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Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can
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10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as
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Introduction 11

a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.
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Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F ,Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(, ) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X ) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X ) and
- X ⊆ T (F ,X ) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f(t1, . . . , tp) ∈ T (F ,X ).
If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X ) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(, ), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X ) may be viewed as a finite
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14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X ) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X ) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t� t′ if t′ is a subterm
of t. We denote t� t′ if t� t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t� t′ ⇒ t′ ∈ F ).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑
i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, , ), g(, ), h(), a, b} and X = {x, y}. Consider the
terms
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t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X ) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X ), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X ) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X ) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X ). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, , ), g(, ), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).
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Chapter 3

Logic, Automata and

Relations

3.1 Introduction

As early as in the 50s, automata, and in particular tree automata, played an
important role in the development of verification . Several well-known logicians,
such as A. Church, J.R. Büchi, Elgott, MacNaughton, M. Rabin and others
contributed to what is called “the trinity” by Trakhtenbrot: Logic, Automata
and Verification (of Boolean circuits).

The idea is simple: given a formula φ with free variables x1, ..., xn and a do-
main of interpretation D, φ defines the subset of Dn containing all assignments
of the free variables x1, . . . , xn that satisfy φ. Hence formulas in this case are
just a way of defining subsets of Dn (also called n-ary relations on D). In case
n = 1 (and, as we will see, also for n > 1), finite automata provide another
way of defining subsets of Dn. In 1960, Büchi realized that these two ways
of defining relations over the free monoid {0, . . . , n}∗ coincide when the logic
is the sequential calculus, also called weak second-order monadic logic with one
successor, WS1S. This result was extended to tree automata: Doner, Thatcher
and Wright showed that the definability in the weak second-order monadic logic
with k successors, WSkS coincide with the recognizability by a finite tree au-
tomaton. These results imply in particular the decidability of WSkS, following
the decision results on tree automata (see chapter 1).

These ideas are the basis of several decision techniques for various logics
some of which will be listed in Section 3.4. In order to illustrate this correspon-
dence, consider Presburger’s arithmetic: the atomic formulas are equalities and
inequalities s = t or s ≥ t where s, t are sums of variables and constants. For in-
stance x+y+y = z+z+z+1+1, also written x+2y = 3z+2, is an atomic formula.
In other words, atomic formulas are linear Diophantine (in)equations. Then
atomic formulas can be combined using any logical connectives among ∧,∨,¬
and quantifications ∀, ∃. For instance ∀x.(∀y.¬(x = 2y))⇒ (∃y.x = 2y+1)) is a
(true) formula of Presburger’s arithmetic. Formulas are interpreted in the natu-
ral numbers (non-negative integers), each symbol having its expected meaning.
A solution of a formula φ(x) whose only free variable is x, is an assignment of
x to a natural number n such that φ(n) holds true in the interpretation. For
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Figure 3.1: The automaton with accepts the solutions of x = y + z

instance, if φ(x) is the formula ∃y.x = 2y, its solutions are the even numbers.

Writing integers in base 2, they can be viewed as elements of the free monoid
{0, 1}∗, i.e.words of 0s and 1s. The representation of a natural number is not
unique as 01 = 1, for instance. Tuples of natural numbers are displayed by
stacking their representations in base 2 and aligning on the right, then complet-
ing with some 0s on the left in order to get a rectangle of bits. For instance the

pair (13,6) is represented as
1
0

1
1

0
1

1
0 (or

0
0

1
0

1
1

0
1

1
0 as well). Hence, we can see the

solutions of a formula as a subset of ({0, 1}n)∗ where n is the number of free
variables of the formula.

It is not difficult to see that the set of solutions of any atomic formula is
recognized by a finite word automaton working on the alphabet {0, 1}n. For
instance, the solutions of x = y + z are recognized by the automaton of Figure
3.1.

Then, and that is probably one of the key ideas, each logical connective
corresponds to a basic operation on automata (here word automata): ∨ is a
union, ∧ and intersection, ¬ a complement, ∃x a projection (an operation which
will be defined in Section 3.2.4). It follows that the set of solutions of any
Presburger formula is recognized by a finite automaton.

In particular, a closed formula (without free variable), holds true in the
interpretation if the initial state of the automaton is also final. It holds false
otherwise. Therefore, this gives both a decision technique for Presburger formu-
las by computing automata and an effective representation of the set of solutions
for open formulas.

The example of Presburger’s arithmetic we just sketched is not isolated.
That is one of the purposes of this chapter to show how to relate finite tree
automata and formulas.

In general, the problem with these techniques is to design an appropriate
notion of automaton, which is able to recognize the solutions of atomic formulas
and which has the desired closure and decision properties. We have to cite here
the famous Rabin automata which work on infinite trees and which have indeed
the closure and decidability properties, allowing to decide the full second-order
monadic logic with k successors (a result due to M. Rabin, 1969). It is however
out of the scope of this book to survey automata techniques in logic and com-
puter science. We restrict our attention to finite automata on finite trees and
refer to the excellent surveys [Rab77, Tho90] for more details on other applica-
tions of automata to logic.
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We start this chapter by reviewing some possible definitions of automata
on pairs (or, more generally, tuples) of finite trees in Section 3.2. We define in
this way several notions of recognizability for relations, which are not necessary
unary, extending the frame of chapter 1. This extension is necessary since,
automata recognizing the solutions of formulas actually recognize n-tuples of
solutions, if there are n free variables in the formula.

The most natural way of defining a notion of recognizability on tuples is to
consider products of recognizable sets. Though this happens to be sometimes
sufficient, this notion is often too weak. For instance the example of Figure 3.1
could not be defined as a product of recognizable sets. Rather, we stacked the
words and recognized these codings. Such a construction can be generalized to
trees (we have to overlap instead of stacking) and gives rise to a second notion
of recognizability. We will also introduce a third class called “Ground Tree
Transducers” which is weaker than the second class above but enjoys stronger
closure properties, for instance by iteration. Its usefulness will become evident
in Section 3.4.

Next, in Section 3.3, we introduce the weak second-order monadic logic with
k successor and show Thatcher and Wright’s theorem which relates this logic
with finite tree automata. This is a modest insight into the relations between
logic and automata.

Finally in Section 3.4 we survey a number of applications, mostly issued
from Term Rewriting or Constraint Solving. We do not detail this part (we
give references instead). The goal is to show how the simple techniques devel-
oped before can be applied to various questions, with a special emphasis on
decision problems. We consider the theories of sort constraints in Section 3.4.1,
the theory of linear encompassment in Section 3.4.2, the theory of ground term
rewriting in Section 3.4.3 and reduction strategies in orthogonal term rewrit-
ing in Section 3.4.4. Other examples are given as exercises in Section 3.5 or
considered in chapters 4 and 5.

3.2 Automata on Tuples of Finite Trees

3.2.1 Three Notions of Recognizability

Let Rec× be the subset of n-ary relations on T (F) which are finite unions of
products S1× . . .×Sn where S1, . . . , Sn are recognizable subsets of T (F). This
notion of recognizability of pairs is the simplest one can imagine. Automata for
such relations consist of pairs of tree automata which work independently. This
notion is however quite weak, as e.g. the diagonal

∆ = {(t, t) | t ∈ T (F)}

does not belong to Rec×. Actually a relation R ∈ Rec× does not really relate
its components!

The second notion of recognizability is used in the correspondence with
WSkS and is strictly stronger than the above one. Roughly, it consists in over-
lapping the components of a n-tuple, yielding a term on a product alphabet.
Then define Rec as the set of sets of pairs of terms whose overlapping coding is
recognized by a tree automaton on the product alphabet.
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f , f → ff

g f gf

a a aa

g a ga

a ⊥ aa a ⊥

Figure 3.2: The overlap of two terms

Let us first define more precisely the notion of “coding”. (This is illustrated
by an example on Figure 3.2). We let F ′ = (F∪{⊥})n, where ⊥ is a new symbol.
This is the idea of “stacking” the symbols, as in the introductory example of
Presburger’s arithmetic. Let k be the maximal arity of a function symbol in F .
Assuming ⊥ has arity 0, the arities of function symbols in F ′ are defined by
a(f1 . . . fn) = max(a(f1), . . . , a(fn)).

The coding of two terms t1, t2 ∈ T (F) is defined by induction:

[f(t1, . . . , tn), g(u1, . . . , um)]
def
= fg([t1, u1], . . . [tm, um], [tm+1,⊥], . . . , [tn,⊥])

if n ≥ m and

[f(t1, . . . , tn), g(u1, . . . , um)]
def
= fg([t1, u1], . . . [tn, un], [⊥, un+1], . . . , [⊥, um])

if m ≥ n.
More generally, the coding of n terms f1(t

1
1, . . . , t

k1
1 ), . . . , fn(t

n
1 , . . . , t

kn
n ) is

defined as
f1 . . . fn([t

1
1, . . . , t

1
n], . . . , [t

m
1 , . . . , t

m
n ])

where m is the maximal arity of f1, . . . , fn ∈ F and tji is, by convention, ⊥ when
j > ki.

Definition 4. Rec is the set of relations R ⊆ T (F)n such that

{[t1, . . . , tn] | (t1, . . . , tn) ∈ R}

is recognized by a finite tree automaton on the alphabet F ′ = (F ∪ {⊥})n.

For example, consider the diagonal ∆, it is in Rec since its coding is recog-
nized by the bottom-up tree automaton whose only state is q (also a final state)
and transitions are the rules ff(q, . . . , q)→ q for all symbols f ∈ F .

One drawback of this second notion of recognizability is that it is not closed
under iteration. More precisely, there is a binary relation R which belongs to
Rec and whose transitive closure is not in Rec (see Section 3.5). For this reason,
a third class of recognizable sets of pairs of trees was introduced: the Ground
Tree Transducers (GTT for short) .

Definition 5. A GTT is a pair of bottom-up tree automata (A1,A2) working
on the same alphabet. Their sets of states may however share some symbols (the
synchronization states).
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t = 

t’=

t1 tn t’1 t’n

q1 qn

C

Figure 3.3: GTT acceptance

A pair (t, t′) is recognized by a GTT (A1,A2) if there is a context C ∈ Cn(F)
such that t = C[t1, . . . , tn], t

′ = C[t′1, . . . , t
′
n] and there are states q1, . . . , qn of

both automata such that, for all i, ti
∗
−−→
A1

qi and t′i
∗
−−→
A2

qi. We write L(A1,A2)

the language accepted by the GTT (A1,A2), i.e.the set of pairs of terms which
are recognized.

The recognizability by a GTT is depicted on Figure 3.3. For instance, ∆ is
accepted by a GTT. Another typical example is the binary relation “one step
parallel rewriting” for term rewriting system whose left members are linear and
whose right hand sides are ground (see Section 3.4.3).

3.2.2 Examples of The Three Notions of Recognizability

The first example illustrates Rec×. It will be developed in a more general
framework in Section 3.4.2.

Example 29. Consider the alphabet F = {f, g, a} where f is binary, g is unary
and a is a constant. Let P be the predicate which is true on t if there are terms
t1, t2 such that f(g(t1), t2) is a subterm of t. Then the solutions of P (x)∧P (y)
define a relation in Rec×, using twice the following automaton:

Q = {qf , qg, q⊤}
Qf = {qf}
T = { a → q⊤ f(q⊤, q⊤) → q⊤

g(q⊤) → q⊤ f(qf , q⊤) → qf
g(qf ) → qf f(qg, q⊤) → qf
g(q⊤) → qg f(q⊤, qf ) → qf}

For instance the pair (g(f(g(a), g(a))), f(g(g(a)), a)) is accepted by the pair
of automata.

