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Kuich, Markus Lohrey, Jun Matsuda, Aart Middeldorp, Hitoshi Ohsaki, P.
K. Manivannan, Masahiko Sakai, Helmut Seidl, Stephan Tobies, Ralf Treinen,
Thomas Uribe, Sandor Vágvölgyi, Kumar Neeraj Verma, Toshiyuki Yamada.

TATA — September 6, 2005 —



8 CONTENTS

TATA — September 6, 2005 —



Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can
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10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as
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a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.
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Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F , Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(, ) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X ) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X ) and
- X ⊆ T (F ,X ) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f(t1, . . . , tp) ∈ T (F ,X ).
If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X ) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(, ), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X ) may be viewed as a finite
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14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X ) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X ) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t � t′ if t′ is a subterm
of t. We denote t � t′ if t � t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t � t′ ⇒ t′ ∈ F ).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑

i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, , ), g(, ), h(), a, b} and X = {x, y}. Consider the
terms
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t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X ) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X ), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X ) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X ) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X ). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, , ), g(, ), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).
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Chapter 1

Recognizable Tree

Languages and Finite Tree

Automata

In this chapter, we present basic results on finite tree automata in the style of
the undergraduate textbook on finite automata by Hopcroft and Ullman [HU79].
Finite tree automata deal with finite ordered ranked trees or finite ordered trees
with bounded rank. We discuss unordered and/or unranked finite trees in the
bibliographic notes (Section 1.9). We assume that the reader is familiar with
finite automata. Words over a finite alphabet can be viewed as unary terms. For
instance a word abb over A = {a, b} can be viewed as a unary term t = a(b(b(♯)))
over the ranked alphabet F = {a(), b(), ♯} where ♯ is a new constant symbol.
The theory of tree automata arises as a straightforward extension of the theory
of word automata when words are viewed as unary terms.

In Section 1.1, we define bottom-up finite tree automata where “bottom-up”
has the following sense: assuming a graphical representation of trees or ground
terms with the root symbol at the top, an automaton starts its computation at
the leaves and moves upward. Recognizable tree languages are the languages
recognized by some finite tree automata. We consider the deterministic case and
the nondeterministic case and prove the equivalence. In Section 1.2, we prove
a pumping lemma for recognizable tree languages. This lemma is useful for
proving that some tree languages are not recognizable. In Section 1.3, we prove
the basic closure properties for set operations. In Section 1.4, we define tree
homomorphisms and study the closure properties under these tree transforma-
tions. In this Section the first difference between the word case and the tree case
appears. Indeed, ecognizable word languages are closed under homomorphisms
but recognizable tree languages are closed only under a subclass of tree homo-
morphisms: linear homomorphisms, where duplication of trees is forbidden. We
will see all along this textbook that non linearity is one of the main difficulties
for the tree case. In Section 1.5, we prove a Myhill-Nerode Theorem for tree
languages and the existence of a unique minimal automaton. In Section 1.6, we
define top-down tree automata. A second difference appears with the word case
because it is proved that deterministic top-down tree automata are strictly less
powerful than nondeterministic ones. The last section of the present chapter
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18 Recognizable Tree Languages and Finite Tree Automata

gives a list of complexity results.

1.1 Finite Tree Automata

Nondeterministic Finite Tree Automata

A finite Tree Automaton (NFTA) over F is a tuple A = (Q,F , Qf , ∆) where
Q is a set of (unary) states, Qf ⊆ Q is a set of final states, and ∆ is a set of
transition rules of the following type:

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)),

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ X .

Tree automata over F run on ground terms over F . An automaton starts
at the leaves and moves upward, associating along a run a state with each
subterm inductively. Let us note that there is no initial state in a NFTA, but,
when n = 0, i.e.when the symbol is a constant symbol a, a transition rule is
of the form a → q(a). Therefore, the transition rules for the constant symbols
can be considered as the “initial rules”. If the direct subterms u1, . . . , un of
t = f(u1, . . . , un) are labeled with states q1, . . . , qn, then the term t will be
labeled by some state q with f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)) ∈ ∆. We
now formally define the move relation defined by a NFTA.

Let A = (Q,F , Qf , ∆) be a NFTA over F . The move relation →A is
defined by: let t, t′ ∈ T (F ∪Q),

t→
A

t′ ⇔







∃C ∈ C(F ∪Q), ∃u1, . . . , un ∈ T (F),

∃f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)) ∈ ∆,

t = C[f(q1(u1), . . . , qn(un))],

t′ = C[q(f(u1, . . . , un))].

∗
−→
A

is the reflexive and transitive closure of →A.

Example 4. Let F = {f(, ), g(), a}. Consider the automatonA = (Q,F , Qf , ∆)
defined by: Q = {qa, qg, qf}, Qf = {qf}, and ∆ is the following set of transition
rules:

{ a → qa(a) g(qa(x)) → qg(g(x))
g(qg(x)) → qg(g(x)) f(qg(x), qg(y)) → qf (f(x, y)) }

We give two examples of reductions with the move relation →A

a a

f

→A

a

qa a

f

→A

a

qa

a

qa

f
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a

g

a

g

f
∗
−→
A

a

qa

g

a

qa

g

f
∗
−→
A

a

g

qg

a

g

qg

f

→A

a

g

a

g

f

qf

A ground term t in T (F) is accepted by a finite tree automaton A =
(Q,F , Qf , ∆) if

t
∗
−→
A

q(t)

for some state q in Qf . The reader should note that our definition corresponds
to the notion of nondeterministic finite tree automaton because our finite tree
automaton model allows zero, one or more transition rules with the same left-
hand side. Therefore there are possibly more than one reduction starting with
the same ground term. And, a ground term t is accepted if there is one reduction
(among all possible reductions) starting from this ground term and leading to a
configuration of the form q(t) where q is a final state. The tree language L(A)
recognized byA is the set of all ground terms accepted by A. A set L of ground
terms is recognizable if L = L(A) for some NFTA A. The reader should also
note that when we talk about the set recognized by a finite tree automaton A
we are referring to the specific set L(A), not just any set of ground terms all of
which happen to be accepted by A. Two NFTA are said to be equivalent if
they recognize the same tree languages.

Example 5. LetF = {f(, ), g(), a}. Consider the automatonA = (Q,F , Qf , ∆)
defined by: Q = {q, qg, qf}, Qf = {qf}, and ∆ =

{ a → q(a) g(q(x)) → q(g(x))
g(q(x)) → qg(g(x)) g(qg(x)) → qf (g(x))

f(q(x), q(y)) → q(f(x, y)) }.

We now consider a ground term t and exhibit three different reductions of
term t w.r.t.move relation →A.

t = g(g(f(g(a), a)))
∗
−→
A

g(g(f(qg(g(a)), q(a))))

t = g(g(f(g(a), a)))
∗
−→
A

g(g(q(f(g(a), a))))
∗
−→
A

q(t)

t = g(g(f(g(a), a)))
∗
−→
A

g(g(q(f(g(a), a))))
∗
−→
A

qf (t)

The term t is accepted by A because of the third reduction. It is easy to
prove that L(A) = {g(g(t)) | t ∈ T (F)} is the set of ground instances of g(g(x)).

The set of transition rules of a NFTA A can also be defined as a ground
rewrite system, i.e.a set of ground transition rules of the form: f(q1, . . . , qn)→
q. A move relation →A can be defined as before. The only difference is that,
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20 Recognizable Tree Languages and Finite Tree Automata

now, we “forget” the ground subterms. And, a term t is accepted by a NFTA
A if

t
∗
−→
A

q

for some final state q in Qf . Unless it is stated otherwise, we will now refer
to the definition with a set of ground transition rules. Considering a reduction
starting from a ground term t and leading to a state q with the move relation, it
is useful to remember the “history” of the reduction, i.e.to remember in which
states the ground subterms of t are reduced. For this, we will adopt the following
definitions. Let t be a ground term and A be a NFTA, a run r of A on t is
a mapping r : Pos(t) → Q compatible with ∆, i.e.for every position p in
Pos(t), if t(p) = f ∈ Fn, r(p) = q, r(pi) = qi for each i ∈ {1, . . . , n}, then
f(q1, . . . , qn) → q ∈ ∆. A run r of A on t is successful if r(ǫ) is a final state.
And a ground term t is accepted by a NFTA A if there is a successful run r of
A on t.

Example 6. Let F = {or(, ), and(, ), not(), 0, 1}. Consider the automaton
A = (Q,F , Qf , ∆) defined by: Q = {q0, q1}, Qf = {q1}, and ∆ =

{ 0 → q0 1 → q1

not(q0) → q1 not(q1) → q0

and(q0, q0) → q0 and(q0, q1) → q0

and(q1, q0) → q0 and(q1, q1) → q1

or(q0, q0) → q0 or(q0, q1) → q1

or(q1, q0) → q1 or(q1, q1) → q1 }.

A ground term overF can be viewed as a boolean formula without variable and a
run on such a ground term can be viewed as the evaluation of the corresponding
boolean formula. For instance, we give a reduction for a ground term t and the
corresponding run given as a tree

0 1

or

not

1

0

not

or

and
∗
−→
A

q0 ; the run r:

q0 q1

q1

q0

q1

q0

q1

q1

q0

The tree language recognized by A is the set of true boolean expressions over
F .

NFTA with ǫ-rules

Like in the word case, it is convenient to allow ǫ-moves in the reduction of
a ground term by an automaton, i.e.the current state is changed but no new
symbol of the term is processed. This is done by introducing a new type of rules
in the set of transition rules of an automaton. A NFTA with ǫ-rules is like
a NFTA except that now the set of transition rules contains ground transition
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1.1 Finite Tree Automata 21

rules of the form f(q1, . . . , qn)→ q, and ǫ-rules of the form q → q′. The ability
to make ǫ-moves does not allow the NFTA to accept non recognizable sets. But
NFTA with ǫ-rules are useful in some constructions and simplify some proofs.

