
Tree

Automata

Techniques and

Applications

Hubert Comon Max Dauchet Rémi Gilleron

Florent Jacquemard Denis Lugiez Sophie Tison

Marc Tommasi

Contents

Introduction 9

Preliminaries 13

1 Recognizable Tree Languages and Finite Tree Automata 17

1.1 Finite Tree Automata . 18
1.2 The Pumping Lemma for Recognizable Tree Languages 26
1.3 Closure Properties of Recognizable Tree Languages 27
1.4 Tree Homomorphisms . 29
1.5 Minimizing Tree Automata . 33
1.6 Top Down Tree Automata . 36
1.7 Decision Problems and their Complexity 37
1.8 Exercises . 41
1.9 Bibliographic Notes . 45

2 Regular Grammars and Regular Expressions 49

2.1 Tree Grammar . 49
2.1.1 Definitions . 49
2.1.2 Regularity and Recognizabilty 52

2.2 Regular Expressions. Kleene’s Theorem for Tree Languages . . . 52
2.2.1 Substitution and Iteration 53
2.2.2 Regular Expressions and Regular Tree Languages 56

2.3 Regular Equations . 59
2.4 Context-free Word Languages and Regular Tree Languages . . . 61
2.5 Beyond Regular Tree Languages: Context-free Tree Languages . 64

2.5.1 Context-free Tree Languages 65
2.5.2 IO and OI Tree Grammars 65

2.6 Exercises . 67
2.7 Bibliographic notes . 69

3 Logic, Automata and Relations 71

3.1 Introduction . 71
3.2 Automata on Tuples of Finite Trees 73

3.2.1 Three Notions of Recognizability 73
3.2.2 Examples of The Three Notions of Recognizability 75
3.2.3 Comparisons Between the Three Classes 77
3.2.4 Closure Properties for Rec× and Rec; Cylindrification and

Projection . 78

TATA — September 6, 2005 —

4 CONTENTS

3.2.5 Closure of GTT by Composition and Iteration 80
3.3 The Logic WSkS . 86

3.3.1 Syntax . 86
3.3.2 Semantics . 86
3.3.3 Examples . 86
3.3.4 Restricting the Syntax . 88
3.3.5 Definable Sets are Recognizable Sets 89
3.3.6 Recognizable Sets are Definable 92
3.3.7 Complexity Issues . 94
3.3.8 Extensions . 94

3.4 Examples of Applications . 95
3.4.1 Terms and Sorts . 95
3.4.2 The Encompassment Theory for Linear Terms 96
3.4.3 The First-order Theory of a Reduction Relation: the Case

Where no Variables are Shared 98
3.4.4 Reduction Strategies . 99
3.4.5 Application to Rigid E-unification 101
3.4.6 Application to Higher-order Matching 102

3.5 Exercises . 104
3.6 Bibliographic Notes . 108

3.6.1 GTT . 108
3.6.2 Automata and Logic . 108
3.6.3 Surveys . 108
3.6.4 Applications of tree automata to constraint solving 108
3.6.5 Application of tree automata to semantic unification . . . 109
3.6.6 Application of tree automata to decision problems in term

rewriting . 109
3.6.7 Other applications . 110

4 Automata with Constraints 111

4.1 Introduction . 111
4.2 Automata with Equality and Disequality Constraints 112

4.2.1 The Most General Class 112
4.2.2 Reducing Non-determinism and Closure Properties 115
4.2.3 Undecidability of Emptiness 118

4.3 Automata with Constraints Between Brothers 119
4.3.1 Closure Properties . 119
4.3.2 Emptiness Decision . 121
4.3.3 Applications . 125

4.4 Reduction Automata . 125
4.4.1 Definition and Closure Properties 126
4.4.2 Emptiness Decision . 127
4.4.3 Finiteness Decision . 129
4.4.4 Term Rewriting Systems 129
4.4.5 Application to the Reducibility Theory 129

4.5 Other Decidable Subclasses . 130
4.6 Tree Automata with Arithmetic Constraints 130

4.6.1 Flat Trees . 131
4.6.2 Automata with Arithmetic Constraints 132
4.6.3 Reducing Non-determinism 134

TATA — September 6, 2005 —

CONTENTS 5

4.6.4 Closure Properties of Semilinear Flat Languages 135
4.6.5 Emptiness Decision . 136

4.7 Exercises . 140
4.8 Bibliographic notes . 143

5 Tree Set Automata 145

5.1 Introduction . 145
5.2 Definitions and Examples . 150

5.2.1 Generalized Tree Sets . 150
5.2.2 Tree Set Automata . 150
5.2.3 Hierarchy of GTSA-recognizable Languages 153
5.2.4 Regular Generalized Tree Sets, Regular Runs 154

5.3 Closure and Decision Properties 157
5.3.1 Closure properties . 157
5.3.2 Emptiness Property . 160
5.3.3 Other Decision Results . 162

5.4 Applications to Set Constraints 163
5.4.1 Definitions . 163
5.4.2 Set Constraints and Automata 163
5.4.3 Decidability Results for Set Constraints 164

5.5 Bibliographical Notes . 166

6 Tree Transducers 169

6.1 Introduction . 169
6.2 The Word Case . 170

6.2.1 Introduction to Rational Transducers 170
6.2.2 The Homomorphic Approach 174

6.3 Introduction to Tree Transducers 175
6.4 Properties of Tree Transducers 179

6.4.1 Bottom-up Tree Transducers 179
6.4.2 Top-down Tree Transducers 182
6.4.3 Structural Properties . 184
6.4.4 Complexity Properties . 185

6.5 Homomorphisms and Tree Transducers 185
6.6 Exercises . 187
6.7 Bibliographic notes . 189

7 Alternating Tree Automata 191

7.1 Introduction . 191
7.2 Definitions and Examples . 191

7.2.1 Alternating Word Automata 191
7.2.2 Alternating Tree Automata 193
7.2.3 Tree Automata versus Alternating Word Automata 194

7.3 Closure Properties . 196
7.4 From Alternating to Deterministic Automata 197
7.5 Decision Problems and Complexity Issues 197
7.6 Horn Logic, Set Constraints and Alternating Automata 198

7.6.1 The Clausal Formalism 198
7.6.2 The Set Constraints Formalism 199
7.6.3 Two Way Alternating Tree Automata 200

TATA — September 6, 2005 —

6 CONTENTS

7.6.4 Two Way Automata and Definite Set Constraints 202
7.6.5 Two Way Automata and Pushdown Automata 203

7.7 An (other) example of application 203
7.8 Exercises . 204
7.9 Bibliographic Notes . 205

TATA — September 6, 2005 —

CONTENTS 7

Acknowledgments

Many people gave substantial suggestions to improve the contents of this
book. These are, in alphabetic order, Witold Charatonik, Zoltan Fülöp, Werner
Kuich, Markus Lohrey, Jun Matsuda, Aart Middeldorp, Hitoshi Ohsaki, P.
K. Manivannan, Masahiko Sakai, Helmut Seidl, Stephan Tobies, Ralf Treinen,
Thomas Uribe, Sandor Vágvölgyi, Kumar Neeraj Verma, Toshiyuki Yamada.