The second example illustrates Rec. Again, it is a first account of the devel-
opments of Section 3.4.4
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Example 30. Let F = {f, g, a,Ω} where f is binary, g is unary, a and Ω are
constants. Let R be the set of terms (t, u) such that u can be obtained from t
by replacing each occurrence of Ω by some term in T (F) (each occurrence of Ω
needs not to be replaced with the same term). Using the notations of Chapter
2

R(t, u)⇐⇒ u ∈ t.ΩT (F)

R is recognized by the following automaton (on codings of pairs):

Q = {q, q′}
Qf = {q′}
T = { ⊥ a → q ⊥ f(q, q) → q

⊥ g(q) → q Ωf(q, q) → q′

⊥ Ω → q ff(q′, q′) → q′

aa → q′ gg(q′) → q′

ΩΩ → q′ Ωg(q) → q′

Ωa → q′}

For instance, the pair (f(g(Ω), g(Ω)), f(g(g(a)), g(Ω))) is accepted by the
automaton: the overlap of the two terms yields

[tu] = ff(gg(Ωg(⊥ a)), gg(ΩΩ))

And the reduction:

[tu]
∗
−→ ff(gg(Ωg(q)), gg(q′))
∗
−→ ff(gg(q′), q′)

→ ff(q′, q′)
→ q′

The last example illustrates the recognition by a GTT. It comes from the
theory of rewriting; further developments and explanations on this theory are
given in Section 3.4.3.

Example 31. Let F = {×,+, 0, 1}. Let R be the rewrite system 0 × x → 0.

The many-steps reduction relation defined by R:
∗
−→
R

is recognized by the

GTT(A1,A2) defined as follows (+ and × are used in infix notation to meet
their usual reading):

T1 = { 0 → q⊤ q⊤ + q⊤ → q⊤
1 → q⊤ q⊤ × q⊤ → q⊤
0 → q0 q0 × q⊤ → q0}

T2 = { 0 → q0}

Then, for instance, the pair (1 + ((0 × 1) × 1), 1 + 0) is accepted by the GTT
since

1 + ((0× 1)× 1)
∗
−−→
A1

1 + (q0 × q⊤)× q⊤ −−→
A1

1 + (q0 × q⊤) −−→
A1

1 + q0

one hand and 1 + 0 −−→
A2

1 + q0 on the other hand.
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Rec

•

•

GTTRec×

••

Rc

∆
T (F)2{a, f(a)}2

Figure 3.4: The relations between the three classes

3.2.3 Comparisons Between the Three Classes

We study here the inclusion relations between the three classes: Rec×,Rec, GTT .

Proposition 8. Rec× ⊂ Rec and the inclusion is strict.

Proof. To show that any relation in Rec× is also in Rec, we have to construct
from two automata A1 = (Q1,F , Q

f
1 , R1),A2 = (F , Q2, Q

f
2 , R2) an automaton

which recognizes the overlaps of the terms in the languages. We define such an
automaton A = (Q, (F ∪ {⊥})2, Qf , R) by: Q = (Q1 ∪ {q⊥}) × (Q2 ∪ {q⊥}),

Qf = Qf1 ×Q
f
2 and R is the set of rules:

• f ⊥ ((q1, q⊥), . . . , (qn, q⊥)) −→ (q, q⊥) if f(q1, . . . , qn)→ q ∈ R1

• ⊥ f((q⊥, q1), . . . , (q⊥, qn)) −→ (q⊥, q) if f(q1, . . . , qn)→ q ∈ R2

• fg((q1, q′1), . . . , (qm, q
′
m), (qm+1, q⊥), . . . , (qn, q⊥))→ (q, q′) if f(q1, . . . , qn)→

q ∈ R1 and g(q′1, . . . , q
′
m)→ q′ ∈ R2 and n ≥ m

• fg((q1, q′1), . . . , (qn, q
′
n), (q⊥, qn+1), . . . , (q⊥, qm))→ (q, q′) if f(q1, . . . , qn)→

q ∈ R1 and g(q′1, . . . , q
′
m)→ q′ ∈ R2 and m ≥ n

The proof that A indeed accepts L(A1)× L(A2) is left to the reader.
Now, the inclusion is strict since e.g. ∆ ∈ Rec \ Rec×.

Proposition 9. GTT ⊂ Rec and the inclusion is strict.

Proof. Let (A1,A2) be a GTT accepting R. We have to construct an automaton
A which accepts the codings of pairs in R.

Let A0 = (Q0,F , Q
f
0 , T0) be the automaton constructed in the proof of

Proposition 8. [t, u]
∗
−−→
A0

(q1, q2) if and only if t
∗
−−→
A1

q1 and u
∗
−−→
A2

q2. Now we

let A = (Q0 ∪ {qf},F , Qf = {qf}, T ). T consists of T0 plus the following rules:

(q, q) → qf ff(qf , . . . , qf ) → qf

For every symbol f ∈ F and every state q ∈ Q0.
If (t, u) is accepted by the GTT, then

t
∗
−−→
A1

C[q1, . . . , qn]p1,...,pn

∗
←−−
A2

u.
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Then

[t, u]
∗
−−→
A0

[C,C][(q1, q1), . . . , (qn, qn)]p1,...,pn

∗
−→
A

[C,C][qf , . . . , qf ]p1,...,pn

∗
−→
A

qf

Conversely, if [t, u] is accepted by A then [t, u]
∗
−→
A

qf . By definition of A, there

should be a sequence:

[t, u]
∗
−→
A

C[(q1, q1), . . . , (qn, qn)]p1,...,pn

∗
−→
A

C[qf , . . . , qf ]p1,...,pn

∗
−→
A

qf

Indeed, we let pi be the positions at which one of the ǫ-transitions steps (q, q)→
qf is applied. (n ≥ 0). Now, C[qf , . . . , qf ]p1,...,pm

qf if and only if C can be
written [C1, C1] (the proof is left to the reader).

Concerning the strictness of the inclusion, it will be a consequence of Propo-
sitions 8 and 10.

Proposition 10. GTT 6⊆ Rec× and Rec× 6⊆ GTT.

Proof. ∆ is accepted by a GTT (with no state and no transition) but it does
not belong to Rec×. On the other hand, if F = {f, a}, then {a, f(a)}2 is in
Rec× (it is the product of two finite languages) but it is not accepted by any
GTT since any GTT accepts at least ∆.

Finally, there is an example of a relation Rc which is in Rec and not in the
union Rec× ∪GTT; consider for instance the alphabet {a(), b(), 0} and the one
step reduction relation associated with the rewrite system a(x) → x. In other
words,

(u, v) ∈ Rc ⇐⇒ ∃C ∈ C(F), ∃t ∈ T (F), u = C[a(t)] ∧ v = C[t]

It is left as an exercise to prove that Rc ∈ Rec \ (Rec× ∪GTT).

3.2.4 Closure Properties for Rec× and Rec; Cylindrification

and Projection

Let us start with the classical closure properties.

Proposition 11. Rec× and Rec are closed under Boolean operations.

The proof of this proposition is straightforward and left as an exercise.
These relations are also closed under cylindrification and projection. Let us

first define these operations which are specific to automata on tuples:

Definition 6. If R ⊆ T (F)n (n ≥ 1) and 1 ≤ i ≤ n then the ith projection of
R is the relation Ri ⊆ T (F)n−1 defined by

Ri(t1, . . . , tn−1)⇔ ∃t ∈ T (F) R(t1, . . . , ti−1, t, ti, . . . , tn−1)

When n = 1, T (F)n−1 is by convention a singleton set {⊤} (so as to keep
the property that T (F)n+1 = T (F)× T (F)n). {⊤} is assumed to be a neutral
element w.r.t.Cartesian product. In such a situation, a relation R ⊆ T (F)0 is
either ∅ or {⊤} (it is a propositional variable).
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Definition 7. If R ⊆ T (F)n (n ≥ 0) and 1 ≤ i ≤ n+ 1, then the ith cylindri-
fication of R is the relation Ri ⊆ T (F)n+1 defined by

Ri(t1, . . . , ti−1, t, ti, . . . , tn)⇔ R(t1, . . . , ti−1, ti, . . . , tn)

Proposition 12. Rec× and Rec are effectively closed under projection and
cylindrification. Actually, ith projection can be computed in linear time and the
ith cylindrification of A can be computed in linear time (assuming that the size
of the alphabet is constant).

Proof. For Rec×, this property is easy: projection on the ith component simply
amounts to remove the ith automaton. Cylindrification on the ith component
simply amounts to insert as a ith automaton, an automaton accepting all terms.

Assume that R ∈ Rec. The ith projection of R is simply its image by the
following linear tree homomorphism:

hi([f1, . . . , fn](t1, . . . , tk))
def
= [f1 . . . fi−1fi+1 . . . fn](hi(t1), . . . , hi(tm))

in which m is the arity of [f1 . . . fi−1fi+1 . . . fn] (which is smaller or equal to
k). Hence, by Theorem 6, the ith projection of R is recognizable (and we can
extract from the proof a linear construction of the automaton).

Similarly, the ith cylindrification is obtained as an inverse homomorphic
image, hence is recognizable thanks to Theorem 7.

Note that using the above construction, the projection of a deterministic
automaton may be non-deterministic (see exercises)

Example 32. Let F = {f, g, a} where f is binary, g is unary and a is a
constant. Consider the following automaton A on F ′ = (F ∪ {⊥})2: The set of
states is {q1, q2, q3, q4, q5} and the set of final states is {q3}1

a ⊥ → q1 f ⊥ (q1, q1) → q1
g ⊥ (q1) → q1 fg(q2, q1) → q3
ga(q1) → q2 f ⊥ (q4, q1) → q4

g ⊥ (q1) → q4 fa(q4, q1) → q2
gg(q3) → q3 ff(q3, q3) → q3

aa → q5 ff(q3, q5) → q3
gg(q5) → q5 ff(q5, q3) → q3

ff(q5, q5) → q5

The first projection of this automaton gives:

a → q2 g(q3) → q3
a → q5 g(q5) → q5

g(q2) → q3 f(q3, q3) → q3
f(q3, q5) → q3 f(q5, q5) → q5
f(q5, q3) → q3

1This automaton accepts the set of pairs of terms (u, v) such that u can be rewritten in
one or more steps to v by the rewrite system f(g(x), y) → g(a).
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Which accepts the terms containing g(a) as a subterm2.

3.2.5 Closure of GTT by Composition and Iteration

Theorem 23. If R ⊆ T (F)2 is recognized by a GTT, then its transitive closure
R∗ is also recognized by a GTT.

The detailed proof is technical, so let us show it on a picture and explain it
informally.

We consider two terms (t, v) and (v, u) which are both accepted by the GTT
and we wish that (t, u) is also accepted. For simplicity, consider only one state q

such that t
∗
−−→
A1

C[q]
∗
←−−
A2

v and v
∗
−−→
A1

C′[q1, . . . , qn]
∗
←−−
A2

u. There are actually

two cases: C can be “bigger” than C′ or “smaller”. Assume it is smaller. Then
q is reached at a position inside C′: C′ = C[C′′]p. The situation is depicted
on Figure 3.5. Along the reduction of v to q by A2, we enter a configuration
C′′[q′1, . . . , q

′
n]. The idea now is to add to A2 ǫ-transitions from qi to q′i. In this

way, as can easily be seen on Figure 3.5, we get a reduction from u to C[q],
hence the pair (t, u) is accepted.

Proof. Let A1 and A2 be the pair of automata defining the GTT which accepts
R. We compute by induction the automata An1 ,A

n
2 . A0

i = Ai and An+1
i is

obtained by adding new transitions to Ani : Let Qi be the set of states of Ai
(and also the set of states of Ani ).

• If LAn
2
(q)∩LAn

1
(q′) 6= ∅, q ∈ Q1 ∩Q2 and q 6

∗
−−→
An

1

q′, then An+1
1 is obtained

from An1 by adding the ǫ-transition q → q′ and An+1
2 = An2 .