Example 7. Let F = {cons(, ), s(), 0, nil}. Consider the automaton A =
(Q,F , Qf , ∆) defined by: Q = {qNat, qList, qList∗}, Qf = {qList}, and ∆ =

{ 0 → qNat s(qNat) → qNat

nil → qList cons(qNat, qList) → qList∗

qList∗ → qList}.

The recognized tree language is the set of Lisp-like lists of integers. If the final
state set Qf is set to {qList∗}, then the recognized tree language is the set of
non empty Lisp-like lists of integers. The ǫ-rule qList∗ → qList says that a non
empty list is a list. The reader should recognize the definition of an order-sorted
algebra with the sorts Nat, List, and List∗ (which stands for the non empty lists),
and the inclusion List∗ ⊆ List (see Section 3.4.1).

Theorem 1 (The equivalence of NFTAs with and without ǫ-rules). If
L is recognized by a NFTA with ǫ-rules, then L is recognized by a NFTA without
ǫ-rules.

Proof. Let A = (Q,F , Qf , ∆) be a NFTA with ǫ-rules. Consider the subset ∆ǫ

consisting of those ǫ-rules in ∆. We denote by ǫ-closure(q) the set of all states
q′ in Q such that there is a reduction of q into q′ using rules in ∆ǫ. We consider
that q ∈ ǫ-closure(q). This computation is a transitive closure computation and
can be done in O(|Q|3). Now let us define the NFTA A′ = (Q,F , Qf , ∆′) where
∆′ is defined by:

∆′ = {f(q1, . . . , qn)→ q′ | f(q1, . . . , qn)→ q ∈ ∆, q′ ∈ ǫ-closure(q)}

Then it may be proved that t
∗
−→
A

q iff t
∗
−−→
A′

q.

Unless it is stated otherwise, we will now consider NFTA without ǫ-rules.

Deterministic Finite Tree Automata

Our definition of tree automata corresponds to the notion of nondeterministic
finite tree automata. We will now define deterministic tree automata (DFTA)
which are a special case of NFTA. It will turn out that, like in the word case, any
language recognized by a NFTA can also be recognized by a DFTA. However,
the NFTA are useful in proving theorems in tree language theory.

A tree automaton A = (Q,F , Qf , ∆) is deterministic (DFTA) if there are
no two rules with the same left-hand side (and no ǫ-rule). Given a DFTA, there
is at most one run for every ground term, i.e.for every ground term t, there is
at most one state q such that t

∗
−→
A

q. The reader should note that it is possible

to define a tree automaton in which there are two rules with the same left-hand
side such that there is at most one run for every ground term (see Example 8).
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22 Recognizable Tree Languages and Finite Tree Automata

It is also useful to consider tree automata such that there is at least one
run for every ground term. This leads to the following definition. A NFTA A
is complete if there is at least one rule f(q1, . . . , qn) → q ∈ ∆ for all n ≥ 0,
f ∈ Fn, and q1, . . . , qn ∈ Q. Let us note that for a complete DFTA there is
exactly one run for every ground term.

Lastly, for practical reasons, it is usual to consider automata in which un-
necessary states are eliminated. A state q is accessible if there exists a ground
term t such that t

∗
−→
A

q. A NFTA A is said to be reduced if all its states are

accessible.

Example 8.
The automaton defined in Example 5 is reduced, not complete, and it is not

deterministic because there are two rules of left-hand side g(q(x)). Let us also
note (see Example 5) that at least two runs (one is successful) can be defined
on the term g(g(f(g(a), a))).

The automaton defined in Example 6 is a complete and reduced DFTA.
Let F = {g(), a}. Consider the automaton A = (Q,F , Qf , ∆) defined by:

Q = {q0, q1, q}, Qf = {q0}, and ∆ is the following set of transition rules:

{ a → q0 g(q0) → q1

g(q1) → q0 g(q) → q0

g(q) → q1}.

This automaton is not deterministic because there are two rules of left-hand
side g(q), it is not reduced because state q is not accessible. Nevertheless, one
should note that there is at most one run for every ground term t.

Let F = {f(, ), g(), a}. Consider the automaton A = (Q,F , Qf , ∆) defined
in Example 4 by: Q = {qa, qg, qf}, Qf = {qf}, and ∆ is the following set of
transition rules:

{ a → qa g(qa) → qg

g(qg) → qg f(qg, qg) → qf }.

This automaton is deterministic and reduced. It is not complete because, for
instance, there is no transition rule of left-hand side f(qa, qa). It is easy to define
a deterministic and complete automaton A′ recognizing the same language by
adding a “dead state”. The automaton A′ = (Q′,F , Qf , ∆′) is defined by:
Q′ = Q ∪ {π}, ∆′ = ∆∪

{ g(qf ) → π g(π) → π
f(qa, qa) → π f(qa, qg) → π

. . . f(π, π) → π }.

It is easy to generalize the construction given in Example 8 of a complete
NFTA equivalent to a given NFTA: add a “dead state” π and all transition
rules with right-hand side π such that the automaton is complete. The reader
should note that this construction could be expensive because it may require
O(|F| × |Q|Arity(F)) new rules where Arity(F) is the maximal arity of symbols
in F . Therefore we have the following:
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Theorem 2. Let L be a recognizable set of ground terms. Then there exists a
complete finite tree automaton that accepts L.

We now give a polynomial algorithm which outputs a reduced NFTA equiv-
alent to a given NFTA as input. The main loop of this algorithm computes the
set of accessible states.

Reduction Algorithm RED
input: NFTA A = (Q,F , Qf , ∆)
begin

Set Marked to ∅ /* Marked is the set of accessible states */
repeat

Set Marked to Marked ∪ {q}
where

f ∈ Fn, q1, . . . , qn ∈ Marked , f(q1, . . . , qn)→ q ∈ ∆
until no state can be added to Marked
Set Qr to Marked
Set Qrf

to Qf ∩Marked
Set ∆r to {f(q1, . . . , qn)→ q ∈ ∆ | q, q1, . . . , qn ∈ Marked}
output: NFTA Ar = (Qr,F , Qrf

, ∆r)
end

Obviously all states in the set Marked are accessible, and an easy induction
shows that all accessible states are in the set Marked . And, the NFTA Ar

accepts the tree language L(A). Consequently we have:

Theorem 3. Let L be a recognizable set of ground terms. Then there exists a
reduced finite tree automaton that accepts L.

Now, we consider the reduction of nondeterminism. Since every DFTA is
a NFTA, it is clear that the class of recognizable languages includes the class
of languages accepted by DFTAs. However it turns out that these classes are
equal. We prove that, for every NFTA, we can construct an equivalent DFTA.
The proof is similar to the proof of equivalence between DFAs and NFAs in the
word case. The proof is based on the “subset construction”. Consequently, the
number of states of the equivalent DFTA can be exponential in the number of
states of the given NFTA (see Example 10). But, in practice, it often turns
out that many states are not accessible. Therefore, we will present in the proof
of the following theorem a construction of a DFTA where only the accessible
states are considered, i.e.the given algorithm outputs an equivalent and reduced
DFTA from a given NFTA as input.

Theorem 4 (The equivalence of DFTAs and NFTAs). Let L be a recog-
nizable set of ground terms. Then there exists a DFTA that accepts L.

Proof. First, we give a theoretical construction of a DFTA equivalent to a
NFTA. LetA = (Q,F , Qf , ∆) be a NFTA. Define a DFTAAd = (Qd,F , Qdf , ∆d),
as follows. The states of Qd are all the subsets of the state set Q of A. That
is, Qd = 2Q. We denote by s a state of Qd, i.e.s = {q1, . . . , qn} for some states
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q1, . . . , qn ∈ Q. We define

f(s1, . . . , sn)→ s ∈ ∆d

iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,∃qn ∈ sn, f(q1, . . . , qn)→ q ∈ ∆}.

And Qdf is the set of all states in Qd containing a final state of A.
We now give an algorithmic construction where only the accessible states

are considered.

Determinization Algorithm DET
input: NFTA A = (Q,F , Qf , ∆)
begin

/* A state s of the equivalent DFTA is in 2Q */
Set Qd to ∅; set ∆d to ∅
repeat

Set Qd to Qd ∪ {s}; Set ∆d to ∆d ∪ {f(s1, . . . , sn)→ s}
where

f ∈ Fn, s1, . . . , sn ∈ Qd,
s = {q ∈ Q | ∃q1 ∈ s1, . . . , qn ∈ sn, f(q1, . . . , qn)→ q ∈ ∆}

until no rule can be added to ∆d

Set Qdf to {s ∈ Qd | s ∩Qf 6= ∅}
output: DFTA Ad = (Qd,F , Qdf , ∆d)

end

It is immediate from the definition of the determinization algorithm that
Ad is a deterministic and reduced tree automaton. In order to prove that
L(A) = L(Ad), we now prove that:

(t
∗
−−→
Ad

s) iff (s = {q ∈ Q | t
∗
−→
A

q}).

The proof is an easy induction on the structure of terms.

• base case: let us consider t = a ∈ F0. Then, there is only one rule a → s
in ∆d where s = {q ∈ Q | a→ q ∈ ∆}.

• induction step: let us consider a term t = f(t1, . . . , tn).

– First, let us suppose that t
∗
−−→
Ad

f(s1, . . . , sn)→Ad
s. By induction

hypothesis, for each i ∈ {1, . . . , n}, si = {q ∈ Q | ti
∗
−→
A

q}. States si

are in Qd, thus a rule f(s1, . . . , sn)→ s ∈ ∆d is added in the set ∆d

by the determinization algorithm and s = {q ∈ Q | ∃q1 ∈ s1, . . . , qn ∈

sn, f(q1, . . . , qn)→ q ∈ ∆}. Thus, s = {q ∈ Q | t
∗
−→
A

q}.