TATA — September 6, 2005 —

8 CONTENTS

TATA — September 6, 2005 —

Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can

TATA — September 6, 2005 —

10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as

TATA — September 6, 2005 —

Introduction 11

a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.

TATA — September 6, 2005 —

12 Introduction

TATA — September 6, 2005 —

Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F ,Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(,) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X) and
- X ⊆ T (F ,X) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X), then f(t1, . . . , tp) ∈ T (F ,X).
If X = ∅ then T (F ,X) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(,), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X) may be viewed as a finite

TATA — September 6, 2005 —

14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t� t′ if t′ is a subterm
of t. We denote t� t′ if t� t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t� t′ ⇒ t′ ∈ F).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑

i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, ,), g(,), h(), a, b} and X = {x, y}. Consider the
terms

TATA — September 6, 2005 —

Preliminaries 15

t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, ,), g(,), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).

TATA — September 6, 2005 —

Chapter 4

Automata with Constraints

4.1 Introduction

A typical example of a language which is not recognized by a finite tree au-
tomaton is the set of terms {f(t, t) | t ∈ T (F)}. The reason is that the two
sons of the root are recognized independently and only a fixed finite amount of
information can be carried up to the root position, whereas t may be arbitrar-
ily large. Therefore, as seen in the application section of the previous chapter,
this imposes some linearity conditions, typically when automata techniques are
applied to rewrite systems or to sort constraints. The shift from linear to non
linear situations can also be seen as a generalization from tree automata to DAG
(directed acyclic graphs) automata. This is the purpose of the present chapter:
how is it possible to extend the definitions of tree automata in order to carry
over the applications of the previous chapter to (some) non-linear situations?

Such an extension has been studied in the early 80’s by M. Dauchet and J.
Mongy. They define a class of automata which (when working in a top-down
fashion) allow duplications. Considering bottom-up automata, this amounts to
check equalities between subtrees. This yields the RATEG class . This class
is not closed under complement. If we consider its closure, we get the class
of automata with equality and disequality constraints. This class is studied in
Section 4.2.

Unfortunately, the emptiness problem is undecidable for the class RATEG
(and hence for automata with equality and disequality constraints).
Several decidable subclasses have been studied in the literature. The most
remarkable ones are

• The class of automata with constraints between brothers which, roughly,
allows equality (or disequality) tests only between positions with the same
ancestors. For instance, the set of terms f(t, t) is recognized by such
an automaton. This class is interesting because all properties of tree
automata carry over this extension and hence most of the applications of
tree automata can be extended, replacing linearity conditions with such
restrictions on non-linearities.

We study this class in Section 4.3.

• The class of reduction automata which, roughly, allows arbitrary disequal-

TATA — September 6, 2005 —

112 Automata with Constraints

ity constraints but only a fixed finite amount of equality constraints on
each run of the automaton. For instance the set of terms f(t, t) also be-
longs to this class. Though closure properties have to be handled with
care (with the definition sketched above, the class is not closed by com-
plement), reduction automata are interesting because for example the set
of irreducible terms (w.r.t.an arbitrary, possibly non-linear rewrite sys-
tem) is recognized by an reduction automaton. Then the decidability of
ground reducibility is a direct consequence of emptiness decidability for
reduction automata. There is also a logical counterpart: the reducibility
theory which is presented in the linear case in the previous chapter and
which can be shown decidable in the general case using a similar technique.

Reduction automata are studied in Section 4.4.

We also consider in this chapter automata with arithmetic constraints. They
naturally appear when some function symbols are assumed to be associative and
commutative (AC). In such a situation, the sons of an AC symbol can be per-
muted and the relevant information is then the number of occurrences of the
same subtree in the multisets of sons. These integer variables (number of occur-
rences) are subject to arithmetic constraints which must belong to a decidable
fragment of arithmetic in order to keep closure and decidability properties.

4.2 Automata with Equality and Disequality Con-

straints

4.2.1 The Most General Class

An equality constraint (resp. a disequality constraint) is a predicate on
T (F) written π = π′ (resp. π 6= π′) where π, π′ ∈ {1, . . . , k}∗. Such a predicate
is satisfied on a term t, which we write t |= π = π′, if π, π′ ∈ Pos(t) and t|π = t|π′

(resp. π 6= π′ is satisfied on t if π = π′ is not satisfied on t).
The satisfaction relation |= is extended as usual to any Boolean combination

of equality and disequality constraints. The empty conjunction and disjunction
are respectively written ⊥ (false) and ⊤ (true).

An automaton with equality and disequality constraints is a tuple
(Q,F , Qf ,∆) where F is a finite ranked alphabet, Q is a finite set of states, Qf

is a subset of Q of finite states and ∆ is a set of transition rules of of the form

f(q1, . . . , qn)
c
−→ q

where f ∈ F , q1, . . . , qn, q ∈ Q, and c is a Boolean combination of equality
(and disequality) constraints. The state q is called target state in the above
transition rule.

We write for short AWEDC the class of automata with equality and dise-
quality constraints.

Let A = (Q,F , Qf ,∆) ∈ AWEDC. The move relation →A is defined by as
for NFTA modulo the satisfaction of equality and disequality constraints: let
t, t′ ∈ F (F ∪Q,X), then t→A t

′ if and only

there is a context C ∈ C(F ∪Q) and some terms u1, . . . , un ∈ T (F)

TATA — September 6, 2005 —

4.2 Automata with Equality and Disequality Constraints 113

there exists f(q1, . . . , qn)
c
−→ q ∈ ∆

t = C[f(q1(u1), . . . , qn(un)] and t′ = C[q(f(u1, . . . , un))]

C[f(u1, . . . , un)] |= c

∗
→A is the reflexive and transitive closure of →A. As in Chapter 1, we usually
write t

∗
→A q instead of t

∗
→A q(t).