• If LAn
1
(q)∩LAn

2
(q′) 6= ∅, q ∈ Q1 ∩Q2 and q 6

∗
−−→
An

2

q′, then An+1
2 is obtained

from An2 by adding the ǫ-transition q → q′ and An+1
1 = An1 .

If there are several ways of obtaining An+1
i from Ani using these rules, we don’t

care which of these ways is used.
First, these completion rules are decidable by the decision properties of

chapter 1. Their application also terminates as at each application strictly
decreases k1(n) + k2(n) where ki(n) is the number of pairs of states (q, q′) ∈
(Q1 ∪Q2)× (Q1 ∪Q2) such that there is no ǫ-transition in Ani from q to q′. We
let A∗

i be a fixed point of this computation. We show that (A∗
1,A

∗
2) defines a

GTT accepting R∗.

• Each pair of terms accepted by the GTT (A∗
1,A

∗
2) is in R∗: we show by

induction on n that each pair of terms accepted by the GTT (An1 ,A
n
2 )

is in R∗. For n = 0, this follows from the hypothesis. Let us now
assume that An+1

1 is obtained by adding q → q′ to the transitions of
An1 (The other case is symmetric). Let (t, u) be accepted by the GTT
(An+1

1 ,An+1
2 ). By definition, there is a context C and positions p1, . . . , pk

2
i.e.the terms that are obtained by applying at least one rewriting step using f(g(x), y) →

g(a)
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q’nq’1

q1 qnA1
A2

A2

A1

A2

q

C =

t =

C’ =

v =

u =

Figure 3.5: The proof of Theorem 23
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such that t = C[t1, . . . , tk]p1,...,pk
, u = C[u1, . . . , uk]p1,...,pk

and there are

states q1, . . . , qk ∈ Q1∩Q2 such that, for all i, ti
∗

−−−→
An+1

1

qi and ui
∗
−−→
An

2

qi.

We prove the result by induction on the number m of times q → q′ is
applied in the reductions ti

∗
−−−→
An+1

1

qi. If m = 0. Then this is the first

induction hypothesis: (t, u) is accepted by (An1 ,A
n
2 ), hence (t, u) ∈ R∗.

Now, assume that, for some i,

ti
∗

−−−→
An+1

1

t′i[q]p
∗

−−−→
q→q′

t′i[q
′]p

∗
−−→
An

1

qi

By definition, there is a term v such that v
∗
−−→
An

2

q and v
∗
−−→
An

1

q′. Hence

ti[v]p
∗

−−−→
An+1

1

qi

And the number of reduction steps using q → q′ is strictly smaller here
than in the reduction from ti to qi. Hence, by induction hypothesis,
(t[v]pip, u) ∈ R

∗. On the other hand, (t, t[v]pip) is accepted by the GTT

(An+1
1 ,An2 ) since t|pip

∗
−−−→
An+1

1

q and v
∗
−−→
An

2

q. Moreover, by construction,

the first sequence of reductions uses strictly less than m times the transi-
tion q → q′. Then, by induction hypothesis, (t, t[v]pip) ∈ R

∗. Now from
(t, t[v]pip) ∈ R

∗ and (t[v]pip, u) ∈ R
∗, we conclude (t, u) ∈ R∗.

• If (t, u) ∈ R∗, then (t, u) is accepted by the GTT (A∗
1,A

∗
2). Let us prove

the following intermediate result:

Lemma 1.

If






t
∗
−−→
A∗

1

q

v
∗
−−→
A∗

2

q

v
∗
−−→
A∗

1

C[q1, . . . , qk]p1,...,pk

u
∗
−−→
A∗

2

C[q1, . . . , qk]p1,...,pk






then u
∗
−−→
A∗

2

q

and hence (t, u) is accepted by the GTT.

Let v
∗
−−→
A∗

2

C[q′1, . . . , q
′
k]p1,...,pk

∗
−−→
A∗

2

q. For each i, v|pi
∈ LA∗

2
(q′i)∩LA∗

1
(qi)

and qi ∈ Q1 ∩Q2. Hence, by construction, qi −−→
A∗

2

q′i. It follows that

u
∗
−−→
A∗

2

C[q1, . . . qk]p1,...,pk

∗
−−→
A∗

2

C[q′1, . . . , q
′
k]p1,...,pk

∗
−−→
A∗

2

q

Which proves our lemma.

Symmetrically, if t
∗
−−→
A∗

1

C[q1, . . . , qk]p1,...,pk
, v

∗
−−→
A∗

2

C[q1, . . . , qk]p1,...,pk
,

v
∗
−−→
A∗

1

q and u
∗
−−→
A∗

2

q, then t
∗
−−→
A∗

1

q
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Now, let (t, u) ∈ Rn: we prove that (t, u) is accepted by the GTT (A∗
1,A

∗
2)

by induction on n. If n = 1, then the result follows from the inclu-
sion of L(A1,A2) in L(A∗

1,A
∗
2). Now, let v be such that (t, v) ∈ R and

(v, u) ∈ Rn−1. By induction hypothesis, both (t, v) and (v, u) are ac-
cepted by the GTT (A∗

1,A
∗
2): there are context C and C′ and positions

p1, . . . , pk, p
′
1, . . . , p

′
m such that

t = C[t1, . . . , tk]p1,...,pk
, v = C[v1, . . . , vk]p1,...,pk

v = C′[v′1, . . . , v
′
m]p′

1
,...,p′m

, u = C′[u1, . . . , um]

and states q1, . . . , qk, q
′
1, . . . , q

′
m ∈ Q1 ∩Q2 such that for all i, j, ti

∗
−−→
A∗

1

qi,

vi
∗
−−→
A∗

2

qi, v
′
j

∗
−−→
A∗

1

q′j , uj
∗
−−→
A∗

2

q′j . Let C′′ be the largest context more

general than C and C′; the positions of C′′ are the positions of both
C[q1, . . . , qn]p1,...,pn

and C′[q′1, . . . , q
′
m]p′

1
,...,p′m

. C′′, p′′1 , . . . , p
′′
l are such

that:

– For each 1 ≤ i ≤ l, there is a j such that either pj = p′′i or p′j = p′′i

– For all 1 ≤ i ≤ n there is a j such that pi ≥ p′′j

– For all 1 ≤ i ≤ m there is a j such that p′i ≥ p
′′
j

– the positions p′′j are pairwise incomparable w.r.t.the prefix ordering.

Let us fix a j ∈ [1..l]. Assume that p′′j = pi (the other case is symmetric).
We can apply our lemma to tj = t|p′′

j
(in place of t), vj = v|p′′

j
(in place

of v) and u|p′′
j

(in place of u), showing that u|p′′
j

∗
−−→
A∗

2

qi. If we let now

q′′j = qi when p′′j = pi and q′′j = q′i when p′′j = p′i, we get

t
∗
−−→
A∗

1

C′′[q′′1 , . . . , q
′′
l ]p′′

1
,...,p′′

l

∗
←−−
A∗

2

u

which completes the proof.

Proposition 13. If R and R′ are in GTT then their composition R◦R′ is also
in GTT.

Proof. Let (A1,A2) and (A′
1,A

′
2) be the two pairs of automata which recognize

R and R′ respectively. We assume without loss of generality that the set of
states are disjoint:

(Q1 ∪Q2) ∩ (Q′
1 ∪Q

′
2) = ∅

We define the automaton A∗
1 as follows: the set of states is Q1 ∪Q′

1 and the
transitions are the union of:

• the transitions of A1

• the transitions of A′
1

• the ǫ-transitions q −→ q′ if q ∈ Q1 ∩Q2, q
′ ∈ Q′

1 and LA2
(q)∩LA′

1
(q′) 6= ∅
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C
C’’ C’

q1
qk

qn q’1

q’l
q’m

u w v

Figure 3.6: The proof of Proposition 13

Symmetrically, the automaton A∗
2 is defined by: its states are Q2 ∪Q′

2 and the
transitions are:

• the transitions of A2

• the transitions of A′
2

• the ǫ-transitions q′ −→ q if q′ ∈ Q′
1∩Q

′
2, q ∈ Q2 and LA′

1
(q′)∩LA2

(q) 6= ∅

We prove below that (A∗
1,A

∗
2) is a GTT recognizing R ◦R′. See also the figure

3.6.

• Assume first that (u, v) ∈ R ◦ R′. Then there is a term w such that
(u,w) ∈ R and (w, v) ∈ R′:

u = C[u1, . . . , uk]p1,...,pk
, w = C[w1, . . . , wk]p1,...,pk

w = C′[w′
1, . . . , w

′
m]p′

1
,...,p′m

, v = C′[v1, . . . , vm]p′
1
,...,p′m

and, for every i ∈ {1, . . . , k}, ui
∗
−−→
A1

qi, wi
∗
−−→
A2

qi, for every i ∈ {1, ...,m},

w′
i

∗
−−→
A′

1

q′i, vi
∗
−−→
A′

2

q′i. Let p′′1 , . . . , p
′′
l be the minimal elements (w.r.t.the

prefix ordering) of the set {p1, . . . , pk} ∪ {p′1, . . . , p
′
m}. Each p′′i is either

some pj or some p′j . Assume first p′′i = pj . Then pj is a position in C′ and

C′[q′1, . . . , q
′
m]p′

1
,...,p′m

|pj
= Cj [q

′
mj
, . . . , q′mj+kj

]p′mj
,...,p′

mj+kj

Now, wj
∗
−−→
A2

qj and

wj = Cj [w
′
mj
, . . . , w′

mj+kj
]p′mj

,...,p′
mj+kj

with w′
mj+i

∗
−−→
A′

1

q′mj+i for every i ∈ {1, . . . , kj}. For i ∈ {1, . . . , kj}, let

qj,i be such that:





w′
mj+i

= wj |p′
mj+i

∗
−−→
A2

qj,i

Cj [qj,1, . . . , qj,kj
]p′mj

,...,p′
mj+kj

∗
−−→
A2

qj
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For every i, w′
mj+i ∈ LA2

(qj,i) ∩ LA′

1
(q′mj+i) and q′mj+i ∈ Q′

1 ∩ Q
′
2.

Then, by definition, there is a transition q′mj+i
−−→
A∗

2

qj,i. Therefore,

Cj [q
′
mj
, . . . , q′mj+kj

]
∗
−−→
A∗

2

qj and then v|pj

∗
−−→
A∗

2

qj .

Now, if p′′i = p′j , we get, in a similar way, u|p′
j

∗
−−→
A∗

1

q′j . Altogether:

u
∗
−−→
A∗

1

C′′[q′′1 , . . . , q
′′
l ]p′′

1
,...,p′′

l

∗
←−−
A∗

2

v

where q′′i = qj if p′′i = pj and q′′j = q′j if p′′i = p′j.

• Conversely, assume that (u, v) is accepted by (A∗
1,A

∗
2). Then

u
∗
−−→
A∗

1

C[q′′1 , . . . , q
′′
l ]p′′

1
,...,p′′

l

∗
←−−
A∗

2

v

and, for every i, either q′′i ∈ Q1 ∩Q2 or q′′i ∈ Q
′
1 ∩Q

′
2 (by the disjointness

hypothesis). Assume for instance that q′′i ∈ Q′
1 ∩ Q

′
2 and consider the

computation of A∗
1: u|p′′i

∗
−−→
A∗

1

q′′i . By definition, u|p′′
i

= Ci[u1, . . . , uki
]

with
uj

∗
−−→
A1

qj −−→
A∗

1

q′j

for every j = 1, . . . , ki and Ci[q
′
1, . . . , q

′
ki

]
∗
−−→
A′

1

q′′i . By construction, qj ∈

Q1∩Q2 and LA2
(qj)∩LA′

1
(q′j) 6= ∅. Let wi,j be a term in this intersection

and wi = Ci[wi,1, . . . , wi,ki
]. Then






wi
∗
−−→
A2

Ci[q1, . . . , qki
]

u|p′′
i

∗
−−→
A1

Ci[q1, . . . , qki
]

wi
∗
−−→
A′

1

q′′i

v|p′′
i

∗
−−→
A′

2

q′′i

The last property comes from the fact that v|p′′
i

∗
−−→
A∗

2

q′′i and, since q′′i ∈

Q′
2, there can be only transition steps from A′

2 in this reduction.