– Second, let us consider s = {q ∈ Q | t = f(t1, . . . , tn)
∗
−→
A

q}. Let

us consider the state sets si defined by si = {q ∈ Q | ti
∗
−→
A

q}.

By induction hypothesis, for each i ∈ {1, . . . , n}, ti
∗
−−→
Ad

si. Thus
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s = {q ∈ Q | ∃q1 ∈ s1, . . . , qn ∈ sn, f(q1, . . . , qn) → q ∈ ∆}. The
rule f(s1, . . . , sn) ∈ ∆d by definition of the state set ∆d in the deter-

minization algorithm and t
∗
−−→
Ad

s.

Example 9. LetF = {f(, ), g(), a}. Consider the automatonA = (Q,F , Qf , ∆)
defined in Example 5 by: Q = {q, qg, qf}, Qf = {qf}, and ∆ =

{ a → q g(q) → q
g(q) → qg g(qg) → qf

f(q, q) → q }.

Given A as input, the determinization algorithm outputs the DFTA Ad =
(Qd,F , Qdf , ∆d) defined by: Qd = {{q}, {q, qg}, {q, qg, qf}}, Qdf = {{q, qg, qf}},
and ∆d =

{ a → {q}
g({q}) → {q, qg}

g({q, qg}) → {q, qg, qf}
g({q, qg, qf}) → {q, qg, qf} }

∪ { f(s1, s2) → {q} | s1, s2 ∈ Qd }.

We now give an example where an exponential blow-up occurs in the deter-
minization process. This example is the same used in the word case.

Example 10. Let F = {f(), g(), a} and let n be an integer. And let us consider
the tree language

L = {t ∈ T (F) | the symbol at position 1 . . . 1
︸ ︷︷ ︸

n

is f}.

Let us consider the NFTA A = (Q,F , Qf , ∆) defined by: Q = {q, q1, . . . , qn+1},
Qf = {qn+1}, and ∆ =

{ a → q f(q) → q
g(q) → q f(q) → q1

g(q1) → q2 f(q1) → q2

...
...

g(qn) → qn+1 f(qn) → qn+1 }.

The NFTA A = (Q,F , Qf , ∆) accepts the tree language L, and it has n + 2
states. Using the subset construction, the equivalent DFTA Ad has 2n+1 states.
Any equivalent automaton has to memorize the n + 1 last symbols of the input
tree. Therefore, it can be proved that any DFTA accepting L has at least 2n+1

states. It could also be proved that the automaton Ad is minimal in the number
of states (minimal tree automata are defined in Section 1.5).
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If a finite tree automaton is deterministic, we can replace the transition
relation ∆ by a transition function δ. Therefore, it is sometimes convenient to
consider a DFTA A = (Q,F , Qf , δ) where

δ :
⋃

n

Fn ×Qn → Q .

The computation of such an automaton on a term t as input tree can be viewed
as an evaluation of t on finite domain Q. Indeed, define the labeling function
δ̂ : T (F)→ Q inductively by

δ̂(f(t1, . . . , tn)) = δ(f, δ̂(t1), . . . , δ̂(tn)) .

We shall for convenience confuse δ and δ̂.
We now make clear the connections between our definitions and the language

theoretical definitions of tree automata and of recognizable tree languages. In-
deed, the reader should note that a complete DFTA is just a finite F -algebra
A consisting of a finite carrier |A| = Q and a distinguished n-ary function
fA : Qn → Q for each n-ary symbol f ∈ F together with a specified subset Qf

of Q. A ground term t is accepted by A if δ(t) = q ∈ Qf where δ is the unique
F -algebra homomorphism δ : T (F)→ A.

Example 11. Let F = {f(, ), a} and consider the F -algebra A with |A| =
Q = Z2 = {0, 1}, fA = + where the sum is formed modulo 2, aA = 1, and let
Qf = {0}. A and Qf defines a DFTA. The recognized tree language is the set
of ground terms over F with an even number of leaves.

Since DFTA and NFTA accept the same sets of tree languages, we shall not
distinguish between them unless it becomes necessary, but shall simply refer to
both as tree automata (FTA).

1.2 The Pumping Lemma for Recognizable Tree

Languages

We now give an example of a tree language which is not recognizable.

Example 12. Let F = {f(, ), g(), a}. Let us consider the tree language
L = {f(gi(a), gi(a)) | i > 0}. Let us suppose that L is recognizable by an
automaton A having k states. Now, consider the term t = f(gk(a), gk(a)). t
belongs to L, therefore there is a successful run of A on t. As k is the cardinality
of the state set, there are two distinct positions along the first branch of the term
labeled with the same state. Therefore, one could cut the first branch between
these two positions leading to a term t′ = f(gj(a), gk(a)) with j < k such that
a successful run of A can be defined on t′. This leads to a contradiction with
L(A) = L.

This (sketch of) proof can be generalized by proving a pumping lemma

for recognizable tree languages. This lemma is extremely useful in proving that
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certain sets of ground terms are not recognizable. It is also useful for solving
decision problems like emptiness and finiteness of a recognizable tree language
(see Section 1.7).

Pumping Lemma. Let L be a recognizable set of ground terms. Then, there
exists a constant k > 0 satisfying: for every ground term t in L such that
Height(t) > k, there exist a context C ∈ C(F), a non trivial context C′ ∈ C(F),
and a ground term u such that t = C[C′[u]] and, for all n ≥ 0 C[C′n [u]] ∈ L.

Proof. Let A = (Q,F , Qf , ∆) be a FTA such that L = L(A) and let k = |Q|
be the cardinality of the state set Q. Let us consider a ground term t in L
such that Height(t) > k and consider a successful run r of A on t. Now let us
consider a path in t of length strictly greater than k. As k is defined to be the
cardinality of the state set Q, there are two positions p1 < p2 along this path
such that r(p1) = r(p2) = q for some state q. Let u be the ground subterm of t
at position p2. Let u′ be the ground subterm of t at position p1, there exists a
non-trivial context C′ such that u′ = C′[u]. Now define the context C such that
t = C[C′[u]]. Consider a term C[C′n [u]] for some integer n > 1, a successful run
can be defined on this term. Indeed suppose that r corresponds to the reduction
t

∗
−→
A

qf where qf is a final state of A, then we have:

C[C′n [u]]
∗
−→
A

C[C′n [q]]
∗
−→
A

C[C′n−1

[q]] . . .
∗
−→
A

C[q]
∗
−→
A

qf .

The same holds when n = 0.

Example 13. Let F = {f(, ), a}. Let us consider the tree language L = {t ∈
T (F) | |Pos(t)| is a prime number}. We can prove that L is not recognizable.
For all k > 0, consider a term t in L whose height is greater than k. For all
contexts C, non trivial contexts C′, and terms u such that t = C[C′[u]], there
exists n such that C[C′n [u]] 6∈ L.

From the Pumping Lemma, we derive conditions for emptiness and finiteness
given by the following corollary:

Corollary 1. Let A = (Q,F , Qf , ∆) be a FTA. Then L(A) is non empty if
and only if there exists a term t in L(A) with Height(t) ≤ |Q|. Then L(A) is
infinite if and only if there exists a term t in L(A) with |Q| < Height(t) ≤ 2|Q|.

1.3 Closure Properties of Recognizable Tree Lan-

guages

A closure property of a class of (tree) languages is the fact that the class
is closed under a particular operation. We are interested in effective closure
properties where, given representations for languages in the class, there is an
algorithm to construct a representation for the language that results by applying
the operation to these languages. Let us note that the equivalence between
NFTA and DFTA is effective, thus we may choose the representation that suits
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28 Recognizable Tree Languages and Finite Tree Automata

us best. Nevertheless, the determinization algorithm may output a DFTA whose
number of states is exponential in the number of states of the given NFTA.
For the different closure properties, we give effective constructions and we give
the properties of the resulting FTA depending on the properties of the given
FTA as input. In this section, we consider the Boolean set operations: union,
intersection, and complementation. Other operations will be studied in the next
sections. Complexity results are given in Section 1.7.

Theorem 5. The class of recognizable tree languages is closed under union,
under complementation, and under intersection.

Union

Let L1 and L2 be two recognizable tree languages. Thus there are tree au-
tomata A1 = (Q1,F , Qf1, ∆1) and A2 = (Q2,F , Qf2, ∆2) with L1 = L(A1)
and L2 = L(A2). Since we may rename states of a tree automaton, without
loss of generality, we may suppose that Q1 ∩ Q2 = ∅. Now, let us consider
the FTA A = (Q,F , Qf , ∆) defined by: Q = Q1 ∪ Q2, Qf = Qf1 ∪ Qf2, and
∆ = ∆1∪∆2. The equality between L(A) and L(A1)∪L(A2) is straightforward.
Let us note that A is nondeterministic and not complete, even if A1 and A2 are
deterministic and complete.

We now give another construction which preserves determinism. The intu-
itive idea is to process in parallel a term by the two automata. For this we
consider a product automaton. Let us suppose that A1 and A2 are complete.
And, let us consider the FTA A = (Q,F , Qf , ∆) defined by: Q = Q1 × Q2,
Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 = {f((q1, q
′
1), . . . , (qn, q′n))→ (q, q′) |

f(q1, . . . , qn)→ q ∈ ∆1 f(q′1, . . . , q
′
n)→ q′ ∈ ∆2}

The proof of the equality between L(A) and L(A1)∪L(A2) is left to the reader,
but the reader should note that the hypothesis that the two given tree automata
are complete is crucial in the proof. Indeed, suppose for instance that a ground
term t is accepted by A1 but not by A2. Moreover suppose that A2 is not
complete and that there is no run of A2 on t, then the product automaton does
not accept t because there is no run of the product automaton on t. The reader
should also note that the construction preserves determinism, i.e.if the two given
automata are deterministic, then the product automaton is also deterministic.