An automaton A ∈ AWEDC accepts (or recognizes) a ground term

t ∈ T (F) if t
∗
→A q for some state q ∈ Qf . More generally, we also say that

A accepts t in state q iff t
∗
→A q (acceptance by A is the particular case of

acceptance by A in a final state).
A run) is a mapping ρ from Pos(t) into ∆ such that:

• ρ(Λ) ∈ Qf

• if t(p) = f and the target state of ρ(p) is q, then there is a transition rule

f(q1, . . . , qn)
c
−→ q in ∆ such that for all 1 ≤ i ≤ n, the target state of

ρ(pi) is qi and t|p |= c.

Note that we do not have here exactly the same definition of a run as in
Chapter 1: instead of the state, we keep also the rule which yielded this state.
This will be useful in the design of an emptiness decision algorithm for non-
deterministic automata with equality and disequality constraints.

The language accepted (or recognized) by an automaton A ∈ AWEDC
is the set L(A) of terms t ∈ T (F) that are accepted by A.

Example 37. Balanced complete binary trees over the alphabet f (binary)
and a (constant) are recognized by the AWEDC ({q}, {f, a}, {q},∆) where ∆
consists of the following rules:

r1 : a→ q

r2 : f(q, q)
1=2
−−→ q

For example, t = f(f(a, a), f(a, a)) is accepted. The mapping which associates
r1 to every position p of t such that t(p) = a and which associates r2 to every
position p of t such that t(p) = f is indeed a successful run: for every position
p of t such that t(p) = f , t|p·1 = tp·2, hence t|p |= 1 = 2.

Example 38. Consider the following AWEDC: (Q,F , Qf ,∆) with F =
{0, s, f} where 0 is a constant, s is unary and f has arity 4, Q = {qn, q0, qf},
Qf = {qf}, and ∆ consists of the following rules:

0 → q0 s(q0) → qn

s(qn) → qn f(q0, q0, qn, qn)
3=4
−−→ qf

f(q0, q0, q0, q0) → qf f(q0, qn, q0, qn)
2=4
−−→ qf

f(qf , qn, qn, qn)
14=4∧21=12∧131=3
−−−−−−−−−−−−−→ qf

TATA — September 6, 2005 —

114 Automata with Constraints

s

s

s

f

f

f s

s

s

s

s

s

s

s

s

ss

s
ss

s
0 0

0

0

0

0 0

0

0

0

Figure 4.1: A computation of the sum of two natural numbers

This automaton computes the sum of two natural numbers written in base
one in the following sense: if t is accepted byA then1 t = f(t1, s

n(0), sm(0), sn+m(0))
for some t1 and n,m ≥ 0. Conversely, for each n,m ≥ 0, there is a term
f(t1, s

n(0), sm(0), sn+m(0)) which is accepted by the automaton.
For instance the term depicted on Figure 4.1 is accepted by the automaton.

Similarly, it is possible to design an automaton of the class AWEDC which
“computes the multiplication” (see exercises)

In order to evaluate the complexity of operations on automata of the class
AWEDC, we need to precise a representation of the automata and estimate the
space which is necessary for this representation.

The size of is a Boolean combination of equality and disequality constraints
is defined by induction:

• ‖π = π′‖
def
= ‖π 6= π′‖

def
= |π|+ |π′| (|π| is the length of π)

• ‖c ∧ c′‖
def
= ‖c ∨ c′‖

def
= ‖c‖+ ‖c′‖+ 1

• ‖¬c‖
def
= ‖c‖

Now, deciding whether t |= c depends on the representation of t. If t is
represented as a directed acyclic graph (a DAG) with maximal sharing, then this
can be decided in O(‖c‖) on a RAM. Otherwise, it requires to compute first this
representation of t, and hence can be computed in time at most O(‖t‖ log ‖t‖+
‖c‖).

1
s
n(0) denotes s(. . . s

| {z }

n

(0)

TATA — September 6, 2005 —

4.2 Automata with Equality and Disequality Constraints 115

¿From now on, we assume, for complexity analysis, that the terms are rep-
resented with maximal sharing in such a way that checking an equality or a
disequality constraint on t can be completed in a time which is independent of
‖t‖.

The size of an automaton A ∈ AWEDC is

‖A‖
def
= |Q|+

∑

f(q1,...,qn)
c−→ q∈∆

n+ 2 + ‖c‖

An automaton A in AWEDC is deterministic if for every t ∈ T (F), there

is at most one state q such that t
∗
−→
A

q. It is complete if for every t ∈ T (F)

there is at least one state q such that t
∗
−→
A

q.

When every constraint is a tautology, then our definition of automata re-
duces to the definition of Chapter 1. However, in such a case, the notions of
determinacy do not fully coincide, as noticed in Chapter 1, page 21.

Proposition 18. Given t ∈ T (F) and A ∈AWEDC, deciding whether t is ac-
cepted by A can be completed in polynomial time (linear time for a deterministic
automaton).

Proof. Because of the DAG representation of t, the satisfaction of a constraint
π = π′ on t can be completed in time O(|π| + |π′|). Thus, if A is determinis-
tic, the membership test can be performed in time O(‖t‖ + ‖A‖ + MC) where
MC = max(‖c‖

∣

∣ c is a constraint of a rule of A). If A is nondeterministic, the
complexity of the algorithm will be O(‖t‖ × ‖A‖ ×MC).

4.2.2 Reducing Non-determinism and Closure Properties

Proposition 19. For every automaton A ∈ AWEDC, there is a complete au-
tomaton A′ which accepts the same language as A. The size ‖A′‖ is polynomial
in ‖A‖ and the computation of A′ can be performed in polynomial time (for a
fixed alphabet). If A is deterministic, then A′ is deterministic.

Proof. The proof is the same as for Theorem 2: we add a trash state and
every transition is possible to the trash state. However, this does not keep the
determinism of the automaton. We need the following more careful computation
in order to preserve the determinism.

We also add a single trash state q⊥. The additional transitions are computed
as follows: for each function symbol f ∈ F and each tuple of states (including the

trash state) q1, . . . , qn, if there is no transition f(q1, . . . , qn)
c
−→ q ∈ ∆, then we

simply add the rule f(q1, . . . , qn)→ q⊥ to ∆. Otherwise, let f(q1, . . . , qn)
ci−→ si

(i = 1, ..m) be all rules in ∆ whose left member is f(q1, . . . , qn). We add the

rule f(q1, . . . , qn)
c′
−→ q⊥ to ∆, where c′

def
= ¬

m
∨

i=1

ci.