Symmetrically, if q′′i ∈ Q1 ∩ Q2, then we define wi and the contexts Ci
such that 





wi
∗
−−→
A2

q′′i

u|p′′
i

∗
−−→
A1

q′′i

wi
∗
−−→
A′

1

Ci[q
′
1, . . . , q

′
ki

]

v|p′′
i

∗
−−→
A′

2

Ci[q
′
1, . . . , q

′
ki

]

Finally, letting w = C[w1, . . . , wl], we have (u,w) ∈ R and (w, v) ∈ R′.

GTTs do not have many other good closure properties (see the exercises).
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3.3 The Logic WSkS

3.3.1 Syntax

Terms of WSkS are formed out of the constant ǫ, first-order variable symbols
(typically written with lower-case letters x, y, z, x′, x1, ...) and unary symbols
1, . . . , n written in postfix notation. For instance x1123, ǫ2111 are terms. The
latter will be often written omitting ǫ (e.g. 2111 instead of ǫ2111).

Atomic formulas are either equalities s = t between terms, inequalities s ≤ t
or s ≥ t between terms, or membership constraints t ∈ X where t is a term and
X is a second-order variable symbol. Second-order variables will be typically
denoted using upper-case letters.

Formulas are built from the atomic formulas using the logical connectives
∧,∨,¬,⇒,⇐,⇔ and the quantifiers ∃x, ∀x(quantification on individuals)∃X, ∀X
(quantification on sets); we may quantify both first-order and second-order vari-
ables.

As usual, we do not need all this artillery: we may stick to a subset of logical
connectives (and even a subset of atomic formulas as will be discussed in Section
3.3.4). For instance φ ⇔ ψ is an abbreviation for (φ ⇒ ψ) ∧ (ψ ⇒ φ), φ ⇒ ψ
is another way of writing ψ ⇐ φ, φ ⇒ ψ is an abbreviation for (¬φ) ∨ ψ, ∀x.φ
stands for ¬∃x.¬φ etc ... We will use the extended syntax for convenience, but
we will restrict ourselves to the atomic formulas s = t, s ≤ t, t ∈ X and the
logical connectives ∨,¬, ∃x, ∃X in the proofs.

The set of free variables of a formula φ is defined as usual.

3.3.2 Semantics

We consider the particular interpretation where terms are strings belonging
to {1, . . . , k}∗, = is the equality of strings, and ≤ is interpreted as the prefix
ordering. Second order variables are interpreted as finite subsets of {1, . . . , k}∗,
so ∈ is then the membership predicate.

Let t1, . . . , tn ∈ {1, . . . , k}∗ and S1, . . . , Sn be finite subsets of {1, . . . , k}∗.
Given a formula

φ(x1, . . . , xn, X1, . . . , Xm)

with free variables x1, . . . , xn, X1, . . . , Xm, the assignment {x1 7→ t1, . . . xn 7→
tn, X1 7→ S1, . . . Xm 7→ Sm} satisfies φ, which is written σ |= φ (or also
t1, . . . , tn, S1, . . . , Sm |= φ) if replacing the variables with their corresponding
value, the formula holds in the above model.

Remark: the logic SkS is defined as above, except that set variables may be
interpreted as infinite sets.

3.3.3 Examples

We list below a number of formulas defining predicates on sets and singletons.
After these examples, we may use the below-defined abbreviations as if there
were primitives of the logic.

X is a subset of Y :

X ⊆ Y
def
= ∀x.(x ∈ X ⇒ x ∈ Y )
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Finite union:

X =

n⋃

i=1

Xi
def
=

n∧

i=1

Xi ⊆ X ∧ ∀x.(x ∈ X ⇒
n∨

i=1

x ∈ Xi)

Intersection:
X ∩ Y = Z

def
= ∀x.x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y )

Partition:

Partition(X,X1, . . . , Xn)
def
= X =

n⋃

i=1

Xi ∧
n−1∧

i=1

n∧

j=i+1

Xi ∩Xj = ∅

X is closed under prefix:

PrefixClosed(X)
def
= ∀z.∀y.(z ∈ X ∧ y ≤ z)⇒ y ∈ X

Set equality:

Y = X
def
= Y ⊆ X ∧X ⊆ Y

Emptiness:

X = ∅
def
= ∀Y.(Y ⊆ X ⇒ Y = X)

X is a Singleton:

Sing(X)
def
= X 6= ∅ ∧ ∀Y (Y ⊆ X ⇒ (Y = X ∨ Y = ∅)

The prefix ordering:

x ≤ y
def
= ∀X.(y ∈ X ∧ (∀z.(

k∨

i=1

zi ∈ X)⇒ z ∈ X))⇒ x ∈ X

“every set containing y and closed by predecessor contains x”

This shows that ≤ can be removed from the syntax of WSkS formulas
without decreasing the expressive power of the logic.

Coding of trees: assume that k is the maximal arity of a function symbol
in F . If t ∈ T (F) C(t) is the tuples of sets (S, Sf1 , . . . , Sfn

) if F =
{f1, . . . , fn}, S =

⋃n

i=1 Sfi
and Sfi

is the set of positions in t which are
labeled with fi.

For instance C(f(g(a), f(a, b))) is the tuple S = {ε, 1, 11, 2, 21, 22}, Sf =
{ε, 2}, Sg = {1}, Sa = {11, 21}, Sb = {22}.

(S, Sf1 , . . . , Sfn
) is the coding of some t ∈ T (F) is defined by:

Term(X,X1, . . . , Xn)
def
= X 6= ∅
∧ Partition(X,X1, . . . , Xn) ∧PrefixClosed(X)

∧
∧k

i=1

∧
a(fj)=i

(
∧i

l=1 ∀x.(x ∈ Xfj
⇒ xl ∈ X)

∧
∧k

l=i+1 ∀y.(y ∈ Xfj
⇒ yl /∈ X))
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3.3.4 Restricting the Syntax

If we consider that a first-order variable is a singleton set, it is possible to
transform any formula into an equivalent one which does not contain any first-
order variable.

More precisely, we consider now that formulas are built upon the atomic
formulas:

X ⊆ Y, Sing(X), X = Y i,X = ǫ

using the logical connectives and second-order quantification only. Let us
call this new syntax the restricted syntax.

These formulas are interpreted as expected. In particular Sing(X) holds true
when X is a singleton set and X = Y i holds true when X and Y are singleton
sets {s} and {t} respectively and s = ti. Let us write |=2 the satisfaction relation
for this new logic.

Proposition 14. There is a translation T from WSkS formulas to the restricted
syntax such that

s1, . . . , sn, S1, . . . , Sm |= φ(x1, . . . , xn, X1, . . . , Xm)

if and only if

{s1}, . . . , {sn}, S1, . . . , Sm |=2 T (φ)(Xx1
, . . . , Xxn

, X1, . . . , Xm)

Conversely, there is a translation T ′ from the restricted syntax to WSkS such
that

S1, . . . , Sm |= T ′(φ)(X1, . . . , Xm)

if and only if

S1, . . . , Sm |=2 φ(X1, . . . , Xm))

Proof. First, according to the previous section, we can restrict our attention to
formulas built upon the only atomic formulas t ∈ X and s = t. Then, each
atomic formula is flattened according to the rules:

ti ∈ X → ∃y.y = ti ∧ y ∈ X
xi = yj → ∃z.z = xi ∧ z = yj
ti = s → ∃z.z = t ∧ zi = s

The last rule assumes that t is not a variable
Next, we associate a second-order variable Xy to each first-order variable y

and transform the flat atomic formulas:

T (y ∈ X)
def
= Xy ⊆ X

T (y = xi)
def
= Xy = Xxi

T (x = ǫ)
def
= Xx = ǫ

T (x = y)
def
= Xx = Xy

The translation of other flat atomic formulas can be derived from these ones, in
particular when exchanging the arguments of =.
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Now, T (φ ∨ ψ)
def
= T (φ) ∨ T (ψ), T (¬(φ))

def
= ¬T (φ), T (∃X.φ)

def
= ∃X.T (φ),

T (∃y.φ)
def
= ∃Xy.Sing(Xy)∧T (φ). Finally, we add Sing(Xx) for each free variable

x.
For the converse, the translation T ′ has been given in the previous section,

except for the atomic formulas X = Y i (which becomes Sing(X) ∧ Sing(Y ) ∧
∃x∃y.x ∈ X ∧ y ∈ Y ∧ x = yi) and X = ǫ (which becomes Sing(X) ∧ ∀x.x ∈
X ⇒ x = ǫ).

3.3.5 Definable Sets are Recognizable Sets

Definition 8. A set L of tuples of finite sets of words is definable in WSkS if
there is a formula φ of WSkS with free variables X1, . . . , Xn such that

(S1, . . . , Sn) ∈ L if and only if S1, . . . , Sn |= φ.

Each tuple of finite sets of words S1, . . . , Sn ⊆ {1, . . . , k}
∗ is identified to a

finite tree (S1, . . . , Sn)
∼ over the alphabet {0, 1,⊥}n where any string containing

a 0 or a 1 is k-ary and ⊥n is a constant symbol, in the following way3:

Pos((S1, . . . , Sn)
∼)

def
= {ǫ} ∪ {pi | ∃p′ ∈

n⋃

i=1

Si, p ≤ p
′, i ∈ {1, . . . , k}}

is the set of prefixes of words in some Si. The symbol at position p:

(S1, . . . , Sn)
∼(p) = α1 . . . αn

is defined as follows:

• αi = 1 if and only if p ∈ Si

• αi = 0 if and only if p /∈ Si and ∃p′ ∈ Si and ∃p′′.p · p′′ = p′

• αi =⊥ otherwise.

Example 33. Consider for instance S1 = {ǫ, 11}, S2 = ∅, S3 = {11, 22} three
subsets of {1, 2}∗. Then the coding (S1, S2, S3)

∼ is depicted on Figure 3.7.

Lemma 2. If a set L of tuples of finite subsets of {1, . . . , k}∗ is definable in

WSkS, then L̃
def
= {(S1, . . . , Sn)

∼ | (S1, . . . , Sn) ∈ L} is in Rec.

Proof. By Proposition 14, if L is definable in WSkS, it is also definable with the
restricted syntax. We are going now to prove the lemma by induction on the
structure of the formula φ which defines L. We assume that all variables in φ
are bound at most once in the formula and we also assume a fixed total ordering
≤ on the variables. If ψ is a subformula of φ with free variables Y1 < . . . < Yn,
we construct an automaton Aψ working on the alphabet {0, 1,⊥}n such that
(S1, . . . , Sn) |=2 ψ if and only if (S1, . . . , Sn)

∼ ∈ L(Aψ)

3This is very similar to the coding of Section 3.2.1
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0 0

11 1

1 0

0

Figure 3.7: An example of a tree coding a triple of finite sets of strings
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q’q
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qq
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q q’

0

qq’

q’

Figure 3.8: The automaton for Sing(X)

The base case consists in constructing an automaton for each atomic formula.
(We assume here that k = 2 for simplicity, but this works of course for arbitrary
k).

The automaton ASing(X) is depicted on Figure 3.8. The only final state is

q′.

The automaton AX⊆Y (with X < Y ) is depicted on Figure 3.9. The only
state (which is also final) is q.

The automaton AX=Y 1 is depicted on Figure 3.10. The only final state is
q′′. An automaton for X = Y 2 is obtained in a similar way.