Complementation

Let L be a recognizable tree language. Let A = (Q,F , Qf , ∆) be a complete
DFTA such that L(A) = L. Now, complement the final state set to recognize
the complement of L. That is, let Ac = (Q,F , Qc

f , ∆) with Qc
f = Q \ Qf , the

DFTA Ac recognizes the complement of set L in T (F).

If the input automaton A is a NFTA, then first apply the determinization
algorithm, and second complement the final state set. This could lead to an
exponential blow-up.
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Intersection

Closure under intersection follows from closure under union and complementa-
tion because

L1 ∩ L2 = L1 ∪ L2.

where we denote by L the complement of set L in T (F). But if the recogniz-
able tree languages are defined by NFTA, we have to use the complementa-
tion construction, therefore the determinization process is used leading to an
exponential blow-up. Consequently, we now give a direct construction which
does not use the determinization algorithm. Let A1 = (Q1,F , Qf1, ∆1) and
A2 = (Q2,F , Qf2, ∆2) be FTA such that L(A1) = L1 and L(A2) = L2. And,
consider the FTA A = (Q,F , Qf , ∆) defined by: Q = Q1×Q2, Qf = Qf1×Qf2,
and ∆ = ∆1×∆2. A recognizes L1 ∩L2. Moreover the reader should note that
A is deterministic if A1 and A2 are deterministic.

1.4 Tree Homomorphisms

We now consider tree transformations and study the closure properties under
these tree transformations. In this section we are interested with tree transfor-
mations preserving the structure of trees. Thus, we restrict ourselves to tree
homomorphisms. Tree homomorphisms are a generalization of homomorphisms
for words (considered as unary terms) to the case of arbitrary ranked alpha-
bets. In the word case, it is known that the class of regular sets is closed
under homomorphisms and inverse homomorphisms. The situation is different
in the tree case because whereas recognizable tree languages are closed under
inverse homomorphisms, they are closed only under a subclass of homomor-
phisms, i.e.linear homomorphisms (duplication of terms is forbidden). First, we
define tree homomorphisms.

Let F and F ′ be two sets of function symbols, possibly not disjoint. For
each n > 0 such that F contains a symbol of arity n, we define a set of variables
Xn = {x1, . . . , xn} disjoint from F and F ′.

Let hF be a mapping which, with f ∈ F of arity n, associates a term
tf ∈ T (F ′,Xn). The tree homomorphism h : T (F) → T (F ′) determined by
hF is defined as follows:

• h(a) = ta ∈ T (F ′) for each a ∈ F of arity 0,

• h(f(t1, . . . , tn)) = tf{x1 ← h(t1), . . . , xn ← h(tn)}

where tf{x1 ← h(t1), . . . , xn ← h(tn)} is the result of applying the substi-
tution {x1 ← h(t1), . . . , xn ← h(tn)} to the term tf .

Example 14. Let F = {g(, , ), a, b} and F ′ = {f(, ), a, b}. Let us consider the
tree homomorphism h determined by hF defined by: hF (g) = f(x1, f(x2, x3)),
hF (a) = a and hF(b) = b. For instance, we have:
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If t =
a

b b b

g a

g

, then h(t) =
a

b

b b

f

f a

f

f

The homomorphism h defines a transformation from ternary trees into binary
trees.

Let us now considerF = {and(, ), or(, ), not(), 0, 1} andF ′ = {or(, ), not(), 0, 1}.
Let us consider the tree homomorphism h determined by hF defined by: hF(and) =
not(or(not(x1), not(x2)), and hF is the identity otherwise. This homomorphism
transforms a boolean formula in an equivalent boolean formula which does not
contain the function symbol and.

A tree homomorphism is linear if for each f ∈ F of arity n, hF (f) = tf is
a linear term in T (F ′,Xn). The following example shows that tree homomor-
phisms do not always preserve recognizability.

Example 15. Let F = {f(), g(), a} and F ′ = {f ′(, ), g(), a}. Let us consider
the tree homomorphism h determined by hF defined by: hF(f) = f ′(x1, x1),
hF(g) = g(x1), and hF(a) = a. h is not linear. Let L = {f(gi(a)) | i ≥ 0},
then L is a recognizable tree language. h(L) = {f ′(gi(a), gi(a)) | i ≥ 0} is not
recognizable (see Example 12).

Theorem 6 (Linear homomorphisms preserve recognizability). Let h
be a linear tree homomorphism and L be a recognizable tree language, then h(L)
is a recognizable tree language.

Proof. Let L be a recognizable tree language. Let A = (Q,F , Qf , ∆) be a
reduced DFTA such that L(A) = L. Let h be a linear tree homomorphism from
T (F) into T (F ′) determined by a mapping hF .

First, let us define a NFTA A′ = (Q′,F ′, Q′
f , ∆′). Let us consider a rule r =

f(q1, . . . , qn)→ q in ∆ and consider the linear term tf = hF (f) ∈ T (F ′,Xn) and
the set of positions Pos(tf ). We define a set of states Qr = {qr

p | p ∈ Pos(tf )},
and we define a set of rules ∆r as follows: for all positions p in Pos(tf )

• if tf (p) = g ∈ F ′
k, then g(qr

p1
, . . . , qr

pk
)→ qr

p ∈ ∆r,

• if tf (p) = xi, then qi → qr
p ∈ ∆r,

• qr
ǫ → q ∈ ∆r.

The preceding construction is made for each rule in ∆. We suppose that all the
state sets Qr are disjoint and that they are disjoint from Q. Now define A′ by:

• Q′ = Q ∪
⋃

r∈∆ Qr,

TATA — September 6, 2005 —



1.4 Tree Homomorphisms 31

• Q′
f = Qf ,

• ∆′ =
⋃

r∈∆ ∆r.

Second, we have to prove that h(L) = L(A′).

h(L) ⊆ L(A′). We prove that if t
∗
−→
A

q then h(t)
∗
−−→
A′

q by induction on the

length of the reduction of ground term t ∈ T (F) by automaton A.

• Base case. Suppose that t→A q. Then t = a ∈ F0 and a → q ∈ ∆.
Then there is a reduction h(a) = ta

∗
−−→
A′

q using the rules in the set

∆a→q.

• Induction step.

Suppose that t = f(u1, . . . , un), then h(t) = tf{x1←h(u1), . . . , xn←

h(un)}. Moreover suppose that t
∗
−→
A

f(q1, . . . , qn)→A q. By induc-

tion hypothesis, we have h(ui)
∗
−−→
A′

qi, for each i in {1, . . . , n}. Then

there is a reduction tf{x1←q1, . . . , xn←qn}
∗
−−→
A′

q using the rules in

the set ∆f(q1,...,qn)→q.

h(L) ⊇ L(A′). We prove that if t′
∗
−−→
A′

q ∈ Q then t′ = h(t) with t
∗
−→
A

q for

some t ∈ T (F). The proof is by induction on the number of states in Q

occurring along the reduction t′
∗
−−→
A′

q ∈ Q.

• Base case. Suppose that t′
∗
−−→
A′

q ∈ Q and no state in Q apart from q

occurs in the reduction. Then, because the state sets Qr are disjoint,
only rules of some ∆r can be used in the reduction. Thus, t′ is ground,
t′ = hF (f) for some symbol f ∈ F , and r = f(q1, . . . , qn) → q.
Because the automaton is reduced, there is some ground term t with
Head(t) = f such that t′ = h(t) and t

∗
−→
A

q.

• Induction step. Suppose that

t′
∗
−−→
A′

v{x′
1←q1, . . . , x

′
m←qm}

∗
−−→
A′

q

where v is a linear term in T (F ′, {x′
1, . . . , x

′
m}), t′ = v{x′

1← u′
1, . . . , x

′
m←

u′
m}, u′

i

∗
−−→
A′

qi ∈ Q, and no state in Q apart from q occurs in the

reduction of v{x′
1 ← q1, . . . , x

′
m ← qm} to q. The reader should

note that different variables can be substituted by the same state.
Then, because the state sets Qr are disjoint, only rules of some
∆r can be used in the reduction of v{x′

1← q1, . . . , x
′
m← qm} to q.

Thus, there exists some linear term tf such that v{x′
1←q1, . . . , x

′
m←

qm} = tf{x1 ← q1, . . . , xn ← qn} for some symbol f ∈ Fn and
r = f(q1, . . . , qn) → q ∈ ∆. By induction hypothesis, there are

terms u1, . . . , um in L such that u′
i = h(ui) and ui

∗
−→
A

qi for each

i in {1, . . . , m}. Now consider the term t = f(v1, . . . , vn), where

vi = ui if xi occurs in tf and vi is some term such that vi
∗
−→
A

qi

otherwise (terms vi always exist because A is reduced). We have
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h(t) = tf{x1←h(v1), . . . , xn←h(vn)}, h(t) = v{x′
1←h(u1), . . . , x

′
m←

h(um)}, h(t) = t′. Moreover, by definition of the vi and by induc-

tion hypothesis, we have t
∗
−→
A

q. Note that if qi occurs more than

once, you can substitute qi by any term satisfying the conditions.
The proof does not work for the non linear case because you have to
check that different occurrences of some state qi corresponding to the
same variable xj ∈ Var(tf ) can only be substituted by equal terms.

Only linear tree homomorphisms preserve recognizability. An example of a
non linear homomorphism which transforms recognizable tree languages either
in recognizable tree languages or in non recognizable tree languages is given in
Exercise 6. For linear and non linear homomorphisms, we have:

Theorem 7 (Inverse homomorphisms preserve recognizability). Let h
be a tree homomorphism and L be a recognizable tree language, then h−1(L) is
a recognizable tree language.