Proposition 20. For every automaton A ∈ AWEDC, there is a deterministic
automaton A′ which accepts the same language as A. A′ can be computed in
exponential time and its size is exponential in the size of A. Moreover, if A is
complete, then A′ is complete.

TATA — September 6, 2005 —

116 Automata with Constraints

Proof. The construction is the same as in Theorem 4: states of A′ are sets of
states of A. Final states of A′ are those which contain at least one final state
of A. The construction time complexity as well as the size A′ are also of the
same magnitude as in Theorem 4. The only difference is the computation of the
constraint: if S1, . . . , Sn, S are sets of states, in the deterministic automaton,
the rule f(S1, . . . , Sn)

c
−→ S is labeled by a constraint c defined by:

c =
(

∧

q∈S

∨

f(q1,...,qn)
cr−→ q∈∆

qi∈Sii≤n

cr

)

∧
(

∧

q/∈S

∧

f(q1,...,qn)
cr−→ q∈∆

qi∈Sii≤n

¬cr
)

Let us prove that t is accepted by A in states q1, . . . , qk (and no other states) if
and only if there t is accepted by A′ in the state {q1, . . . , qk}:

⇒ Assume that t
n
−→
A

qi (i.e.t
∗
−→
A

qi in n steps), for i = 1, . . . , k. We prove, by

induction on n, that

t
n
−−→
A′
{q1, . . . , qk}.

If n = 1, then t is a constant and t → S is a rule of A′ where S =
{q | a −→

A
q}.

Assume now that n > 1. Let, for each i = 1, . . . , k,

t = f(t1, . . . , tp)
m
−→
A

f(qi
1, . . . , q

i
p) −→

A
qi

and f(qi
1, . . . , q

i
p)

ci−→ qi be a rule of A such that t |= ci. By induction

hypothesis, each term tj is accepted by A′ in the states of a set Sj ⊇

{q1j , . . . , q
k
j }. Moreover, by definition of S = {q1, . . . , qk}, if t

∗
−→
A

q′ then

q′ ∈ S. Therefore, for every transition rule of A f(q′1, . . . , q
′
p)

c′

−→ q′ such

that q′ /∈ S and qj ∈ Sj for every j ≤ p, we have t 6|= c′. Then t satisfies
the above defined constraint c.

⇐ Assume that t
n
−−→
A′

S. We prove by induction on n that, for every q ∈ S,

t
n
−→
A

q.

If n = 1, then S is the set of states q such that t −→
A

q, hence the property.

Assume now that

t = f(t1, . . . , tp)
n
−−→
A′

f(S1, . . . , Sp) −−→
A′

S.

Let f(S1, . . . , Sp)
c
−→ S be the last rule used in this reduction. Then

t |= c and, by definition of c, for every state q ∈ S, there is a rule

f(q1, . . . , qn)
cr−→ q ∈ ∆ such that qi ∈ Si for every i ≤ n and t |= cr. By

induction hypothesis, for each i, ti
mi−−→
A′

Si implies ti
mi−−→
A

qi (mi < n)

and hence t
n
−→
A

f(q1, . . . , qp) −→
A

q.

TATA — September 6, 2005 —

4.2 Automata with Equality and Disequality Constraints 117

Thus, by construction of the final states set, a ground term t is accepted by A′

iff t is accepted by A.
Now, we have to prove that A′ is deterministic indeed. Assume that t

∗
−→
A

′S

and t
∗
−−→
A′

S′. Assume moreover that S 6= S′ and that t is the smallest term (in

size) with the property of being recognized in two different states. Then there ex-

ists S1, . . . , Sn such that t
∗
−−→
A′

f(S1, . . . , Sn) and such that f(S1, . . . , Sn)
c
−→ S

and f(S1, . . . , Sn)
c′
−→ S′ are transition rules of A′, wit t |= c and t |= c′.

By symmetry, we may assume that there is a state q ∈ S such that q /∈ S′.
Then, by definition, there are some states qi ∈ Si, for every i ≤ n, and a rule
f(q1, . . . , qn)

cr−→ q of A where cr occurs positively in c, and is therefore satisfied

by t, t |= cr. By construction of the constraint of A′, cr must occur negatively in
the second part of (the conjunction) c′. Therefore, t |= c′ contradicts t |= cr.

Example 39. Consider the following automaton on the alphabet F = {a, f}
where a is a constant and f is a binary symbol: Q = {q, q⊥}, Qf = {q} and ∆
contains the following rules:

a→ q f(q, q)
1=2
−−→ q f(q, q)→ q⊥

f(q⊥, q)→ q⊥ f(q, q⊥)→ q⊥ f(q⊥, q⊥)→ q⊥

This is the (non-deterministic) complete version of the automaton of Exam-
ple 37.

Then the deterministic automaton computed as in the previous proposition
is given by:

a→ {q} f({q}, {q})
1=2∧⊥
−−−−−→ {q}

f({q}, {q})
1=2
−−→ {q, q⊥} f({q}, {q})

16=2
−−→ {q⊥}

f({q}, {q⊥})→ {q⊥} f({q⊥}, {q})→ {q⊥}

f({q⊥}, {q⊥})→ {q⊥} f({q, q⊥}, {q})
1=2∧⊥
−−−−−→ {q}

f({q, q⊥}, {q})
1=2
−−→ {q, q⊥} f({q, q⊥}, {q⊥}) −→ {q⊥}

f({q, q⊥}, {q, q⊥})
1=2
−−→ {q, q⊥} f({q, q⊥}, {q})

16=2
−−→ {q⊥}

f({q}, {q, q⊥})
1=2
−−→ {q, q⊥} f({q}, {q, q⊥})

16=2
−−→ {q⊥}

f({q, q⊥}, {q})
16=2
−−→ {q⊥} f({q}, {q, q⊥})

1=2∧⊥
−−−−−→ {q}

f({q, q⊥}, {q, q⊥})
1=2∧⊥
−−−−−→ {q} f({q⊥}, {q, q⊥}) −→ {q⊥}

For instance, the constraint 1=2∧⊥ is obtained by the conjunction of the label

of f(q, q)
1=2
−−→ q and the negation of the constraint labelling f(q, q) −→ q⊥,

(which is ⊤).
Some of the constraints, such as 1=2∧⊥ are unsatisfiable, hence the corre-

sponding rules can be removed. If we finally rename the two accepting states
{q} and {q, q⊥} into a single state qf (this is possible since by replacing one
of these states by the other in any left hand side of a transition rule, we get

TATA — September 6, 2005 —

118 Automata with Constraints

another transition rule), then we get a simplified version of the deterministic
automaton:

a→ qf f(qf , qf)
1=2
−−→ qf

f(qf , qf)
16=2
−−→ q⊥ f(q⊥, qf)→ q⊥

f(qf , q⊥)→ q⊥ f(q⊥, q⊥)→ q⊥

Proposition 21. The class AWEDC is effectively closed by all Boolean op-
erations. Union requires linear time, intersection requires quadratic time and
complement requires exponential time. The respective sizes of the AWEDC ob-
tained by these construction are of the same magnitude as the time complexity.

