\varphi) = \operatorname{Cl}(\psi_1) \cup \operatorname{Cl}(\psi_2) \cup \{\varphi, \neg \varphi\}.$$

Proposition

The size of $Cl(\varphi)$ is at most $4|\varphi|$.

Proof.

By induction of the structure of φ :

• clear if φ is an atomic formula,

• if
$$\varphi = \psi_1 \land \psi_2$$
 or $\varphi = \psi_1 \lor \psi_2$, then

$$\operatorname{Cl}(\varphi) = \operatorname{Cl}(\psi_1) \cup \operatorname{Cl}(\psi_2) \cup \{\varphi, \neg \varphi\}.$$

• if $\varphi = \psi_1 \mathbf{U} \psi_2$, then

 $\operatorname{Cl}(\varphi) = \operatorname{Cl}(\psi_1) \cup \operatorname{Cl}(\psi_2) \cup \{\varphi, \neg \varphi, \mathbf{X} \varphi, \neg \mathbf{X} \varphi\}.$

Proposition

The size of $Cl(\varphi)$ is at most $4|\varphi|$.

Proof.

By induction of the structure of φ :

• clear if φ is an atomic formula,

• if
$$\varphi = \psi_1 \land \psi_2$$
 or $\varphi = \psi_1 \lor \psi_2$, then

$$\operatorname{Cl}(\varphi) = \operatorname{Cl}(\psi_1) \cup \operatorname{Cl}(\psi_2) \cup \{\varphi, \neg \varphi\}.$$

• if $\varphi = \psi_1 \mathbf{U} \psi_2$, then

$$\operatorname{Cl}(\varphi) = \operatorname{Cl}(\psi_1) \cup \operatorname{Cl}(\psi_2) \cup \{\varphi, \neg \varphi, \mathsf{X} \varphi, \neg \mathsf{X} \varphi\}.$$

• the other cases are similar.

Example

Consider formula $\varphi = \mathbf{G}(\text{green} \Rightarrow (\mathbf{F} \operatorname{red} \lor \mathbf{G}^{-1} \operatorname{green})).$ Then:

> $\operatorname{Cl}(\varphi) = \{\varphi, \neg \varphi, \varphi\}$ green \Rightarrow (**F** red \lor **G**⁻¹ green), \neg (green \Rightarrow (**F** red \lor **G**⁻¹ green)), **F** red \vee **G**⁻¹ green, \neg (**F** red \lor **G**⁻¹ green), **F** red. \neg **F** red. **X F** red. \neg **X F** red. \mathbf{G}^{-1} green, $\neg \mathbf{G}^{-1}$ green, $\mathbf{X}^{-1} \mathbf{G}^{-1}$ areen, $\neg \mathbf{X}^{-1} \mathbf{G}^{-1}$ areen, green, \neg green, red, \neg red, \top , \bot }.

Definition

A subset S of $Cl(\varphi)$ is *maximal consistent* if:

- $\top \in S$,
- for any $\psi \in Cl(\varphi)$, $\psi \in S$ iff $\neg \psi \notin S$,
- for any $\psi = \psi_1 \land \psi_2 \in Cl(\varphi)$: $\psi \in S$ iff $\psi_1 \in S$ and $\psi_2 \in S$,
- for any $\psi = \psi_1 \lor \psi_2 \in Cl(\varphi)$: $\psi \in S$ iff $\psi_1 \in S$ or $\psi_2 \in S$,
- for any $\psi = \psi_1 \ \mathbf{U} \ \psi_2 \in \operatorname{Cl}(\varphi)$: $\psi \in S \text{ iff } \psi_2 \in S$, or both ψ_1 and $\mathbf{X}(\psi_1 \ \mathbf{U} \ \psi_2)$ are in S,
- for any $\psi = \psi_1 \mathbf{S} \psi_2 \in Cl(\varphi)$: $\psi \in S$ iff $\psi_2 \in S$, or both ψ_1 and $\mathbf{X}^{-1}(\psi_1 \mathbf{S} \psi_2)$ are in S.

Proposition

There are at most $2^{4|\varphi|}$ maximal consistent subsets of $Cl(\varphi)$.

Proposition

There are at most $2^{4|\varphi|}$ maximal consistent subsets of $Cl(\varphi)$.

Maximal consistent subsets are the states of our Büchi automaton.