Proof. Let h be a tree homomorphism from T (F) into T (F ′) determined by a
mapping hF . Let A′ = (Q′,F ′, Q′

f , ∆′) be a complete DFTA such that L(A′) =
L. We define a DFTA A = (Q,F , Qf , ∆) by Q = Q′ ∪ {s} where s 6∈ Q′,
Qf = Q′

f and ∆ is defined by the following:

• for a ∈ F0, if ta
∗
−−→
A′

q then a→ q ∈ ∆;

• for f ∈ Fn where n > 0, if tf{x1← p1, . . . , xn← pn}
∗
−−→
A′

q then f(q1, . . . , qn)→

q ∈ ∆ where qi = pi if xi occurs in tf and qi = s otherwise;

• for a ∈ F0, a→ s ∈ ∆;

• for f ∈ Fn where n > 0, f(s, . . . , s)→ s ∈ ∆.

The rule set ∆ is computable. The proof of the equivalence t
∗
−→
A

q if and only

if h(t)
∗
−−→
A′

q is left to the reader.

It can be proved that the class of recognizable tree languages is the smallest
non trivial class of tree languages closed by linear tree homomorphisms and
inverse tree homomorphisms. Tree homomorphisms do not in general preserve
recognizability, therefore let us consider the following problem: given as in-
stance a recognizable tree language L and a tree homomorphism h, is the set
h(L) recognizable? To our knowledge it is not known whether this problem is
decidable. The reader should note that if this problem is decidable, the prob-
lem whether the set of normal forms of a rewrite system is recognizable is easily
shown decidable (see Exercises 6 and 12).

As a conclusion we consider different special types of tree homomorphisms.
These homomorphisms will be used in the next sections in order to simplify
some proofs and will be useful in Chapter 6. Let h be a tree homomorphism
determined by hF . The tree homomorphism h is said to be:

• ǫ-free if for each symbol f ∈ F , tf is not reduced to a variable.
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• symbol to symbol if for each symbol f ∈ F , Height(tf ) = 1. The reader
should note that with our definitions a symbol to symbol tree homomor-
phism is ǫ-free. A linear symbol to symbol tree homomorphism changes
the label of the input symbol, possibly erases some subtrees and possibly
modifies order of subtrees.

• complete if for each symbol f ∈ Fn, Var(tf ) = Xn.

• a delabeling if h is a complete, linear, symbol to symbol tree homomor-
phism. Such a delabeling only changes the label of the input symbol and
possibly order of subtrees.

• alphabetic if for each symbol f ∈ Fn, tf = g(x1, . . . , xn), where g ∈ F ′
n.

As a corollary of Theorem 6, alphabetic tree homomorphisms, delabelings and
linear, symbol to symbol tree homomorphisms preserve recognizability. It can
be proved that for these classes of tree homomorphisms, given h and a FTA A
such that L(A) = L as instance, a FTA for the recognizable tree language h(L)
can be constructed in linear time. The same holds for h−1(L).

Example 16. Let F = {f(, ), g(), a} and F ′ = {f ′(, ), g′(), a′}. Let us consider
some tree homomorphisms h determined by different hF .

• hF(f) = x1, hF (g) = f ′(x1, x1), and hF(a) = a′. h is not linear, not
ǫ-free, and not complete.

• hF(f) = g′(x1), hF(g) = f ′(x1, x1), and hF (a) = a′. h is a non linear
symbol to symbol tree homomorphism. h is not complete.

• hF(f) = f ′(x2, x1), hF(g) = g′(x1), and hF (a) = a′. h is a delabeling.

• hF(f) = f ′(x1, x2), hF (g) = g′(x1), and hF(a) = a′. h is an alphabetic
tree homomorphism.

1.5 Minimizing Tree Automata

In this section, we prove that, like in the word case, there exists a unique minimal
automaton in the number of states for a given recognizable tree language.

A Myhill-Nerode Theorem for Tree Languages

The Myhill-Nerode Theorem is a classical result in the theory of finite au-
tomata. This theorem gives a characterization of the recognizable sets and it
has numerous applications. A consequence of this theorem, among other con-
sequences, is that there is essentially a unique minimum state DFA for every
recognizable language over finite alphabet. The Myhill-Nerode Theorem gener-
alizes in a straightforward way to automata on finite trees.

An equivalence relation ≡ on T (F) is a congruence on T (F) if for every
f ∈ Fn

ui ≡ vi 1 ≤ i ≤ n⇒ f(u1, . . . , un) ≡ f(v1, . . . , vn) .
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It is of finite index if there are only finitely many ≡-classes. Equivalently
a congruence is an equivalence relation closed under context, i.e.for all contexts
C ∈ C(F), if u ≡ v, then C[u] ≡ C[v]. For a given tree language L, let us define
the congruence ≡L on T (F) by: u ≡L v if for all contexts C ∈ C(F),

C[u] ∈ L iff C[v] ∈ L.

We are now ready to give the Theorem:

Myhill-Nerode Theorem. The following three statements are equivalent:

(i) L is a recognizable tree language

(ii) L is the union of some equivalence classes of a congruence of finite index

(iii) the relation ≡L is a congruence of finite index.

Proof.

• (i) ⇒ (ii) Assume that L is recognized by some complete DFTA A =
(Q,F , Qf , δ). We consider δ as a transition function. Let us consider
the relation ≡A defined on T (F) by: u ≡A v if δ(u) = δ(v). Clearly
≡A is a congruence relation and it is of finite index, since the number of
equivalence classes is at most the number of states in Q. Furthermore, L
is the union of those equivalence classes that include a term u such that
δ(u) is a final state.

• (ii) ⇒ (iii) Let us denote by ∼ the congruence of finite index. And let us
assume that u ∼ v. By an easy induction on the structure of terms, it can
be proved that C[u] ∼ C[v] for all contexts C ∈ C(F). Now, L is the union
of some equivalence classes of ∼, thus we have C[u] ∈ L iff C[v] ∈ L. Thus
u ≡L v, and the equivalence class of u in ∼ is contained in the equivalence
class of u in ≡L. Consequently, the index of ≡L is lower than or equal to
the index of ∼ which is finite.

• (iii) ⇒ (i) Let Qmin be the finite set of equivalence classes of ≡L. And
let us denote by [u] the equivalence class of a term u. Let the transition
function δmin be defined by:

δmin(f, [u1], . . . , [un]) = [f(u1, . . . , un)].

The definition of δmin is consistent because ≡L is a congruence. And
let Qminf

= {[u] | u ∈ L}. The DFTA Amin = (Qmin,F , Qminf
, δmin)

recognizes the tree language L.

As a corollary of the Myhill-Nerode Theorem, we can deduce an other al-
gebraic characterization of recognizable tree languages. This characterization
is a reformulation of the definition of recognizability. A set of ground terms
L is recognizable if and only if there exist a finite F -algebra A, an F -algebra
homomorphism φ : T (F) → A and a subset A′ of the carrier |A| of A such
that L = φ−1(A′).
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Minimization of Tree Automata

First, we prove the existence and uniqueness of the minimum DFTA for a rec-
ognizable tree language. It is a consequence of the Myhill-Nerode Theorem
because of the following result:

Corollary 2. The minimum DFTA recognizing a recognizable tree language L
is unique up to a renaming of the states and is given by Amin in the proof of
the Myhill-Nerode Theorem.

Proof. Assume that L is recognized by some DFTA A = (Q,F , Qf , δ). The
relation ≡A is a refinement of ≡L (see the proof of the Myhill-Nerode Theorem).
Therefore the number of states of A is greater than or equal to the number of
states of Amin. If equality holds, A is reduced, i.e.all states are accessible,
because otherwise a state could be removed leading to a contradiction. Let q
be a state in Q and let u be such that δ(u) = q. The state q can be identified
with the state δmin(u). This identification is consistent and defines a one to one
correspondence between Q and Qmin.

Second, we give a minimization algorithm for finding the minimum state
DFTA equivalent to a given reduced DFTA. We identify an equivalence relation
and the sequence of its equivalence classes.

Minimization Algorithm MIN
input: complete and reduced DFTA A = (Q,F , Qf , δ)
begin

Set P to {Qf , Q−Qf} /* P is the initial equivalence relation*/
repeat

P ′ = P
/* Refine equivalence P in P ′ */
qP ′q′ if

qPq′ and
∀f ∈ Fn∀q1, . . . , qi−1, qi+1, . . . , qn ∈ Q
δ(f(q1, . . . , qi−1, q, qi+1, . . . , qn))Pδ(f(q1, . . . , qi−1, q

′, qi+1, . . . , qn))
until P ′ = P
Set Qmin to the set of equivalence classes of P
/* we denote by [q] the equivalence class of state q w.r.t.P */
Set δmin to {(f, [q1], . . . , [qn])→ [f(q1, . . . , qn)]}
Set Qminf

to {[q] | q ∈ Qf}
output: DFTA Amin = (Qmin,F , Qminf

, δmin)
end

The DFTA constructed by the algorithmMIN is the minimum state DFTA
for its tree language. Indeed, let A = (Q,F , Qf , ∆) the DFTA to which is ap-
plied the algorithm and let L = L(A). Let Amin be the output of the algorithm.
It is easy to show that the definition ofAmin is consistent and that L = L(Amin).
Now, by contradiction, we can prove that Amin has no more states than the
number of equivalence classes of ≡L.
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1.6 Top Down Tree Automata

The tree automata that we have defined in the previous sections are also known
as bottom-up tree automata because these automata start their computation at
the leaves of trees. In this section we define top-down tree automata. Such an
automaton starts its computation at the root in an initial state and then simul-
taneously works down the paths of the tree level by level. The tree automaton
accepts a tree if a run built up in this fashion can be defined. It appears that
top-down tree automata and bottom-up tree automata have the same expres-
sive power. An important difference between bottom-up tree automata and
top-down automata appears in the question of determinism since deterministic
top-down tree automata are strictly less powerful than nondeterministic ones
and therefore are strictly less powerful than bottom-up tree automata. In-
tuitively, it is due to the following: tree properties specified by deterministic
top-down tree automata can depend only on path properties. We now make
precise these remarks, but first formally define top-down tree automata.