The automaton for X = ǫ is depicted on Figure 3.11 (the final state is q′).

Now, for the induction step, we have several cases to investigate:

• If φ is a disjunction φ1 ∨ φ2, where ~Xi are the set of free variables of
φi respectively. Then we first cylindrify the automata for φ1 and φ2

respectively in such a way that they recognize the solutions of φ1 and
φ2, with free variables ~X1 ∪ ~X2. (See Proposition 12).More precisely, let
~X1 ∪ ~X2 = {Y1, . . . , Yn} with Y1 < . . . < Yn. Then we successively apply
the ith cylindrification to the automaton of φ1 (resp. φ2) for the variables
Yi which are not free in φ1 (resp. φ2). Then the automaton Aφ is obtained
as the union of these automata. (Rec is closed under union by Proposition
11).
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Figure 3.9: The automaton for X ⊆ Y
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Figure 3.10: The automaton for X = Y 1
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Figure 3.11: The automaton for X = ǫ
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• If φ is a formula ¬φ1 then Aφ is the automaton accepting the complement
of Aφ1

. (See Theorem 5)

• If φ is a formula ∃X.φ1. Assume that X correspond to the ith component.
Then Aφ is the ith projection of Aφ1

(see Proposition 12).

Example 34. Consider the following formula, with free variables X,Y :

∀x, y.(x ∈ X ∧ y ∈ Y )⇒ ¬(x ≥ y)

We want to compute an automaton which accepts the assignments to X,Y
satisfying the formula. First, write the formula as

¬∃X1, Y1.X1 ⊆ X ∧ Y1 ⊆ Y ∧G(X1, Y1)

where G(X1, Y1) expresses that X1 is a singleton x, Y1 is a singleton y and
x ≥ y. We can use the definition of ≥ as a WS2S formula, or compute directly
the automaton, yielding

⊥⊥ → q 11(q, q) → q2
1 ⊥ (q, q) → q1 0 ⊥ (q, q1) → q1

0 ⊥ (q1, q) → q1 01(q1, q) → q2
01(q, q2) → q2 00(q2, q) → q2
00(q, q2) → q2

where q2 is the only final state. Now, using cylindrification, intersection, pro-
jection and negation we get the following automaton (intermediate steps yield
large automata which would require a full page to be displayed):

⊥⊥ → q0 ⊥ 1(q0, q0) → q1 1 ⊥ (q0, q0) → q2
⊥ 0(q0, q1) → q1 ⊥ 0(q1, q0) → q1 ⊥ 0(q1, q1) → q1
0 ⊥ (q0, q2) → q2 0 ⊥ (q2, q0) → q2 0 ⊥ (q2, q2) → q2
⊥ 1(q0, q1) → q1 ⊥ 1(q1, q0) → q1 ⊥ 1(q1, q1) → q1
1 ⊥ (q0, q2) → q2 1 ⊥ (q2, q0) → q2 1 ⊥ (q2, q2) → q2

10(q1, q0) → q3 10(q0, q1) → q3 10(q1, q1) → q3
10(q1, q2) → q3 10(q2, q1) → q3 10(qi, q3) → q3
10(q3, qi) → q3 00(qi, q3) → q3 00(q3, qi) → q3

where i ranges over {0, 1, 2, 3} and q3 is the only final state.

3.3.6 Recognizable Sets are Definable

We have seen in section 3.3.3 how to represent a term using a tuple of set
variables. Now, we use this formula Term on the coding of tuples of terms; if
(t1, . . . , tn) ∈ T (F)n, we write [t1, . . . , tn] the (|F|+ 1)n + 1-tuple of finite sets
which represents it: one set for the positions of [t1, . . . , tn] and one set for each
element of the alphabet (F ∪{⊥})n . As it has been seen in section 3.3.3, there
is a WSkS formula Term([t1, . . . , tn]) which expresses the image of the coding.
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Lemma 3. Every relation in Rec is definable. More precisely, if R ∈ Rec there
is a formula φ such that, for every terms t1, . . . , tn, if (S1, . . . , Sm) = [t1, . . . , tn],
then

(S1, . . . , Sm) |=2 φ if and only if (t1, . . . , tn) ∈ R

Proof. Let A be the automaton which accepts the set of terms [t1, . . . , tn] for
(t1, . . . , tn) ∈ R. The terminal alphabet ofA is F ′ = (F∪{⊥})n, the set of states
Q, the final states Qf and the set of transition rules T . Let F ′ = {f1, . . . , fm}
and Q = {q1, . . . , ql}. The following formula φA (with m + 1 free variables)
defines the set {[t1, . . . , tn] | (t1, . . . , tn) ∈ R}.

∃Yq1 , . . . ,∃Yql
.

Term(X,Xf1 , . . . , Xfm
)

∧ Partition(X,Yq1 , . . . , Yql
)

∧
∨
q∈Qf

ǫ ∈ Yq

∧ ∀x.
∧

f∈F ′

∧

q∈Q

((x ∈ Xf ∧ x ∈ Yq)⇒ (
∨

f(q1,...,qs)→q∈T

s∧

i=1

xi ∈ Yqi
))

This formula basically expresses that there is a successful run of the automaton
on [t1, . . . , tn]: the variables Yqi

correspond to sets of positions which are labeled
with qi by the run. They should be a partition of the set of positions. The root
has to be labeled with a final state (the run is successful). Finally, the last line
expresses local properties that have to be satisfied by the run: if the sons xi of
a position x are labeled with q1, ..., qn respectively and x is labeled with symbol
f and state q, then there should be a transition f(q1, . . . , qn)→ q in the set of
transitions.

We have to prove two inclusions. First assume that (S, S1, . . . , Sm) |=2

φ. Then (S, S1, . . . , Sm) |= Term(X,Xf1 , . . . , Xfm
), hence there is a term u ∈

T (F)′ whose set of position is S and such that for all i, Si is the set of positions
labeled with fi. Now, there is a partition Eq1 , . . . , Eql

of S which satisfies

S, S1, . . . , Sm, Eq1 , . . . , Eql
|=

∀x.
∧

f∈F ′

∧

q∈Q

((x ∈ Xf ∧ x ∈ Yq)⇒ (
∨

f(q1,...,qs)→q∈T

s∧

i=1

xi ∈ Yqi
))

This implies that the labeling Eq1 , . . . , Eql
is compatible with the transition

rules: it defines a run of the automaton. Finally, the condition that the root ε
belongs to Eqf

for some final state qf implies that the run is successful, hence
that u is accepted by the automaton.

Conversely, if u is accepted by the automaton, then there is a successful run
of A on u and we can label its positions with states in such a way that this
labeling is compatible with the transition rules in A.

Putting together Lemmas 2 and 3, we can state the following slogan (which
is not very precise; the precise statements are given by the lemmas):

Theorem 24. L is definable if and only if L is in Rec.

And, as a consequence:
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Theorem 25 ([TW68]). WSkS is decidable.

Proof. Given a formula φ of WSkS, by Lemma 2, we can compute a finite tree
automaton which has the same solutions as φ. Now, assume that φ has no free
variable. Then the alphabet of the automaton is empty (or, more precisely, it
contains the only constant ⊤ according to what we explained in Section 3.2.4).
Finally, the formula is valid iff the constant ⊤ is in the language, i.e.iff there is
a rule ⊤ −→ qf for some qf ∈ Qf .

3.3.7 Complexity Issues

We have seen in chapter 1 that, for finite tree automata, emptiness can be de-
cided in linear time (and is PTIME-complete) and that inclusion is EXPTIME-
complete. Considering WSkS formulas with a fixed number of quantifiers al-
ternations N , the decision method sketched in the previous section will work
in time which is a tower of exponentials, the height of the tower being O(N).
This is so because each time we encounter a sequence ∀X, ∃Y , the existential
quantification corresponds to a projection, which may yield a non-deterministic
automaton, even if the input automaton was deterministic. Then the elimination
of ∀X requires a determinization (because we have to compute a complement
automaton) which requires in general exponential time and exponential space.

Actually, it is not really possible to do much better since, even when k = 1,
deciding a formula of WSkS requires non-elementary time, as shown in [SM73].

3.3.8 Extensions

There are several extensions of the logic, which we already mentioned: though
quantification is restricted to finite sets, we may consider infinite sets as models
(this is what is often called weak second-order monadic logic with k successors
and also written WSkS), or consider quantifications on arbitrary sets (this is
the full SkS).

These logics require more sophisticated automata which recognize sets of
infinite terms. The proof of Theorem 25 carries over these extensions, with the
provision that the devices enjoy the required closure and decidability properties.
But this becomes much more intricate in the case of infinite terms. Indeed, for
infinite terms, it is not possible to design bottom-up tree automata. We have to
use a top-down device. But then, as mentioned in chapter 1, we cannot expect
to reduce the non-determinism. Now, the closure by complement becomes prob-
lematic because the usual way of computing the complement uses reduction of
non-determinism as a first step.

It is out of the scope of this book to define and study automata on infinite
objects (see [Tho90] instead). Let us simply mention that the closure under com-
plement for Rabin automata which work on infinite trees (this result is known
as Rabin’s Theorem) is one of the most difficult results in the field
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3.4 Examples of Applications

3.4.1 Terms and Sorts

The most basic example is what is known in the algebraic specification commu-
nity as order-sorted signatures . These signatures are exactly what we called
bottom-up tree automata. There are only differences in the syntax. For in-
stance, the following signature:

SORTS:Nat, int

SUBSORTS : Nat ≤ int

FUNCTION DECLARATIONS:
0 : → Nat

+ : Nat× Nat → Nat

s : Nat → Nat

p : Nat → int

+ : int× int → int

abs : int → Nat

fact : Nat → Nat

. . .

is an automaton whose states are Nat, int with an ǫ-transition from Nat to int

and each function declaration corresponds to a transition of the automaton. For
example +(Nat,Nat) → Nat. The set of well-formed terms (as in the algebraic
specification terminology) is the set of terms recognized by the automaton in
any state.

More general typing systems also correspond to more general automata (as
will be seen e.g. in the next chapter).

This correspondence is not surprising; types and sorts are introduced in order
to prevent run-time errors by some “abstract interpretation” of the inputs. Tree
automata and tree grammars also provide such a symbolic evaluation mecha-
nism. For other applications of tree automata in this direction, see e.g. chapter
5.

From what we have seen in this chapter, we can go beyond simply recogniz-
ing the set of well-formed terms. Consider the following sort constraints (the
alphabet F of function symbols is given):

The set of sort expressions SE is the least set such that

• SE contains a finite set of sort symbols S, including the two particular
symbols ⊤S and ⊥S.

• If s1, s2 ∈ SE , then s1 ∨ s2, s1 ∧ s2, ¬s1 are in SE

• If s1, . . . , sn are in SE and f is a function symbol of arity n, then f(s1, . . . , sn) ∈
SE .

The atomic formulas are expressions t ∈ s where t ∈ T (F ,X ) and s ∈ SE .
The formulas are arbitrary first-order formulas built on these atomic formulas.

These formulas are interpreted as follows: we are giving an order-sorted sig-
nature (or a tree automaton) whose set of sorts is S. We define the interpretation[[·]]S
of sort expressions as follows:

• if s ∈ S, [[s]]S is the set of terms in T (F) that are accepted in state s.
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t

u

Figure 3.12: u encompasses t

• [[⊤S ]]S = T (F) and [[⊥S ]]S = ∅

• [[s1 ∨ s2]]S = [[s1]]S ∪ [[s2]]S , [[s1 ∧ s2]]S = [[s1]]S ∩ [[s2]]S , [[¬s]]S = T (F) \ [[s]]S

• [[f(s1, . . . , sn)]]S = {f(t1, . . . , tn) | t1 ∈ [[s1]]S , . . . tn ∈ [[sn]]S}

An assignment σ, mapping variables to terms in T (F), satisfies t ∈ s (we
also say that σ is a solution of t ∈ s) if tσ ∈ [[s]]S . Solutions of arbitrary formulas
are defined as expected. Then

Theorem 26. Sort constraints are decidable.