Proof. The proof of this proposition can be obtained from the proof of The-
orem 5 (Chapter 1, pages 28–29) with straightforward modifications. The
only difference lies in the product automaton for the intersection: we have to
consider conjunctions of constraints. More precisely, if we have two AWEDC
A1 = (Q1,F , Qf1,∆1) and A1 = (Q2,F , Qf2,∆2), we construct an AWEDC

A = (Q1 × Q2,F , Qf1 × Qf2,∆) such that if f(q1, . . . , qn)
c
−→ q ∈ ∆1 and

f(q′1, . . . , q
′
n)

c′
−→ q′ ∈ ∆2, then f((q1, q

′
1), . . . , (qn, q

′
n))

c∧c′
−−−→ (q, q′) ∈ ∆. The

AWEDC A recognizes L(A1) ∩ L(A2).

4.2.3 Undecidability of Emptiness

Theorem 32. The emptiness problem for AWEDC is undecidable.

Proof. We reduce the Post Correspondence Problem (PCP). If w1, . . . , wn and
w′

1, . . . , w
′
n are the word sequences of the PCP problem over the alphabet {a, b},

we let F contain h (ternary), a, b (unary) and 0 (constant). Lets recall that the
answer for the above instance of the PCP is a sequence i1, . . . , ip (which may
contain some repetitions) such that wi1 . . . wip

= w′
i1 . . . w

′
ip

.

If w ∈ {a, b}∗, w = a1 . . . ak and t ∈ T (F), we write w(t) the term a1(. . . (ak(t)) . . .) ∈
T (F).

Now, we construct A = (Q,F , Qf ,∆) ∈ AWEDC as follows:

• Q contains a state qv for each prefix v of one of the words wi, w
′
i (including

qwi
and qw′

i
as well as 3 extra states: q0, q and qf . We assume that a and

b are both prefix of at least one of the words wi, w
′
i. Qf = {qf}.

• ∆ contains the following rules:

a(q0) → qa b(q0) → qb
a(qv) → qa·v if qv, qa·v ∈ Q
b(qv) → qb·v if qv, qb·v ∈ Q
a(qwi

) → qa b(qwi
) → qb

a(qw′
i
) → qa b(qw′

i
) → qb

TATA — September 6, 2005 —

4.3 Automata with Constraints Between Brothers 119

∆ also contains the rules:

0 → q0
h(q0, q0, q0) → q

h(qwi
, q, qw′

i
)

1·1|wi|=2·1∧3·1|w′
i
|=2·3

−−−−−−−−−−−−−−−→ q

h(qwi
, q, qw′

i
)

1·1|wi|=2·1∧3·1|w′
i
|∧1=3

−−−−−−−−−−−−−−−−→ qf

The rule with left member h(q0, q0, q0) recognizes the beginning of a Post
sequence. The rules with left members h(qwi

, q.qw′
i
) ensure that we are really in

presence of a successor in the PCP sequences: the constraint expresses that the
subterm at position 1 is obtained by concatenating some wi with the term at
position 2 · 1 and that the subterm at position 3 is obtained by concatenating
w′

i (with the same index i) with the subterm at position 2 · 3. Finally, entering
the final state is subject to the additional constraint 1 = 3. This last constraint
expresses that we went thru two identical words with the wi sequences and the
w′

i sequences respectively. (See Figure 4.2).

The details that this automaton indeed accepts the solutions of the PCP are
left to the reader.

Then the language accepted by A is empty if and only if the PCP has a
solution. Since PCP is undecidable, emptiness of A is also undecidable.

4.3 Automata with Constraints Between Broth-

ers

The undecidability result of the previous section led to look for subclasses which
have the desired closure properties, contain (properly) the classical tree au-
tomata and still keep the decidability of emptiness. This is the purpose of the
class AWCBB:

An automaton A ∈ AWEDC is an automaton with constraints be-

tween brothers if every equality (resp disequality) constraint has the form
i = j (resp. i 6= j) where i, j ∈ N+.

AWCBB is the set automata with constraints between brothers.

Example 40. The set of terms {f(t, t) | t ∈ T (F)} is accepted by an automaton
of the class AWCBB, because the automaton of Example 37 is in AWCBB
indeed.

4.3.1 Closure Properties

Proposition 22. AWCBB is a stable subclass of AWEDC w.r.t.Boolean oper-
ations (union, intersection, complementation).

Proof. It is sufficient to check that the constructions of Proposition 21 preserve
the property of being a member of AWCBB.

TATA — September 6, 2005 —

120 Automata with Constraints

h

hw w

·
·
·

h

h

wi w′
i

v v′

v v′·
·
·

h

0 00

Figure 4.2: An automaton in AWEDC accepting the solutions of PCP

TATA — September 6, 2005 —

4.3 Automata with Constraints Between Brothers 121

Recall that the time complexity of each such construction is the same in
AWEDC and in the unconstrained case: union and intersection are polynomial,
complementation requires determinization and is exponential.

4.3.2 Emptiness Decision

To decide emptiness we would like to design for instance a “cleaning algorithm”
as in Theorem 11. As in this result, the correctness and completeness of the
marking technique relies on a pumping lemma. Is there an analog of Lemma 1
in the case of automata of the class AWCBB?

There are additional difficulties. For instance consider the following example.

Example 41. A contains only one state and the rules

a → q f(q, q)
16=2
−−→ q

b → q

Now consider the term f(f(a, b), b) which is accepted by the automaton. f(a, b)
and b yield the same state q. Hence, for a classical finite tree automaton, we
may replace f(a, b) with b and still get a term which is accepted by A. This is
not the case here since, replacing f(a, b) with b we get the term f(b, b) which
is not accepted. The reason of this phenomenon is easy to understand: some
constraint which was satisfied before the pumping is no longer valid after the
pumping.