A nondeterministic top-down finite Tree Automaton (top-down NFTA)
over F is a tuple A = (Q,F , I, ∆) where Q is a set of states (states are unary
symbols), I ⊆ Q is a set of initial states, and ∆ is a set of rewrite rules of the
following type :

q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)),

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ X .
When n = 0, i.e.when the symbol is a constant symbol a, a transition rule of

top-down NFTA is of the form q(a)→ a. A top-down automaton starts at the
root and moves downward, associating along a run a state with each subterm
inductively. We do not formally define the move relation →A defined by a top-
down NFTA because the definition is easily deduced from the corresponding
definition for bottom-up NFTA. The tree language L(A) recognized by A is the
set of all ground terms t for which there is an initial state q in I such that

q(t)
∗
−→
A

t.

The expressive power of bottom-up and top-down tree automata is the same.
Indeed, we have the following Theorem:

Theorem 8 (The equivalence of top-down and bottom-up NFTAs).
The class of languages accepted by top-down NFTAs is exactly the class of rec-
ognizable tree languages.

Proof. The proof is left to the reader. Hint. Reverse the arrows and exchange
the sets of initial and final states.

Top-down and bottom-up tree automata have the same expressive power
because they define the same classes of tree languages. Nevertheless they do
not have the same behavior from an algorithmic point of view because nonde-
terminism can not be reduced in the class of top-down tree automata.

Proposition 1 (Top-down NFTAs and top-down DFTAs). A top-down
finite Tree Automaton (Q,F , I, ∆) is deterministic (top-down DFTA) if there is
one initial state and no two rules with the same left-hand side. Top-down DFTAs
are strictly less powerful than top-down NFTAs, i.e.there exists a recognizable
tree language which is not accepted by a top-down DFTA.
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Proof. Let F = {f(, ), a, b}. And let us consider the recognizable tree language
T = {f(a, b), f(b, a)}. Now let us suppose there exists a top-down DFTA that
accepts T , the automaton should accept the term f(a, a) leading to a contra-
diction. Obviously the tree language T = {f(a, b), f(b, a)} is recognizable by a
finite union of top-down DFTA but there is a recognizable tree language which
is not accepted by a finite union of top-down DFTA (see Exercise 2).

1.7 Decision Problems and their Complexity

In this section, we study some decision problems and their complexity. The size
of an automaton will be the size of its representation. More formally:

Definition 1. Let A = (Q,F , Qf , ∆) be a NFTA over F . The size of a rule
f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)) is arity(f) + 2. The size of A noted
‖A‖, is defined by:

‖A‖ = |Q|+
∑

f(q1(x1),...,qn(xn))→q(f(x1,...,xn))∈∆

(arity(f) + 2).

We will work in the frame of RAM machines, with uniform measure.

Membership

Instance A ground term.

Answer “yes” if and only if the term is recognized by a given automaton.

Let us first remark that, in our model, for a given deterministic automaton,
a run on a tree can be computed in O(‖t‖). The complexity of the problem is:

Theorem 9. The membership problem is ALOGTIME-complete.

Uniform Membership

Instance A tree automaton and a ground term.

Answer “yes” if and only if the term is recognized by the given automaton.

Theorem 10. The uniform membership problem can be decided in linear time
for DFTA, in polynomial time for NFTA.

Proof. In the deterministic case, from a term t and the automaton ‖A‖, we can
compute a run in O(‖t‖+‖A‖). In the nondeterministic case, the idea is similar
to the word case: the algorithm determinizes along the computation, i.e.for each
node of the term, we compute the set of reached states. The complexity of this
algorithm will be in O(‖t‖ × ‖A‖).

The uniform membership problem has been proved LOGSPACE-complete
for deterministic top-down tree automata, LOGCFL-complete for NFTA under
log-space reductions. For DFTA, it has been proven LOGDCFL, but the precise
complexity remains open.
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Emptiness

Instance A tree automaton

Answer “yes” if and only if the recognized language is empty.

Theorem 11. It can be decided in linear time whether the language accepted
by a finite tree automaton is empty.

Proof. The minimal height of accepted terms can be bounded by the number of
states using Corollary 1; so, as membership is decidable, emptiness is decidable.
Of course, this approach does not provide a practicable algorithm. To get an
efficient algorithm, it suffices to notice that a NFTA accepts at least one tree
if and only if there is an accessible final state. In other words, the language
recognized by a reduced automaton is empty if and only if the set of final
states is non empty. Reducing an automaton can be done in O(|Q| × ‖A‖)
by the reduction algorithm given in Section 1.1. Actually, this algorithm can
be improved by choosing an adequate data structure in order to get a linear
algorithm (see Exercise 17). This linear least fixpoint computation holds in
several frameworks. For example, it can be viewed as the satisfiability test of
a set of propositional Horn formulae. The reduction is easy and linear: each
state q can be associated with a propositional variable Xq and each rule r :
f(q1, . . . , qn) → q can be associated with a propositional Horn formula Fr =
Xq∨¬Xq1

∨· · ·∨¬Xqn
. It is straightforward that satisfiability of {Fr}∪{¬Xq/q ∈

Qf} is equivalent to emptiness of the language recognized by (Q,F , Qf , ∆). So,
as satisfiability of a set of propositional Horn formulae can be decided in linear
time, we get a linear algorithm for testing emptiness for NFTA.

The emptiness problem is P-complete with respect to logspace reductions,
even when restricted to deterministic tree automata. The proof can easily be
done since the problem is very close to the solvable path systems problem which
is known to be P-complete (see Exercise 18).

Intersection non-emptiness

Instance A finite sequence of tree automata.

Answer “yes” if and only if there is at least one term recognized by each
automaton of the sequence.

Theorem 12. The intersection problem for tree automata is EXPTIME-complete.

Proof. By constructing the product automata for the n automata, and then
testing non-emptiness, we get an algorithm in O(‖A1‖× · · ·×‖An‖). The proof
of EXPTIME-hardness is based on simulation of an alternating linear space-
bounded Turing machine. Roughly speaking, with such a machine and an input
of length n can be associated polynomially n tree automata whose intersection
corresponds to the set of accepting computations on the input. It is worth
noting that the result holds for deterministic top down tree automata as well as
for deterministic bottom-up ones.
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Finiteness

Instance A tree automaton

Answer “yes” if and only if the recognized language is finite.

Theorem 13. Finiteness can be decided in polynomial time.

Proof. Let us consider a NFTA A = (Q,F , Qf , ∆). Deciding finiteness of A is
direct by Corollary 1: it suffices to find an accepted term t s.t.|Q| < ‖t‖ ≤ 2∗|Q|.
A more efficient way to test finiteness is to check the existence of a loop: the
language is infinite if and only if there is a loop on some useful state, i.e.there
exist an accessible state q and contexts C and C′ such that C[q]

∗
−→
A

q and

C′[q]
∗
−→
A

q′ for some final state q′. Computing accessible and coaccessible states

can be done in O(|Q| × ‖A‖) or in O(‖A‖) by using an ad hoc representation
of the automaton. For a given q, deciding if there is a loop on q can be done in
O(‖A‖). So, finiteness can be decided in O(|Q| × ‖A‖).

Emptiness of the Complement

Instance A tree automaton.

Answer “yes” if and only if every term is accepted by the automaton

Deciding whether a deterministic tree automaton recognizes the set of all
terms is polynomial for a fixed alphabet: we just have to check whether the
automaton is complete (which can be done in O(|F| × |Q|Arity(F))) and then it
remains only to check that all accessible states are final. For nondeterministic
automata, the following result proves in some sense that determinization with
its exponential cost is unavoidable:

Theorem 14. The problem whether a tree automaton accepts the set of all
terms is EXPTIME-complete for nondeterministic tree automata.

Proof. The proof of this theorem is once more based on simulation of a linear
space bounded alternating Turing machine: indeed, the complement of the ac-
cepting computations on an input w can be coded polynomially in a recognizable
tree language.

Equivalence

Instance Two tree automata

Answer “yes” if and only if the automata recognize the same language.

Theorem 15. Equivalence is decidable for tree automata.

Proof. Clearly, as the class of recognizable sets is effectively closed under com-
plementation and intersection, and as emptiness is decidable, equivalence is
decidable. For two deterministic complete automata A1 and A2, we get by
these means an algorithm in O(‖A1‖ × ‖A2‖). (Another way is to compare
the minimal automata). For nondeterministic ones, this approach leads to an
exponential algorithm.
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As we have proved that deciding whether an automaton recognizes the set
of all ground terms is EXPTIME-hard, we get immediately:

Corollary 3. The inclusion problem and the equivalence problem for NFTAs
are EXPTIME-complete.

Singleton Set Property

Instance A tree automaton

Answer “yes” if and only if the recognized language is a singleton set.

Theorem 16. The singleton set property is decidable in polynomial time.

Proof. There are several ways to get a polynomial algorithm for this property.
A first one would be to first check non-emptiness of L(A) and then ”extract”
from A a DFA B whose size is smaller than ‖A‖ and which accepts a single term
recognized by A. Then it remains to check emptiness of L(A)∩L(B). This can
be done in polynomial time, even if B is non complete.