The decision technique is based on automata computations, following the
closure properties of Rec× and a decomposition lemma for constraints of the
form f(t1, . . . , tn) ∈ s.

More results and applications of sort constraints are discussed in the biblio-
graphic notes.

3.4.2 The Encompassment Theory for Linear Terms

Definition 9. If t ∈ T (F ,X ) and u ∈ T (F), u encompasses t if there is a substi-
tution σ such that tσ is a subterm of u. (See Figure 3.12.) This binary relation
is denoted t ·�u or, seen as a unary relation on ground terms parametrized by
t: ·�t(u).

Encompassment plays an important role in rewriting: a term t is reducible
by a term rewriting system R if and only if t encompasses at least one left hand
side of a rule.

The relationship with tree automata is given by the proposition:

Proposition 15. If t is linear, then the set of terms that encompass t is recog-
nized by a NFTA of size O(|t|).

Proof. To each non-variable subterm v of t we associate a state qv. In addition
we have a state q⊤. The only final state is qt. The transition rules are:

• f(q⊤, . . . , q⊤)→ q⊤ for all function symbols.

• f(qt1 , . . . , qtn) → qf(t1,...,tn) if f(t1, . . . , tn) is a subterm of t and qti is
actually q⊤ is ti is a variable.
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• f(q⊤ . . . , q⊤, qt, q⊤, . . . , q⊤)→ qt for all function symbols f whose arity is
at least 1.

The proof that this automaton indeed recognizes the set of terms that encompass
t is left to the reader.

Note that the automaton may be non deterministic. With a slight modifica-
tion, if u is a linear term, we can construct in linear time an automaton which
accepts the set of instances of u (this is also left as an exercise in chapter 1,
exercise 8).

Corollary 4. If R is a term rewriting system whose all left members are linear,
then the set of reducible terms in T (F), as well as the set NF of irreducible
terms in T (F) are recognized by a finite tree automaton.

Proof. This is a consequence of Theorem 5.

The theory of reducibility associated with a set of term S ⊆ T (F ,X ) is the
set of first-order formulas built on the unary predicate symbols Et, t ∈ S and
interpreted as the set of terms encompassing t.

Theorem 27. The reducibility theory associated with a set of linear terms is
decidable.

Proof. By proposition 15, the set of solutions of an atomic formula is recog-
nizable, hence definable in WSkS by Lemma 3. Hence, any first-order formula
built on these atomic predicate symbols can be translated into a (second-order)
formula of WSkS which has the same models (up to the coding of terms into
tuples of sets). Then, by Theorem 25, the reducibility theory associated with a
set of linear terms is decidable.

Note however that we do not use here the full power of WSkS. Actually,
the solutions of a Boolean combination of atomic formulas are in Rec×. So, we
cannot apply the complexity results for WSkS here. (In fact, the complexity of
the reducibility theory is unknown so far).

Let us simply show an example of an interesting property of rewrite systems
which can be expressed in this theory.

Definition 10. Given a term rewriting system R, a term t is ground reducible
if, for every ground substitution σ, tσ is reducible by R.

Note that a term might be irreducible and still ground reducible. For in-
stance consider the alphabet F = {0, s} and the rewrite system R = {s(s(0))→
0}. Then the term s(s(x)) is irreducible by R, but all its ground instances are
reducible.

It turns out that ground reducibility of t is expressible in the encompassment
theory by the formula:

∀x.( ·�t(x)⇒
n∨

i=1

·�li(x))

Where l1, . . . , ln are the left hand sides of the rewrite system. By Theorem
27, if t, l1, . . . , ln are linear, then ground reducibility is decidable. Actually, it
has been shown that this problem is EXPTIME-complete, but is beyond the
scope of this book to give the proof.
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3.4.3 The First-order Theory of a Reduction Relation: the

Case Where no Variables are Shared

We consider again an application of tree automata to decision problem in logic
and term rewriting.

Consider the following logical theory. Let L be the set of all first-order
formulas using no function symbols and a single binary predicate symbol →.

Given a rewrite system R, interpreting → as −→
R

, yields the theory of one

step rewriting; interpreting → as
∗
−→
R

yields the theory of rewriting.

Both theories are undecidable for arbitrary R. They become however decid-
able if we restrict our attention to term rewriting systems in which each variable
occurs at most once. Basically, the reason is given by the following:

Proposition 16. If R is a linear rewrite system such that left and right mem-
bers of the rules do not share variables, then

∗
−→
R

is recognized by a GTT.

Proof. As in the proof of Proposition 15, we can construct in linear time a
(non-deterministic) automaton which accepts the set of instances of a linear
term. For each rule li → ri we can construct a pair (Ai,A′

i) of automata which
respectively recognize the set of instances of li and the set of instances of ri.
Assume that the sets of states of the Ais are pairwise disjoint and that each
Ai has a single final state qif . We may assume a similar property for the A′

is:
they do not share states and for each i, the only common state between Ai and
A′
i is qif (the final state for both of them). Then A (resp. A′) is the union of

the Ais: the states are the union of all sets of states of the Ais (resp. A′
is),

transitions and final states are also unions of the transitions and final states of
each individual automaton.

We claim that (A,A′) defines a GTT whose closure by iteration (A∗,A′
∗)

(which is again a GTT according to Theorem 23) accepting
∗
−→
R

. For, assume

first that u
p

−−−−→
li→ri

v. Then u|p is an instance liσ of li, hence is accepted in state

qif . v|p is an instance riθ of ri, hence accepted in state qif . Now, v = u[riθ]p,

hence (u, v) is accepted by the GTT (A,A′). It follows that if u
∗
−→
R

v, (u, v) is

accepted by (A∗,A′
∗).

Conversely, assume that (u, v) is accepted by (A,A′), then

u
∗
−→
A

C[q1, . . . , qn]p1,...,pn

∗
←−−
A′

v

Moreover, each qi is some state qjf , which, by definition, implies that u|pi
is an

instance of lj and v|pi
is an instance of rj . Now, since lj and rj do not share

variables, for each i, u|pi
−→
R

v|pi
. Which implies that u

∗
−→
R

v. Now, if (u, v) is

accepted by (A∗,A′
∗), u can be rewritten in v by the transitive closure of

∗
−→
R

,

which is
∗
−→
R

itself.

Theorem 28. If R is a linear term rewriting system such that left and right
members of the rules do not share variables, then the first-order theory of rewrit-
ing is decidable.
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Proof. By Proposition 16,
∗
−→
R

is recognized by a GTT. From Proposition

9,
∗
−→
R

is in Rec. By Lemma 3, there is a WSkS formula whose solutions are

exactly the pairs (s, t) such that s
∗
−→
R

t. Finally, by Theorem 25, the first-order

theory of
∗
−→
R

is decidable.

3.4.4 Reduction Strategies

So far, we gave examples of first-order theories (or constraint systems) which
can be decided using tree automata techniques. Other examples will be given
in the next two chapters. We give here another example of application in a
different spirit: we are going to show how to decide the existence (and com-
pute) “optimal reduction strategies” in term rewriting systems. Informally, a
reduction sequence is optimal when every redex which is contracted along this
sequence has to be contracted in any reduction sequence yielding a normal form.
For example, if we consider the rewrite system {x∨⊤ → ⊤;⊤∨ x→ ⊤}, there
is no optimal sequential reduction strategy in the above sense since, given an
expression e1 ∨ e2, where e1 and e2 are unevaluated, the strategy should spec-
ify which of e1 or e2 has to be evaluated first. However, if we start with e1,
then maybe e2 will reduce to ⊤ and the evaluation step on e1 was unnecessary.
Symmetrically, evaluating e2 first may lead to unnecessary computations. An
interesting question is to give sufficient criteria for a rewrite system to admit
optimal strategies and, in case there is such a strategy, give it explicitly.

The formalization of these notions was given by Huet and Lévy in [HL91]
who introduce the notion of sequentiality. We give briefly a summary of (part
of) their definitions.
F is a fixed alphabet of function symbols and FΩ = F ∪{Ω} is the alphabet

F enriched with a new constant Ω (whose intended meaning is “unevaluated
term”).

We define on T (FΩ) the relation “less evaluated than” as:

u ⊑ v if and only if either u = Ω or else u = f(u1, . . . , un), v =
f(v1, . . . , vn) and for all i, ui ⊑ vi

Definition 11. A predicate P on T (FΩ) is monotonic if u ∈ P and u ⊑ v
implies v ∈ P .

For example, a monotonic predicate of interest for rewriting is the predicate
NR: t ∈ NR if and only if there is a term u ∈ T (F) such that u is irreducible

by R and t
∗
−→
R

u.

Definition 12. Let P be a monotonic predicate on T (FΩ). If R is a term
rewriting system and t ∈ T (FΩ), a position p of Ω in t is an index for P if for
all terms u ∈ T (FΩ) such that t ⊑ u and u ∈ P , then u|p 6= Ω

In other words: it is necessary to evaluate t at position p in order to have
the predicate P satisfied.

Example 35. Let R = {f(g(x), y) → g(f(x, y)); f(a, x) → a; b → g(b)}.
Then 1 is an index of f(Ω,Ω) for NR: any reduction yielding a normal form
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without Ω will have to evaluate the term at position 1. More formally, every
term f(t1, t2) which can be reduced to a term in T (F) in normal form satisfies

t1 6= Ω. On the contrary, 2 is not an index of f(Ω,Ω) since f(a,Ω)
∗
−→
R

a.

Definition 13. A monotonic predicate P is sequential if every term t such that:

• t /∈ P

• there is u ∈ T (F), t ⊑ u and u ∈ P

has an index for P .

If NR is sequential, the reduction strategy consisting of reducing an index
is optimal for non-overlapping and left linear rewrite systems.

Now, the relationship with tree automata is given by the following result:

Theorem 29. If P is definable in WSkS, then the sequentiality of P is express-
ible as a WSkS formula.

The proof of this result is quite easy: it suffices to translate directly the
definitions.

For instance, if R is a rewrite system whose left and right members do
not share variables, then NR is recognizable (by Propositions 16 and 9), hence
definable in WSkS by Lemma 3 and the sequentiality of NR is decidable by
Theorem 29.

In general, the sequentiality of NR is undecidable. However, one can notice
that, if R and R′ are two rewrite systems such that −→

R
⊆ −−→

R′

, then a

position p which is an index for R′ is also an index for R. (And thus, R is
sequential whenever R′ is sequential).

For instance, we may approximate the term rewriting system, replacing all
right hand sides by a new variable which does not occur in the corresponding
left member. LetR? be this approximation and N? be the predicate NR?. (This
is the approximation considered by Huet and Lévy).

Another, refined, approximation consists in renaming all variables of the
right hand sides of the rules in such a way that all right hand sides become
linear and do not share variables with their left hand sides. Let R′ be such an
approximation of R. The predicate NR′ is written NV .

Proposition 17. If R is left linear, then the predicates N? and NV are defin-
able in WSkS and their sequentiality is decidable.

Proof. The approximations R? and R′ satisfy the hypotheses of Proposition 16
and hence

∗
−−→
R?

and
∗
−−→
R′

are recognized by GTTs. On the other hand, the

set of terms in normal form for a left linear rewrite system is recognized by a
finite tree automaton (see Corollary 4). By Proposition 9 and Lemma 3, all
these predicates are definable in WSkS. Then N? and NV are also definable in
WSkS. For instance for NV:

NV (t)
def
= ∃u.t

∗
−−→
R′

u ∧ u ∈ NF

Then, by Theorem 29, the sequentiality of N? and NV are definable in
WSkS and by Theorem 25 they are decidable.
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3.4.5 Application to Rigid E-unification

Given a finite (universally quantified) set of equations E, the classical problem
of E-unification is, given an equation s = t, find substitutions σ such that
E |= sσ = tσ. The associated decision problem is to decide whether such a
substitution exists. This problem is in general unsolvable: there are decision
procedures for restricted classes of axioms E.