Hence the problem is to preserve the satisfaction of constraints along term
replacements. First, concerning equality constraints, we may see the terms as
DAGs in which each pair of subterms which is checked for equality is considered
as a single subterm referenced in two different ways. Then replacing one of
its occurrences automatically replaces the other occurrences and preserves the
equality constraints. This is what is formalized below.

Preserving the equality constraints. Let t be a term accepted by the
automaton A in AWCBB. Let ρ be a run of the automaton on t. With ev-
ery position p of t, we associate the conjunction cons(p) of atomic (equal-
ity or disequality) constraints that are checked by ρ(p) and satisfied by t.

More precisely: let ρ(p) = f(q1, . . . , qn)
c′
−→ q; cons(p)

def
= decomp(c′, p) where

decomp(c′, p) is recursively defined by: decomp(⊤, p)
def
= ⊤, decomp(c1∧c2, p)

def
=

decomp(c1, p)∧decomp(c2, p) and decomp(c1∨c2, p) = decomp(c1, p) if t|p |= c1,
decomp(c1 ∨ c2, p) = decomp(c2, p) otherwise. We can show by a simple induc-
tion that t|p |= cons(p).

Now, we define the equivalence relation =t on the set of positions of t as the
least equivalence relation such that:

• if i = j ∈ cons(p), then p · i =t p · j

• if p =t p
′ and p · π ∈ Pos(t), then p · π =t p

′ · π

TATA — September 6, 2005 —

122 Automata with Constraints

Note that in the last case, we have p′ · π ∈ Pos(t). Of course, if p =t p
′, then

t|p = t|p′ (but the converse is not necessarily true). Note also (and this is a
property of the class AWCBB) that p =t p

′ implies that the lengths of p and p′

are the same, hence, if p 6= p′, they are incomparable w.r.t.the prefix ordering.
We can also derive from this remark that each equivalence class is finite (we
may assume that each equality constraint of the form i = i has been replaced
by ⊤).

Example 42. Consider the automaton whose transition rules are:

r1 : f(q, q) → q r2 : a → q

r3 : f(q, q)
1=2
−−→ qf r4 : b → q

r5 : f(q, qf) → qf r6 : f(qf , q) → qf
r7 : f(q, qf) → q r8 : f(qf , q) → q

Let t = f(b, f(f(f(a, a), f(a, b)), f(f(a, a), f(a, b)))). A possible run of A on t is
r5(r4, r3(r1(r1(r2, r2), r1(r2, r5)), r8(r3(r2, r2), r1(r2, r5)))) Equivalence classes
of positions are:

{Λ}, {1}, {2}, {21, 22}, {211, 221}, {212, 222},
{2111, 2211, 2112, 2212}, {2121, 2221}, {2122, 2222}

Let us recall the principle of pumping, for finite bottom-up tree automata
(see Chapter 1). When a ground term C[C′[t]] (C and C′ are two contexts)
is such that t and C′[t] are accepted in the same state by a NFTA A, then
every term C[C′n[t]] (n ≥ 0) is accepted by A in the same state as C[C′[t]]. In
other words, any C[C′n[t]] ∈ L(A) may be reduced by pumping it up to the
term C[t] ∈ L(A). We consider here a position p (corresponding to the term
C′[t]) and its equivalence class [[p]] modulo =t. The simultaneous replacement
on [[p]] with t in u, written u[t][[p]], is defined as the term obtained by successively
replacing the subterm at position p′ with t for each position p′ ∈ [[p]]. Since any
two positions in [[p]] are incomparable, the replacement order is irrelevant. Now,
a pumping is a pair (C[C′[t]]p, C[C′n[t]][[p]]) where C′[t] and t are accepted in
the same state.

Preserving the disequality constraints. We have seen on Example 41
that, if t is accepted by the automaton, replacing one of its subterms, say u,
with a term v accepted in the same state as u, does not necessary yield an
accepted term. However, the idea is now that, if we have sufficiently many
such candidates v, at least one of the replacements will keep the satisfaction of
disequality constraints.

This is the what shows the following lemma which states that minimal ac-
cepted terms cannot contain too many subterms accepted in the same state.

Lemma 5. Given any total simplification ordering, a minimal term accepted
by a deterministic automaton in AWCBB contains at most |Q| × N distinct
subterms where N is the maximal arity of a function symbol and |Q| is the
number of states of the automaton.

TATA — September 6, 2005 —

4.3 Automata with Constraints Between Brothers 123

⇓ Replacement

pN+1

=

= · · · 6= · · · = · · · 6= · · ·

pN+1

=

= · · · 6= · · · = · · · 6= · · ·

Figure 4.3: Constructing a smaller term accepted by the automaton

Proof. If ρ is a run, let τρ be the mapping from positions to states such that
τρ(p) is the target state of ρ(p).

If t is accepted by the automaton (let ρ be a successful run on t) and contains
at least 1 + |Q| ×N distinct subterms, then there are at least N + 1 positions
p1, . . . , pN+1 such that τρ(p1) = . . . = τρ(pN+1) and t|p1 , . . . , t|pN+1 are dis-
tinct. Assume for instance that t|pN+1 is the largest term (in the given total
simplification ordering) among t|p1 , . . . , t|pN+1. We claim that one of the terms

vi
def
= t[t|pi

][[pN+1]] (i ≤ N) is accepted by the automaton.
For each i ≤ N , we may define unambiguously a tree ρi by: ρi = ρ[ρ|pi

][[pN+1]].
First, note that, by determinacy, for each position p ∈ [[pN+1]], τρ(p) =

τρ(pN+1) = τρ(pi). To show that there is a ρi which is a run, it remains to find
a ρi the constraints of which are satisfied. Equality constraints of any ρi are
satisfied, from the construction of the equivalence classes (details are left to the
reader).

Concerning disequality constraints, we choose i in such a way that all sub-
terms at brother positions of pN+1 are distinct from t|pi

(this choice is possible
since N is the maximal arity of a function symbol and there are N distinct
candidates). We get a replacement as depicted on Figure 4.3.

Let pN+1 = π · k where k ∈ N (π is the position immediately above pN+1).
Every disequality in cons(π) is satisfied by choice of i. Moreover, if p′ ∈ [[pN+1]]
and p′ = π′ ·k′ with k′ ∈ N, then every disequality in mathitcons(π′) is satisfied
since vi|π = vi|π′ .