Another way is: for each state of a bottom-up tree automaton A, compute,
up to 2, the number C(q) of terms leading to state q. This can be done in a
straightforward way when A is deterministic; when A is non deterministic, this
can be also done in polynomial time:

Singleton Set Test Algorithm
input: NFTA A = (Q,F , Qf , ∆)
begin

Set C(q) to 0, for every q in Q
/* C(q) ∈ {0, 1, 2} is the number, up to 2, of terms leading to state q */
/* if C(q) = 1 then T (q) is a representation of the accepted tree */
repeat

for each rule f(q1, . . . , qn)→ q ∈ ∆ do
Case ∧jC(qj) >= 1 and C(qi) = 2 for some i: Set C(q) to 2
Case ∧jC(qj) = 1 and C(q) = 0: Set C(q) to 1, T (q) to f(q1, ...qn)
Case ∧jC(qj) = 1, C(q) = 1 and Diff (T (q), f(q1, . . . , qn)):

Set C(q) to 2
Others null
where Diff (f(q1, ..., qn), g(q′1, ..., q

′
n)) defined by:

/* Diff can be computed polynomially by using memorization. */
if (f 6= g) then return true
elseif Diff (T (qi), T (q′i) for some qi then return True
else return False

until C can not be changed
output:
/*L(A) is empty */
if ∧q∈Qf

C(q) = 0 then return False
/* two terms in L(A) accepted in the same state or two different states */
elseif ∃q ∈ Qf C(q) = 2 then return False
elseif ∃q, q′ ∈ Qf C(q) = C(q′) = 1 and Diff (T (q), T (q′)) then return False
/* in all other cases L(A) is a singleton set*/
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else return True.
end

Other complexity results for “classical” problems can be found in the exer-
cises. E.g., let us cite the following problem whose proof is sketched in Exer-
cise 11

Ground Instance Intersection Problem

Instance A term t, a tree automaton A.

Answer “yes” if and only if there is at least a ground instance of t which is
accepted by A.

Theorem 17. The Ground Instance Intersection Problem for tree automata
is P when t is linear, NP-complete when t is non linear and A deterministic,
EXPTIME-complete when t is non linear and A non deterministic.

1.8 Exercises

Starred exercises are discussed in the bibliographic notes.

Exercise 1. Let F = {f(, ), g(), a}. Define a top-down NFTA, a NFTA and a DFTA

for the set G(t) of ground instances of term t = f(f(a, x), g(y)) which is defined by

G(t) = {f(f(a, u), g(v)) | u, v ∈ T (F)}. Is it possible to define a top-down DFTA for

this language?

Exercise 2. Let F = {f(, ), g(), a}. Define a top-down NFTA, a NFTA and a DFTA

for the set M(t) of terms which have a ground instance of term t = f(a, g(x)) as a

subterm, that is M(t) = {C[f(a, g(u))] | C ∈ C(F), u ∈ T (F)}. Is it possible to define

a top-down DFTA for this language?

Exercise 3. Let F = {g(), a}. Is the set of ground terms whose height is even

recognizable? Let F = {f(, ), g(), a}. Is the set of ground terms whose height is even

recognizable?

Exercise 4. Let F = {f(, ), a}. Prove that the set L = {f(t, t) | t ∈ T (F)} is

not recognizable. Let F be any ranked alphabet which contains at least one constant

symbol a and one binary symbol f(, ). Prove that the set L = {f(t, t) | t ∈ T (F)} is

not recognizable.

Exercise 5. Prove the equivalence between top-down NFTA and NFTA.

Exercise 6. Let F = {f(, ), g(), a} and F ′ = {f ′(, ), g(), a}. Let us consider the
tree homomorphism h determined by hF defined by: hF (f) = f ′(x1, x2), hF (g) =
f ′(x1, x1), and hF (a) = a. Is h(T (F)) recognizable? Let L1 = {gi(a) | i ≥ 0}, then
L1 is a recognizable tree language, is h(L1) recognizable? Let L2 be the recognizable
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tree language defined by L2 = L(A) where A = (Q,F , Qf , ∆) is defined by: Q =
{qa, qg , qf}, Qf = {qf}, and ∆ is the following set of transition rules:

{ a → qa g(qa) → qg

f(qa, qa) → qf f(qg , qg) → qf

f(qa, qg) → qf f(qg , qa) → qf

f(qa, qf ) → qf f(qf , qa) → qf

f(qg , qf ) → qf f(qf , qg) → qf

f(qf , qf ) → qf }.

Is h(L2) recognizable?

Exercise 7. Let F1 = {or(, ), and(, ), not(), 0, 1, x}. A ground term over F can be

viewed as a boolean formula over variable x. Define a DFTA which recognizes the set

of satisfiable boolean formulae over x. Let Fn = {or(, ), and(, ), not(), 0, 1, x1, . . . , xn}.

A ground term over F can be viewed as a boolean formula over variables x1, . . . , xn.

Define a DFTA which recognizes the set of satisfiable boolean formulae over x1, . . . , xn.

Exercise 8. Let t be a linear term in T (F ,X ). Prove that the set G(t) of ground

instances of term t is recognizable. Let R be a finite set of linear terms in T (F ,X ).

Prove that the set G(R) of ground instances of set R is recognizable.

Exercise 9. * Let R be a finite set of linear terms in T (F ,X ). We define the set
Red(R) of reducible terms for R to be the set of ground terms which have a ground
instance of some term in R as a subterm.

1. Prove that the set Red(R) is recognizable.

2. Prove that the number of states of a DFA recognizing Red(R) can be at least
2n−1 where n is the size (number of nodes) of R. Hint: Consider the set reduced
to the pattern h(f(x1, f(x2, f(x3), . . . , (f(xp−1, f(a, xp) · · · ).

3. Let us now suppose that R is a finite set of ground terms. Prove that we can
construct a DFA recognizing Red(R) whose number of states is at most n + 2
where n is the number of different subterms of R.

Exercise 10. * Let R be a finite set of linear terms in T (F ,X ). A term t is inductively

reducible for R if all the ground instances of term t are reducible for R. Prove that

inductive reducibility of a linear term t for a set of linear terms R is decidable.

Exercise 11. *
We consider the following decision problem:

Instance t a term in T (F ,X ) and A a NFTA

Answer “yes” if and only if Yes, iff at least one ground instance of t is accepted by
|A.

1. Let us first suppose that t is linear; prove that the property is P .

Hint: a NFTA for the set of ground instances of t can ce computed polynomially
(see Exercise 8

2. Let us now suppose that t is non linear but that A is deterministic.

(a) Prove that the property is NP. Hint: we just have to guess a substitution
of the variables of t by states.

(b) Prove that the property is NP-hard.

Hint: just consider a term t which represents a boolean formula and A a
DFTA which accepts valid formulas.
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3. Let us now suppose that t is non linear and that A is non deterministic.

Prove that the property is EXPTIME−complete.

Hint: use the EXPTIME-hardness of intersection non-emptiness.

Exercise 12. * We consider the following two problems. First, given as instance a

recognizable tree language L and a tree homomorphism h, is the set h(L) recognizable?

Second, given as instance a set R of terms in T (F ,X ), is the set Red(R) recogniz-

able? Prove that if the first problem is decidable, the second problem is easily shown

decidable.

Exercise 13. Let F = {f(, ), a, b}.

1. Let us consider the set of ground terms L1 defined by the following two condi-
tions:

• f(a, b) ∈ L1,

• t ∈ L1 ⇒ f(a, f(t, b)) ∈ L1.

Prove that the set L1 is recognizable.

2. Prove that the set L2 = {t ∈ T (F) | |t|a = |t|b} is not recognizable where |t|a
(respectively |t|b) denotes the number of a (respectively the number of b) in t.

3. Let L be a recognizable tree language over F . Let us suppose that f is a
commutative symbol. Let C(L) be the congruence closure of set L for the set
of equations C = {f(x, y) = f(y, x)}. Prove that C(L) is recognizable.

4. Let L be a recognizable tree language over F . Let us suppose that f is a com-
mutative and associative symbol. Let AC(L) be the congruence closure of set L

for the set of equations AC = {f(x, y) = f(y, x); f(x, f(y, z)) = f(f(x, y), z)}.
Prove that in general AC(L) is not recognizable.

5. Let L be a recognizable tree language over F . Let us suppose that f is an
associative symbol. Let A(L) be the congruence closure of set L for the set of
equations A = {f(x, f(y, z)) = f(f(x, y), z)}. Prove that in general A(L) is not
recognizable.

Exercise 14. * Consider the complement problem:

• Instance A term t ∈ T (F ,X ) and terms t1, . . . , tn,

• Question There is a ground instance of t which is not an instance of any ti.

Prove that the complement problem is decidable whenever term t and all terms ti are

linear. Extend the proof to handle the case where t is a term (not necessarily linear).

Exercise 15. * Let F be a ranked alphabet and suppose that F contains some symbols
which are commutative and associative. The set of ground AC-instances of a term t is
the AC-congruence closure of set G(t). Prove that the set of ground AC-instances of a
linear term is recognizable. The reader should note that the set of ground AC-instances
of a set of linear terms is not recognizable (see Exercice 13).

Prove that the AC-complement problem is decidable where the AC-complement
problem is defined by:

• Instance A linear term t ∈ T (F ,X ) and linear terms t1, . . . , tn,

• Question There is a ground AC-instance of t which is not an AC-instance of
any ti.
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Exercise 16. * Let F be a ranked alphabet and X be a countable set of variables.
Let S be a rewrite system on T (F ,X ) (the reader is referred to [DJ90]) and L be a
set of ground terms. We denote by S∗(L) the set of reductions of terms in L by S and
by S(L) the set of ground S-normal forms of set L. Formally,

S
∗(L) = {t ∈ T (F) | ∃u ∈ L u

∗
→ t},

S(L) = {t ∈ T (F) | t ∈ IRR(S) and ∃u ∈ L u
∗
→ t} = IRR(S) ∩ S

∗(L)

where IRR(S) denotes the set of ground irreducible terms for S. We consider the two
following decision problems:

(1rst order reachability)

• Instance A rewrite system S, two ground terms u and v,

• Question v ∈ S∗({u}).

(2nd order reachability)

• Instance A rewrite system S, two recognizable tree languages L and L′,

• Question S∗(L) ⊆ L′.

1. Let us suppose that rewrite system S satisfies:

(PreservRec) If L is recognizable, then S∗(L) is recognizable.