The simultaneous rigid E-unification problem is slightly different: we are
still giving E and a finite set of equations si = ti and the question is to find a
substitution σ such that

|= (
∧

e∈E

eσ)⇒ (

n∧

i=1

siσ = tiσ)

The associated decision problem is to decide the existence of such a substitution.
The relevance of such questions to automated deduction is very briefly de-

scribed in the bibliographic notes. We want here to show how tree automata
help in this decision problem.

Simultaneous rigid E-unification is undecidable in general. However, for the
one variable case, we have:

Theorem 30. The simultaneous rigid E-unification problem with one variable
is EXPTIME-complete.

The EXPTIME membership is a direct consequence of the following lemma,
together with closure and decision properties for recognizable tree languages.
The EXPTIME-hardness is obtained by reduction the intersection non-emptiness
problem, see Theorem 12).

Lemma 4. The solutions of a rigid E-unification problem with one variable are
recognizable by a finite tree automaton.

Proof. (sketch) Assume that we have a single equation s = t. Let x be the
only variable occurring in E, s = t and Ê be the set E in which x is considered
as a constant. Let R be a canonical ground rewrite system (see e.g. [DJ90])
associated with Ê (and for which x is minimal). We define v as x if s and t have
the same normal form w.r.t.R and as the normal form of xσ w.r.t.R otherwise.

Assume Eσ |= sσ = tσ. If v 6≡ x, we have Ê ∪ {x = v} |= x = xσ. Hence
Ê ∪{x = v} |= s = t in any case. Conversely, assume that Ê ∪{x = v} |= s = t.
Then Ê ∪ {x = xσ} |= s = t, hence Eσ |= sσ = tσ.

Now, assume v 6≡ x. Then either there is a subterm u of an equation in Ê
such that Ê |= u = v or else R1 = R ∪ {v → x} is canonical. In this case, from
Ê ∪ {v = x} |= s = t, we deduce that either Ê |= s = t (and v ≡ x) or there is a
subterm u of s, t such that Ê |= v = u. we can conclude that, in all cases, there
is a subterm u of E ∪ {s = t} such that Ê |= u = v.

To summarize, σ is such that Eσ |= sσ = tσ iff there is a subterm u of
E ∪ {s = t} such that Ê |= u = xσ and Ê ∪ {u = x} |= s = t.

If we let T be the set of subterms u of E ∪ {s = t} such that Ê ∪ {u = x} |=
s = t, then T is finite (and computable in polynomial time). The set of solutions

is then
∗
−−−→
R−1

(T ), which is a recognizable set of trees, thanks to Proposition

16.

Further comments and references are given in the bibliographic notes.
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3.4.6 Application to Higher-order Matching

We give here a last application (but the list is not closed!), in the typed lambda-
calculus.

To be self-contained, let us first recall some basic definitions in typed lambda
calculus.

The set of types of the simply typed lambda calculus is the least set contain-
ing the constant o (basic type) and such that τ → τ ′ is a type whenever τ and
τ ′ are types.

Using the so-called Curryfication, any type τ → (τ ′ → τ ′′) is written τ, τ ′ →
τ ′′. In this way all non-basic types are of the form τ1, . . . , τn → o with intuitive
meaning that this is the type of functions taking n arguments of respective types
τ1, . . . , τn and whose result is a basic type o.

The order of a type τ is defined by:

• O(o) = 1

• O(τ1, . . . , τn → o) = 1 + max{O(τ1), . . . , O(τn)}

Given, for each type τ a set of variables Xτ of type τ and a set Cτ of constants
of type τ , the set of terms (of the simply typed lambda calculus) is the least
set Λ such that:

• x ∈ Xτ is a term of type τ

• c ∈ Cτ is a term of type τ

• If x1 ∈ Xτ1 , . . . , xn ∈ Xτn
and t is a term of type τ , then λx1, . . . xn : t is

a term of type τ1, . . . , τn → τ

• If t is a term of type τ1, . . . , τn → τ and t1, . . . , tn are terms of respective
types τ1, . . . , τn, then t(t1, . . . , tn) is a term of type τ .

The order of a term t is the order of its type τ(t).
The set of free variables Var(t) of a term t is defined by:

• Var (x) = {x} if x is a variable

• Var (c) = ∅ if c is a constant

• Var (λx1, . . . , xn : t) = Var (t) \ {x1, . . . , xn}

• Var (t(u1, . . . , un)) = Var (t) ∪ Var(u1) ∪ . . . ∪ Var (un)

Terms are always assumed to be in η-long form, i.e.they are assumed to
be in normal form with respect to the rule:

(η) t→ λx1, . . . , xn.t(x1, . . . , xn) if τ(t) = τ1, . . . τn → τ
and xi ∈ Xτi

\ Var (t) for all i

We define the α-equivalence =α on Λ as the least congruence relation such
that: λx1, . . . , xn : t =α λx

′
1 . . . , x

′
n : t′ when

• t′ is the term obtained from t by substituting for every index i, every free
occurrence of xi with x′i.
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• There is no subterm of t in which, for some index i, both xi and x′i occur
free.

In the following, we consider only lambda terms modulo α-equivalence. Then
we may assume that, in any term, any variable is bounded at most once and
free variables do not have bounded occurrences.

The β-reduction is defined on Λ as the least binary relation −→
β

such that

• λx1, . . . , xn : t(t1, . . . , tn) −→
β

t{x1←t1, . . . , xn←tn}

• for every context C, C[t] −→
β

C[u] whenever t −→
β

u

It is well-known that βη-reduction is terminating and confluent on Λ and,
for every term t ∈ Λ, we let t ↓ be the unique normal form of t.

A matching problem is an equation s = t where s, t ∈ Λ and Var(t) = ∅.
A solution of a matching problem is a substitution σ of the free variables of t
such that sσ ↓= t ↓.

Whether or not the matching problem is decidable is an open question at the
time we write this book. However, it can be decided when every free variable
occurring in s is of order less or equal to 4. We sketch here how tree automata
may help in this matter. We will consider only two special cases here, leaving the
general case as well as details of the proofs as exercises (see also bibliographic
notes).

First consider a problem

(1) x(s1, . . . , sn) = t

where x is a third order variable and s1, . . . , sn, t are terms without free variables.
The first result states that the set of solutions is recognizable by a 2-

automaton. 2-automata are a slight extension of finite tree automata: we
assume here that the alphabet contains a special symbol 2. Then a term u is
accepted by a 2-automaton A if and only if there is a term v which is accepted
(in the usual sense) by A and such that u is obtained from v by replacing each
occurrence of the symbol 2 with a term (of appropriate type). Note that two
distinct occurrences of 2 need not to be replaced with the same term.

We consider the automaton As1,...,sn,t defined by: F consists of all symbols
occurring in t plus the variable symbols x1, . . . , xn whose types are respectively
the types of s1, . . . , sn and the constant 2.

The set of states Q consists of all subterms of t, which we write qu (instead
of u) and a state q2. In addition, we have the final state qf .

The transition rules ∆ consist in

• The rules
f(qt1 , . . . , qtn)→ qf(t1,...,tn)

each time qf(t1,...,tn) ∈ Q

• For i = 1, . . . , n, the rules

xi(qt1 , . . . , qtn)→ qu

where u is a subterm of t such that si(t1, . . . , tn) ↓= u and tj = 2 whenever
si(t1, . . . , tj−1,2, tj+1, . . . , tn) ↓= u.
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• the rule λx1, . . . , λxn.qt → qf

Theorem 31. The set of solutions of (1) (up to α-conversion) is accepted by
the 2-automaton As1,...,sn,t.

More about this result, its proof and its extension to fourth order will be
given in the exercises (see also bibliographic notes). Let us simply give an
example.

Example 36. Let us consider the interpolation equation

x(λy1λy2.y1, λy3.f(y3, y3)) = f(a, a)

where y1, y2 are assumed to be of base type o. Then F = {a, f, x1, x2,2o}.
Q = {qa, qf(a,a), q2o

, qf} and the rules of the automaton are:

a → qa f(qa, qa) → qf(a,a)

2o → q2o
x1(qa, q2o

) → qa
x1(qf(a,a), q2o

) → qf(a,a) x2(qa) → qf(a,a)

λx1λx2.qf(a,a) → qf

For instance the term λx1λx2.x1(x2(x1(x1(a,2o),2o)),2o) is accepted by
the automaton:

λx1λx2.x1(x2(x1(x1(a,2o),2o)),2o)
∗
−→
A

λx1λx2.x1(x2(x1(x1(qa, q2o
), q2o

)), q2o
)

−→
A

λx1λx2.x1(x2(x1(qa, q2o
)), q2o

)

−→
A

λx1λx2.x1(x2(qa), q2o
)

−→
A

λx1λx2.x1(qf(a,a), q2o
)

−→
A

λx1λx2.qf(a,a)

−→
A

qf

And indeed, for every terms t1, t2, t3, λx1λx2.x1(x2(x1(x1(a, t1), t2)), t3) is a
solution of the interpolation problem.

3.5 Exercises

Exercise 31. Let F be the alphabet consisting of finitely many unary function
symbols a1, . . . , an and a constant 0.

1. Show that the set S of pairs (of words) {(an
1 (a1(a2(a

p
2(0)))), a

n
1 (ap

2(0))) | n, p ∈
N} is in Rec. Show that S∗ is not in Rec, hence that Rec is not closed under
transitive closure.

2. More generally, show that, for any finite rewrite system R (on the alphabet F !),
the reduction relation −→

R

is in Rec.

3. Is there any hope to design a class of tree languages which contains Rec, which is
closed by all Boolean operations and by transitive closure and for which empti-
ness is decidable? Why?
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Exercise 32. Show that the set of pairs {(t, f(t, t′)) | t, t′ ∈ T (F)} is not in Rec.

Exercise 33. Show that if a binary relation is recognized by a GTT, then its inverse

is also recognized by a GTT.

Exercise 34. Give an example of two relations that are recognized by GTTs and
whose union is not recognized by any GTT.

Similarly, show that the class of relations recognized by a GTT is not closed by
complement. Is the class closed by intersection?

Exercise 35. Give an example of a n-ary relation such that its ith projection followed

by its ith cylindrification does not give back the original relation. On the contrary,

show that ith cylindrification followed by ith projection gives back the original relation.

Exercise 36. About Rec and bounded delay relations. We assume that F only
contains unary function symbols and a constant, i.e.we consider words rather than
trees and we write u = a1 . . . an instead of u = a1(. . . (an(0)) . . .). Similarly, u · v
corresponds to the usual concatenation of words.

A binary relation R on T (F) is called a bounded delay relation if and only if

∃k/∀(u, v) ∈ R, |u| − |v| ≤ k

R preserves the length if and only if

∀(u, v) ∈ R, |u| = |v|

If A, B are two binary relations, we write A ·B (or simply AB) the relation

A · B
def
= {(u, v)/∃(u1, v1) ∈ A, (u2, v2) ∈ Bu = u1.u2, v = v1.v2}

Similarly, we write (in this exercise!)

A∗ = {(u, v)/∃(u1, v1) ∈ A, . . . , (un, vn) ∈ A, u = u1 . . . un, v = v1 . . . vn}

1. Given A,B ∈ Rec, is A · B necessary in Rec? is A∗ necessary in Rec? Why?

2. Show that if A ∈ Rec preserves the length, then A∗ ∈ Rec.

3. Show that if A,B ∈ Rec and A is of bounded delay, then A · B ∈ Rec.

4. The family of rational relations is the smallest set of subsets of T (F)2 which con-
tains the finite subsets of T (F)2 and which is closed under union, concatenation
(·) and ∗.