Hence we constructed a term which is smaller than t and which is accepted
by the automaton. This yields the lemma.

Theorem 33. Emptiness can be decided in polynomial time for deterministic
automata in AWCBB.

Proof. The basic idea is that, if we have enough distinct terms in states q1, . . . , qn,
then the transition f(q1, . . . , qn)

c
−→ q is possible. Use a marking algorithm (as

TATA — September 6, 2005 —

124 Automata with Constraints

in Theorem 3) and keep for each state the terms that are known to be accepted
in this state. It is sufficient to keep at most N terms in each state (N is the
maximal arity of a function symbol) according to Lemma 5 and the determinacy
hypothesis (terms in different states are distinct). More precisely, we use the
following algorithm:

input: AWCBB A = (Q,F , Qf ,∆)
begin

– Marked is a mapping which associates each state with a set of
terms accepted in that state.

Set Marked to the function which maps each state to the ∅
repeat

Set Marked (q) to Marked(q) ∪ {t}
where

f ∈ Fn, t1 ∈ Marked(q1), . . . , tn ∈ Marked (qn),

f(q1, . . . , qn)
c
−→ q ∈ ∆,

t = f(t1, . . . , tn) and t |= c,
|Marked(q)| ≤ N − 1,

until no term can be added to any Marked(q)
output: true if, for every state qf ∈ Qf , Marked(qf) = ∅.

end

Complexity. For non-deterministic automata, an exponential time algorithm
is derived from Proposition 20 and Theorem 33. Actually, in the non-deterministic
case, the problem is EXPTIME-complete.

We may indeed reduce the following problem which is known to be EXPTIME-
complete to non-emptiness decision for nondeterministic AWCBB.

Instance n tree automata A1,. . . ,An over F .

Answer “yes” iff the intersection the respective languages recognized byA1,. . . ,An

is not empty.

We may assume without loss of generality that the states sets of A1,. . . ,An

(called respectively Q1,. . . ,Qn) are pairwise disjoint, and that every Ai has a

single final state called qf
i . We also assume that n = 2k for some integer k. If

this is not the case, let k be the smallest integer i such that n < 2i and let
n′ = 2k. We consider a second instance of the above problem: A′

1,. . . ,A
′
n′

where

A′
i = Ai for each i ≤ n.

A′
i = ({q},F , {q}, {f(q, . . . , q)→ q|f ∈ F}) for each n < i ≤ n′.

Note that the tree automaton in the second case is universal, i.e.it accepts
every term of T (F). Hence, the answer is “yes” for A′

1,. . . ,A′
n′ iff it is “yes”

for A1,. . . ,An.

TATA — September 6, 2005 —

4.4 Reduction Automata 125

Now, we add a single new binary symbol g to F , getting F ′, and consider
the following AWCBB A:

A = (

n
⋃

i=1

Qi ⊎ {q1, . . . , qn−1},F
′, {q1},∆)

where q1,. . . ,q2n−1 are new states, and the transition of ∆ are:

every transition rule of A1,. . . ,An is a transition rule of A,

for each i < n
2 , g(q2i, q2i+1)

1=2
−−→ qi is a transition rule of A,

for each i, n
2 ≤ i < n− 1, g(qf

2i, q
f
2i+1)

1=2
−−→ qi is a transition rule of A.

Note that A is non-deterministic, even if every Ai is deterministic.
We can show by induction on k (n = 2k) that the answer to the above

problem is “yes” iff the language recognized by A is not empty. Moreover, the
size of A si linear in the size of the initial problem and A is constructed in a time
which is linear in his size. This proves the EXPTIME-hardness of emptiness
decision for AWCBB.

4.3.3 Applications

The main difference between AWCBB and NFTA is the non-closure of AWCBB
under projection and cylindrification. Actually, the shift from automata on trees
to automata on tuples of trees cannot be extended to the class AWCBB.

As long as we are interested in automata recognizing sets of trees, all results
on NFTA (and all applications) can be extended to the class AWCBB (with
an bigger complexity). For instance, Theorem 26 (sort constraints) can be
extended to interpretations of sorts as languages accepted by AWCBB. Propo-
sition 15 (encompassment) can be easily generalized to the case of non-linear
terms in which non-linearities only occur between brother positions, provided
that we replace NFTA with AWCBB. Theorem 27 can also be generalized to
the reducibility theory with predicates ·�t where t is non-linear terms, provided
that non-linearities in t only occur between brother positions.

However, we can no longer invoke an embedding into WSkS. The important
point is that this theory only requires the weak notion of recognizability on
tuples (Rec×). Hence we do not need automata on tuples, but only tuples
of automata. As an example of application, we get a decision algorithm for
ground reducibility of a term t w.r.t.left hand sides l1, . . . , ln, provided that all
non-linearities in t, l1, . . . , ln occur at brother positions: simply compute the
automata Ai accepting the terms that encompass li and check that L(A) ⊆
L(A1) ∪ . . . ∪ L(An).

Finally, the application on reduction strategies does not carry over the case
of non-linear terms because there really need automata on tuples.

4.4 Reduction Automata

As we have seen above, the first-order theory of finitely many unary encom-
passment predicates ·�t1 , . . . , ·�tn

(reducibility theory) is decidable when non-
linearities in the terms ti are restricted to brother positions. What happens

TATA — September 6, 2005 —

126 Automata with Constraints

when we drop the restrictions and consider arbitrary terms t1, . . . , tn, t? It
turns out that the theory remains decidable, as we will see. Intuitively, we make
impossible counter examples like the one in the proof of Theorem 32 (stating
undecidability of the emptiness problem for AWEDC) with an additional con-
dition that using the automaton which accepts the set of terms encompassing t,
we may only check for a bounded number of equalities along each branch. That
is the idea of the next definitions of reduction automata.

4.4.1 Definition and Closure Properties

A reduction automaton A is a member of AWEDC such that there is an
ordering on the states of A such that,

for each rule f(q1, . . . , qn)
π1=π2∧c
−−−−−−→ q, q is strictly smaller than each

qi.

In case of an automaton with ǫ-transitions q → q′ we also require q′ to be
not larger than q.