What can be said about the two reachability decision problems? Give a suffi-
cient condition on rewrite system S satisfying (PreservRec) such that S satisfies
(NormalFormRec) where (NormalFormRec) is defined by:

(NormalFormRec) If L is recognizable, then S(L) is recognizable.

2. Let F = {f(, ), g(), h(), a}. Let L = {f(t1, t2) | t1, t2 ∈ T ({g(), h(), a}}, and S

is the following set of rewrite rules:

{ f(g(x), h(y)) → f(x, y) f(h(x), g(y)) → f(x, y)
g(h(x)) → x h(g(x)) → x

f(a, x) → x f(x, a) → x }

Are the sets L, S∗(L), and S(L) recognizable?

3. Let F = {f(, ), g(), h(), a}. Let L = {g(hn(a)) | n ≥ 0}, and S is the following
set of rewrite rules:

{ g(x) → f(x, x) }

Are the sets L, S∗(L), and S(L) recognizable?

4. Let us suppose now that rewrite system S is linear and monadic, i.e.all rewrite
rules are of one of the following three types:

(1) l → a , a ∈ F0

(2) l → x , x ∈ Var(l)
(3) l → f(x1, . . . , xp) , x1, . . . , xp ∈ Var(l), f ∈ Fp

where l is a linear term (no variable occurs more than once in t) whose height
is greater than 1. Prove that a linear and monadic rewrite system satisfies
(PreservRec). Prove that (PreservRec) is false if the right-hand side of rules of
type (3) may be non linear.

Exercise 17. Design a linear-time algorithm for testing emptiness of the language
recognized by a tree automaton:

Instance A tree automaton
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Answer “yes” if and only if the language recognized is empty.

Hint: Choose a suitable data structure for the automaton. For example, a state

could be associated with the list of the “adresses” of the rules whose left-hand side

contain it (eventually, a rule can be repeated); each rule could be just represented by

a counter initialized at the arity of the corresponding symbol and by the state of the

right-hand side. Activating a state will decrement the counters of the corresponding

rules. When the counter of a rule becomes null, the rule can be applied: the right-hand

side state can be activated.

Exercise 18.
The Solvable Path Problem is the following:

Instance a finite set X and three sets R ⊂ X × X × X, Xs ⊂ X and Xt ⊂ X.

Answer “yes” if and only if Xt ∩ A is non empty, where A is the least subset of X

such that Xs ⊂ A and if y, z ∈ A and (x, y, z) ∈ R, then x ∈ A.

Prove that this P − complete problem is log-space reducible to the emptiness
problem for tree automata.

Exercise 19. A flat automaton is a tree automaton which has the following property:
there is an ordering ≥ on the states and a particular state q⊤ such that the transition
rules have one of the following forms:

1. f(q⊤, . . . , q⊤) → q⊤

2. f(q1, . . . , qn) → q with q > qi for every i

3. f(q⊤, . . . , q⊤, q, q⊤, . . . , q⊤) → q

Moreover, we assume that all terms are accepted in the state q⊤. (The automaton is
called flat because there are no “nested loop”).

Prove that the intersection of two flat automata is a finite union of automata whose
size is linear in the sum of the original automata. (This contrasts with the construction
of Theorem 5 in which the intersection automaton’s size is the product of the sizes of
its components).

Deduce from the above result that the intersection non-emptiness problem for flat

automata is in NP (compare with Theorem 12).

1.9 Bibliographic Notes

Tree automata were introduced by Doner [Don65, Don70] and Thatcher and
Wright [TW65, TW68]. Their goal was to prove the decidability of the weak
second order theory of multiple successors. The original definitions are based
on the algebraic approach and involve heavy use of universal algebra and/or
category theory.

Many of the basic results presented in this chapter are the straightforward
generalization of the corresponding results for finite automata. It is difficult to
attribute a particular result to any one paper. Thus, we only give a list of some
important contributions consisting of the above mentioned papers of Doner,
Thatcher and Wright and also Eilenberg and Wright [EW67], Thatcher [Tha70],
Brainerd [Bra68, Bra69], Arbib and Give’on [AG68]. All the results of this
chapter and a more complete and detailed list of references can be found in the
textbook of Gécseg and Steinby [GS84] and also in their recent survey [GS96].
For an overview of the notion of recognizability in general algebraic structures
see Courcelle [Cou89] and the fundamental paper of Mezei and Wright [MW67].
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In Nivat and Podelski [NP89] and [Pod92], the theory of recognizable tree lan-
guages is reduced to the theory of recognizable sets in an infinitely generated
free monoid.

The results of Sections 1.1, 1.2, and 1.3 were noted in many of the papers
mentioned above, but, in this textbook, we present these results in the style of
the undergraduate textbook on finite automata by Hopcroft and Ullman [HU79].
Tree homomorphisms were defined as a special case of tree transducers, see
Thatcher [Tha73]. The reader is referred to the bibliographic notes in Chapter 6
of the present textbook for detailed references. The reader should note that our
proof of preservation of recognizability by tree homomorphisms and inverse tree
homomorphisms is a direct construction using FTA. A more classical proof can
be found in [GS84] and uses regular tree grammars (see Chapter 2).

Minimal tree recognizers and Nerode’s congruence appear in Brainerd [Bra68,
Bra69], Arbib and Give’on [AG68], and Eilenberg and Wright [EW67]. The
proof we presented here is by Kozen [Koz92] (see also Fülöp and Vágvölgyi [FV89]).
Top-down tree automata were first defined by Rabin [Rab69]. The reader is
referred to [GS84] and [GS96] for more references and for the study of some
subclasses of recognizable tree languages such as the tree languages recognized
by deterministic top-down tree automata. An alternative definition of determin-
istic top-down tree automata was defined in [NP97] leading to “homogeneous”
tree languages, also a minimization algorithm was given.

Some results of Sections 1.7 are “folklore” results. Complexity results for
the membership problem and the uniform membership problem could be found
in [Loh01]. Other interesting complexity results for tree automata can be found
in Seidl [Sei89], [Sei90]. The EXPTIME-hardness of the problem of intersec-
tion non-emptiness is often used; this problem is close to problems of type
inference and an idea of the proof can be found in [FSVY91]. A proof for de-
terministic top-down automata can be found in [Sei94b]. A detailed proof in
the deterministic bottom-up case as well as some other complexity results are
in [Vea97a], [Vea97b].

We have only considered finite ordered ranked trees. Unranked trees are
used for XML Document Type Definitions and more generally for XML schema
languages [MLM01]. The theory of unranked trees dates back to Thatcher. All
the fundamental results for finite tree automata can be extended to the case of
unranked trees and the methods are similar [BKMW01]. An other extension is
to consider unordered trees. A general discussion about unordered and unranked
trees can be found in the bibliographical notes of Section 4.

Numerous exercises of the present chapter illustrate applications of tree au-
tomata theory to automated deduction and to the theory of rewriting systems.
These applications are studied in more details in Section 3.4. Results about tree
automata and rewrite systems are collected in Gilleron and Tison [GT95]. Let
S be a term rewrite system (see for example Dershowitz and Jouannaud [DJ90]
for a survey on rewrite systems), if S is left-linear the set IRR(S) of irreducible
ground terms w.r.t.S is a recognizable tree language. This result first appears
in Gallier and Book [GB85] and is the subject of Exercise 9. However not every
recognizable tree language is the set of irreducible terms w.r.t.a rewrite system
S (see Fülöp and Vágvölgyi [FV88]). It was proved that the problem whether,
given a rewrite system S as instance, the set of irreducible terms is recognizable
is decidable (Kucherov [Kuc91]). The problem of preservation of regularity by
tree homomorphisms is not known decidable. Exercise 12 shows connections
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between preservation of regularity for tree homomorphisms and recognizability
of sets of irreducible terms for rewrite systems.

The notion of inductive reducibility (or ground reducibility) was introduced
in automated deduction. A term t is S-inductively (or S-ground) reducible for
S if all the ground instances of term t are reducible for S. Inductive reducibility
is decidable for a linear term t and a left-linear rewrite system S. This is
Exercise 10, see also Section 3.4.2. Inductive reducibility is decidable for finite S
(see Plaisted [Pla85]). Complement problems are also introduced in automated
deduction. They are the subject of Exercises 14 and 15. The complement
problem for linear terms was proved decidable by Lassez and Marriott [LM87]
and the AC-complement problem by Lugiez and Moysset [LM94].

The reachability problem is defined in Exercise 16. It is well known that this
problem is undecidable in general. It is decidable for rewrite systems preserving
recognizability, i.e.such that for every recognizable tree language L, the set
of reductions of terms in L by S is recognizable. This is true for linear and
monadic rewrite systems (right-hand sides have depth less than 1). This result
was obtained by K. Salomaa [Sal88] and is the matter of Exercise 16. This is
true also for linear and semi-monadic (variables in the right-hand sides have
depth at most 1) rewrite systems, Coquidé et al. [CDGV94]. Other interesting
results can be found in [Jac96] and [NT99].
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ǫ-rules, 17
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alphabetic, 29
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closure property, 23

complementation, 24
intersection, 24
union, 24

complete, 29
congruence, 29

finite index, 30
context, 11

delabeling, 29
determinization, 19
DFTA, see tree automaton
domain, 11

equivalent, 15

frontier position, 10
FTA, see tree automaton

ground substitution, 11
ground terms, 9

height, 10

language
recognizable, 15
recognized, 15

linear, 9, 26

move relation
for NFTA, 14

Myhill-Nerode Theorem, 29

NFTA, see tree automaton

position, 10
pumping lemma, 22

ranked alphabet, 9
root symbol, 10
rules

ǫ-rules, 17
run, 16

successful, 16
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state

accessible, 18
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substitution, 11
subterm, 10
subterm ordering, 10
symbol to symbol, 29
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tree automaton

product, 24
tree homomorphism
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flat tree automaton, 41
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top down, 32
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tree homomorphism, 25
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complete, 29
delabeling, 29
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