Given two maximal consistent subsets *S* and *T* of $Cl(\varphi)$, and a "letter" $\sigma \subseteq AP$, there is a transition (*S*, σ , *T*) iff:

- for any $p \in AP$, we have $p \in S$ iff $p \in \sigma$,
- for any subformula $\mathbf{X} \varphi_1 \in \mathrm{Cl}(\varphi)$: $\mathbf{X} \varphi_1$ is in S iff $\varphi_1 \in T$,
- for any subformula X⁻¹ φ₁ ∈ Cl(φ):
 φ₁ is in S iff X⁻¹ φ₁ ∈ T.

Given two maximal consistent subsets *S* and *T* of $Cl(\varphi)$, and a "letter" $\sigma \subseteq AP$, there is a transition (*S*, σ , *T*) iff:

- for any $p \in AP$, we have $p \in S$ iff $p \in \sigma$,
- for any subformula $\mathbf{X} \varphi_1 \in \mathrm{Cl}(\varphi)$: $\mathbf{X} \varphi_1 \text{ is in } S \text{ iff } \varphi_1 \in T,$
- for any subformula X⁻¹ φ₁ ∈ Cl(φ):
 φ₁ is in S iff X⁻¹ φ₁ ∈ T.

We use (generalized) Büchi acceptance condition is used to enforce that eventualities eventually occur:

• For each subformula $\psi = \varphi_1 \mathbf{U} \varphi_2$, we write

$$F_{\psi} = \{ l \in Q \mid \varphi_2 \in l \text{ or } \psi \in l \}$$

 a word is accepted if it has a trajectory whose repeated states intersect F_ψ for each U-subformula ψ.

We use (generalized) Büchi acceptance condition is used to enforce that eventualities eventually occur:

• For each subformula $\psi = \varphi_1 \mathbf{U} \varphi_2$, we write

$$F_{\psi} = \{ l \in Q \mid \varphi_2 \in l \text{ or } \psi \in l \}$$

- a word is accepted if it has a trajectory whose repeated states intersect *F_ψ* for each **U**-subformula *ψ*.
- initial states are those where all **X**⁻¹-subformulas are false.

We use (generalized) Büchi acceptance condition is used to enforce that eventualities eventually occur:

• For each subformula $\psi = \varphi_1 \mathbf{U} \varphi_2$, we write

$$F_{\psi} = \{ l \in Q \mid \varphi_2 \in l \text{ or } \psi \in l \}$$

- a word is accepted if it has a trajectory whose repeated states intersect *F_ψ* for each **U**-subformula *ψ*.
- initial states are those where all **X**⁻¹-subformulas are false.

Lemma

A word is accepted by this automaton if, and only if, it satisfies the initial LTL+Past formula.

Theorem

For any LTL+Past formula φ , there exists a generalized Büchi automaton \mathcal{A} s.t.

- a word is accepted by \mathcal{A} iff if satisfies φ ;
- \mathcal{A} has at most $2^{4|\varphi|}$ states.

Theorem

For any LTL+Past formula φ , there exists a generalized Büchi automaton \mathcal{A} s.t.

- a word is accepted by A iff if satisfies φ;
- \mathcal{A} has at most $2^{4|\varphi|}$ states.

Proposition

A generalized Büchi automaton \mathcal{A} can be transformed in a (standard) Büchi automaton \mathcal{B} s.t.

•
$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B}),$$

• $|\mathcal{B}| \leq |\mathcal{A}|^2$.

An algorithm for LTL+Past satisfiability

Theorem

LTL+Past satisfiability can be achieved in PSPACE.

Proof.

- we use the translation to Büchi automata, but not directly, as it would require exponential space...
- the algorithm non-deterministically guesses the accepting path as follows:
 - guess and store one repeated state;
 - guess, step by step, a path from an initial state to the repeated state;
 - guess, step by step, a path from the repeated state to itself.

Each time, only a polynomial amount of information has to be stored. This algorithm is thus in PSPACE.

An algorithm for LTL+Past model-checking

Theorem

LTL+Past model-checking can be achieved in PSPACE.

Proof.

- a Kripke structure can be seen as an automaton: it suffices to label each transition with the set of atomic propositions that hold in its source state;
- it then suffices to compute the product of this automaton with the automaton *A*_{¬φ}: the language of the resulting automaton is empty if, and only if, all the paths in the original Kripke structure satisfy formula φ.