Show that, if A is a bounded delay rational relation, then A ∈ Rec. Is the
converse true?

Exercise 37. Let R0 be the rewrite system {x×0 → 0; 0×x→ 0} and F = {0, 1, s,×}

1. Construct explicitly the GTT accepting
∗

−−→
R0

.

2. Let R1 = R0 ∪ {x× 1 → x}. Show that
∗

−−→
R1

is is not recognized by a GTT.

3. Let R2 = R1 ∪ {1 × x → x × 1}. Using a construction similar to the transitive

closure of GTTs, show that the set {t ∈ T (F) | ∃u ∈ T (F), t
∗

−−→
R2

u, u ∈ NF}

where NF is the set of terms in normal form for R2 is recognized by a finite
tree automaton.
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Exercise 38. (*) More generally, prove that given any rewrite system {li → ri | 1 ≤
i ≤ n} such that

1. for all i, li and ri are linear

2. for all i, if x ∈ Var(li) ∩ Var(ri), then x occurs at depth at most one in li.

the set {t ∈ T (F) | ∃u ∈ NF, t
∗
−→
R

u} is recognized by finite tree automaton.

What are the consequences of this result?

(See [Jac96] for details about this results and its applications. Also compare with

Exercise 16, question 4.)

Exercise 39. Show that the set of pairs {(f(t, t′), t) | t, t′ ∈ T (F)} is not definable

in WSkS. (See also Exercise 32)

Exercise 40. Show that the set of pairs of words {(w,w′) | l(w) = l(w′)}, where l(x)

is the length of x, is not definable in WSkS.

Exercise 41. Let F = {a1, . . . , an, 0} where each ai is unary and 0 is a constant.
Consider the following constraint system: terms are built on F , the binary symbols
∩,∪, the unary symbol ¬ and set variables. Formulas are conjunctions of inclusion
constraints t ⊆ t′. The formulas are interpreted by assigning to variables finite subsets
of T (F), with the expected meaning for other symbols.

Show that the set of solutions of such constraints is in Rec2. What can we conclude?
(*) What happens if we remove the condition on the ai’s to be unary?

Exercise 42. Complete the proof of Proposition 13.

Exercise 43. Show that the subterm relation is not definable in WSkS.
Given a term t Write a WSkS formula φt such that a term u |= φt if and only if t

is a subterm of u.

Exercise 44. Define in SkS “X is finite”. (Hint: express that every totally ordered
subset of X has an upper bound and use König’s lemma)

Exercise 45. A tuple (t1, . . . , tn) ∈ T (F)n can be represented in several ways as
a finite sequence of finite sets. The first one is the encoding given in Section 3.3.6,
overlapping the terms and considering one set for each tuple of symbols. A second one
consists in having a tuple of sets for each component: one for each function symbol.

Compare the number of free variables which result from both codings when defining

an n-ary relation on terms in WSkS. Compare also the definitions of the diagonal ∆

using both encodings. How is it possible to translate an encoding into the other one?

Exercise 46. (*) Let R be a finite rewrite system whose all left and right members
are ground.

1. Let Termination(x) be the predicate on T (F) which holds true on t when there
is no infinite sequence of reductions starting from t. Show that adding this
predicate as an atomic formula in the first-order theory of rewriting, this theory
remains decidable for ground rewrite systems.

2. Generalize these results to the case where the left members of R are linear and
the right members are ground.

Exercise 47. The complexity of automata recognizing the set of irreducible ground
terms.

1. For each n ∈ N, give a linear rewrite system Rn whose size is O(n) and such
that the minimal automaton accepting the set of irreducible ground terms has
a size O(2n).
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2. Assume that for any two strict subterms s, t of left hand side(s) of R, if s and t
are unifiable, then s is an instance of t or t is an instance of s. Show that there
is a NFTA A whose size is linear in R and which accepts the set of irreducible
ground terms.

Exercise 48. Prove Theorem 29.

Exercise 49. The Propositional Linear-time Temporal Logic. The logic PTL

is defined as follows:

Syntax P is a finite set of propositional variables. Each symbol of P is a formula (an
atomic formula). If φ and ψ are formulas, then the following are formulas:

φ ∧ ψ, φ ∨ ψ, φ→ ψ, ¬φ, φUψ, Nφ, Lφ

Semantics Let P ∗ be the set of words over the alphabet P . A word w ∈ P ∗ is
identified with the sequence of letters w(0)w(1) . . . w(|w| − 1). w(i..j) is the
word w(i) . . . w(j). The satisfaction relation is defined by:

• if p ∈ P , w |= p if and only if w(0) = p

• The interpretation of logical connectives is the usual one

• w |= Nφ if and only if |w| ≥ 2 and w(1..|w| − 1) |= φ

• w |= Lφ if and only if |w| = 1

• w |= φUψ if and only if there is an index i ∈ [0..|w|] such that for all
j ∈ [0..i], w(j..|w| − 1) |= φ and w(i..|w| − 1) |= ψ.

Let us recall that the language defined by a formula φ is the set of words w such
that w |= φ.

1. What it is the language defined by N(p1Up2) (with p1, p2 ∈ P )?

2. Give PTL formulas defining respectively P ∗p1P
∗, p∗1, (p1p2)

∗.

3. Give a first-order WS1S formula (i.e.without second-order quantification and
containing only one free second-order variable) which defines the same language
as N(p1Up2)

4. For any PTL formula, give a first-order WS1S formula which defines the same
language.

5. Conversely, show that any language defined by a first-order WS1S formula is
definable by a PTL formula.

Exercise 50. About 3rd-order interpolation problems

1. Prove Theorem 31.

2. Show that the size of the automaton As1,...,sn,t is O(n× |t|)

3. Deduce from Exercise 19 that the existence of a solution to a system of interpo-
lation equations of the form x(s1, . . . , sn) = t (where x is a third order variable
in each equation) is in NP.

Exercise 51. About general third order matching.

1. How is it possible to modify the construction of As1,...,sn,t so as to forbid some
symbols of t to occur in the solutions?
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2. Consider a third order matching problem u = t where t is in normal form and
does not contain any free variable. Let x1, . . . , xn be the free variables of u and
xi(s1, . . . , sm) be the subterm of u at position p. Show that, for every solution
σ, either u[2]pσ ↓=α t or else that xiσ(s1σ, . . . , smσ) ↓ is in the set Sp defined
as follows: v ∈ Sp if and only if there is a subterm t′ of t and there are positions
p1, . . . , pk of t′ and variables z1, . . . , zk which are bound above p in u such that
v = t′[z1, . . . , zk]p1,...,pk

.

3. By guessing the results of xiσ(s1σ, . . . , smσ) and using the previous exercise,
show that general third order matching is in NP.

3.6 Bibliographic Notes

The following bibliographic notes only concern the applications of the usual
finite tree automata on finite trees (as defined at this stage of the book). We
are pretty sure that there are many missing references and we are pleased to
receive more pointers to the litterature.

3.6.1 GTT

GTT were introduced in [DTHL87] where they were used for the decidability of
confluence of ground rewrite systems.

3.6.2 Automata and Logic

The development of automata in relation with logic and verification (in the
sixties) is reported in [Tra95]. This research program was explained by A.
Church himself in 1962 [Chu62].

Milestones of the decidability of monadic second-order logic are the papers
[Büc60] [Rab69]. Theorem 25 is proved in [TW68].

3.6.3 Surveys

There are numerous surveys on automata and logic. Let us mention some of
them: M.O. Rabin [Rab77] surveys the decidable theories; W. Thomas [Tho90,
Tho97] provides an excellent survey of relationships between automata and logic.

3.6.4 Applications of tree automata to constraint solving

Concerning applications of tree automata, the reader is also referred to [Dau94]
which reviews a number of applications of Tree automata to rewriting and con-
straints.

The relation between sorts and tree automata is pointed out in [Com89]. The
decidability of arbitrary first-order sort constraints (and actually the first order
theory of finite trees with equality and sort constraints) is proved in [CD94].

More general sort constraints involving some second-order terms are studied
in [Com98b] with applications to a sort constrained equational logic [Com98a].

Sort constraints are also applied to specifications and automated inductive
proofs in [BJ97] where tree automata are used to represent some normal forms
sets. They are used in logic programming and automated reasoning [FSVY91,
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GMW97], in order to get more efficient procedures for fragments which fall
into the scope of tree automata techniques. They are also used in automated
deduction in order to increase the expressivity of (counter-)model constructions
[Pel97].

Concerning encompassment, M. Dauchet et al gave a more general result
(dropping the linearity requirement) in [DCC95]. We will come back to this
result in the next chapter.

3.6.5 Application of tree automata to semantic unification

Rigid unification was originally considered by J. Gallier et al. [GRS87] who
showed that this is a key notion in extending the matings method to a logic
with equality. Several authors worked on this problem and it is out of the scope
of this book to give a list of references. Let us simply mention that the result
of Section 3.4.5 can be found in [Vea97b]. Further results on application of tree
automata to rigid unification can be found in [DGN+98], [GJV98].

Tree automata are also used in solving classical semantic unification prob-
lems. See e.g. [LM93] [KFK97] [Uri92]. For instance, in [KFK97], the idea is
to capture some loops in the narrowing procedure using tree automata.

3.6.6 Application of tree automata to decision problems

in term rewriting

Some of the applications of tree automata to term rewriting follow from the
results on encompassment theory. Early works in this area are also mentioned
in the bibliographic notes of Chapter 1. The reader is also referred to the survey
[GT95].

The first-order theory of the binary (many-steps) reduction relation w.r.t.a
ground rewrite system has been shown decidable by. M. Dauchet and S. Ti-
son [DT90]. Extensions of the theory, including some function symbols, or
other predicate symbols like the parallel rewriting or the termination predicate
(Terminate(t) holds if there is no infinite reduction sequence starting from t),
or fair termination etc... remain decidable [Tis89]. See also the exercises.

Both the theory of one step and the theory of many steps rewriting are
undecidable for arbitrary R [Tre96].

Reduction strategies for term rewriting have been first studied by Huet and
Lévy in 1978 [HL91]. They show here the decidability of strong sequential-
ity for orthogonal rewrite systems. This is based on an approximation of the
rewrite system which, roughly, only considers the left sides of the rules. Bet-
ter approximation, yielding refined criteria were further proposed in [Oya93],
[Com95], [Jac96]. The orthogonality requirement has also been replaced with
the weaker condition of left linearity. The first relation between tree automata,
WSkS and reduction strategies is pointed out in [Com95]. Further studies of
call-by-need strategies, which are still based on tree automata, but do not use
a detour through monadic second-order logic can be found in [DM97]. For all
these works, a key property is the preservation of regularity by (many-steps)
rewriting, which was shown for ground systems in [Bra69], for linear systems
which do not share variables in [DT90], for shallow systems in [Com95], for right
linear monadic rewrite systems [Sal88], for linear semi-monadic rewrite systems
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[CG90], also called (with slight differences) growing systems in [Jac96]. Grow-
ing systems are the currently most general class for which the preservation of
recognizability is known.

As already pointed out, the decidability of the encompassment theory implies
the decidability of ground reducibility. There are several papers written along
these lines which will be explained in the next chapter.

Finally, approximations of the reachable terms are computed in [Gen97]
using tree automata techniques, which implies the decision of some safety prop-
erties.

3.6.7 Other applications

The relationship between finite tree automata and higher-order matching is
studied in [CJ97b].

Finite tree automata are also used in logic programming [FSVY91], type
reconstruction [Tiu92] and automated deduction [GMW97].

For further applications of tree automata in the direction of program verifi-
cation, see e.g. chapter 5 of this book or e.g. [Jon87].
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