Example 43. Consider the set of terms on the alphabet F = {a, g} encom-
passing g(g(x, y), x). It is accepted by the following reduction automaton, the
final state of which is qf and qf is minimal in the ordering on states.

a → q⊤ g(q⊤, q⊤) → qg(x,y)

g(q⊤, qg(x,y)) → qg(x,y)

g(qg(x,y), q⊤)
11=2
−−−→ qf g(qg(x,y), q⊤)

116=2
−−−→ qg(x,y)

g(qg(x,y), qg(x,y))
11=2
−−−→ qf g(qg(x,y), qg(x,y))

116=2
−−−→ qg(x,y)

g(q, qf) → qf g(qf , q) → qf
where q ∈ {q⊤, qg(x,y), qf}

This construction can be generalized, along the lines of the proof of Propo-
sition 15 (page 96):

Proposition 23. The set of terms encompassing a term t is accepted by a
deterministic and complete reduction automaton. The size of this automaton is
polynomial in ‖t‖ as well as the time complexity for its construction.

As usual, we are now interested in closure properties:

Proposition 24. The class of reduction automata is closed under union and
intersection. It is not closed under complementation.

Proof. The constructions for union and intersection are the same as in the proof
of Proposition 21, and therefore, the respective time complexity and sizes are
the same. The proof that the class of reduction automata is closed under these
constructions is left as an exercise. Consider the set L of ground terms on the
alphabet {a, f} defined by a ∈ L and for every t ∈ L which is not a, t has a
subterm of the form f(s, s′) where s 6= s′. The set L is accepted by a (non-
deterministic, non-complete) reduction automaton, but its complement is the
set of balanced binary trees and it cannot be accepted by a reduction automaton
(see Exercise 56).

TATA — September 6, 2005 —

4.4 Reduction Automata 127

The weak point is of course the non-closure under complement. Conse-
quently, this is not possible to reduce the non-determinism.

However, we have a weak version of stability:

Proposition 25. • With each reduction automaton, we can associate a
complete reduction automaton which accepts the same language. More-
over, this construction preserves the determinism.

• The class of complete deterministic reduction automata is closed under
complement.

4.4.2 Emptiness Decision

Theorem 34. Emptiness is decidable for the class of reduction automata.

The proof of this result is quite complicated and gives quite high upper
bounds on the complexity (a tower of several exponentials). Hence, we are not
going to reproduce it here. Let us only sketch how it works, in the case of
deterministic reduction automata.

As in Section 4.3.2, we have both to preserve equality and disequality con-
straints.

Concerning equality constraints, we also define an equivalence relation be-
tween positions (of equal subtrees). We cannot claim any longer that two equiv-
alent positions do have the same length. However, some of the properties of the
equivalence classes are preserved: first, they are all finite and their cardinal
can be bounded by a number which only depends on the automaton, because
of the condition with the ordering on states (this is actually not true for the
class AWCBB). Then, we can compute a bound b2 (which only depends on the
automaton) such that the difference of the lengths of two equivalent positions
is smaller than b2. Nevertheless, as in Section 4.3.2, equalities are not a real
problem, as soon as the automaton is deterministic. Indeed, pumping can then
be defined on equivalence classes of positions. If the automaton is not determin-
istic, the problem is more difficult since we cannot guarantee that we reach the
same state at two equivalent positions, hence we have to restrict our attention
to some particular runs of the automaton.

Handling disequalities requires more care; the number of distinct subterms of
a minimal accepted term cannot be bounded as for AWCBB by |Q|×N , whereN
is the maximal arity of a function symbol. The problem is the possible “overlap”
of disequalities checked by the automaton. As in Example 41, a pumping may
yield a term which is no longer accepted, since a disequality checked somewhere
in the term is no longer satisfied. In such a case, we say that the pumping creates
an equality. Then, we distinguish two kinds of equalities created by a pumping:
the close equalities and the remote equalities. Roughly, an equality created
by a pumping (t[v(u)]p, t[u]p) is a pair of positions (π ·π1, π ·π2) of t[v(u)]p which
was checked for disequality by the run ρ at position π on t[v(u)]p and such that
t[u]p|π·π1 = t[u]p|π·π2 (π is the longest common prefix to both members of the
pair). This equality (π · π1, π · π2) is a close equality if π ≤ p < π · π1 or
π ≤ p < π · π2. Otherwise (p ≥ π · π1 or p ≥ π · π2), it is a remote equality. The
different situations are depicted on Figures 4.4 and 4.5.

One possible proof sketch is

TATA — September 6, 2005 —

128 Automata with Constraints

π π2
π π1

π

p

π π2
π π1

π

p

Figure 4.4: A close equality is created

π π2

π π1

π

p
π π2

π π1

π

p

Figure 4.5: A remote equality is created

TATA — September 6, 2005 —

4.4 Reduction Automata 129

• First show that it is sufficient to consider equalities that are created at
positions around which the states are incomparable w.r.t.>

• Next, show that, for a deep enough path, there is at least one pumping
which does not yield a close equality (this makes use of a combinatorial
argument; the bound is an exponential in the maximal size of a constraint).

• For remote equalities, pumping is not sufficient. However, if some pump-
ing creates a remote equality anyway, this means that there are “big”equal
terms in t. Then we switch to another branch of the tree, combining pump-
ing in both subtrees to find one (again using a combinatorial argument)
such that no equality is created.

Of course, this is a very sketchy proof. The reader is referred to the bibliog-
raphy for more information about the proof.

4.4.3 Finiteness Decision

The following result is quite difficult to establish. We only mention them for
sake of completeness.

Theorem 35. Finiteness of the language is decidable for the class of reduction
automata.

4.4.4 Term Rewriting Systems

There is a strong relationship between reduction automata and term rewriting.
We mention them readers interested in that topic.

Proposition 26. Given a term rewriting system R, the set of ground R-normal
forms is recognizable by a reduction automaton, the size of which is exponential
in the size of R. The time complexity of the construction is exponential.

Proof. The set of R-reducible ground terms can be defined as the union of sets
of ground terms encompassing the left members of rules of R. Thus, by Propo-
sitions 23 and 24 the set of R-reducible ground terms is accepted by a deter-
ministic and complete reduction automaton. For the union, we use the product
construction, preserving determinism (see the proof of Theorem 5, Chapter 1)
with the price of an exponential blowup. The set of ground R-normal forms
is the complement of the set of ground R-reducible terms, and it is therefore
accepted by a reduction automaton, according to Proposition 25.

Thus, we have the following consequence of Theorems 35 and 34.

Corollary 5. Emptiness and finiteness of the language of ground R-normal
forms is decidable for every term rewriting system R.

Let us cite another important result concerning recognizability of sets normal
forms.

Theorem 36. The membership of the language of ground normal forms to the
class of recognizable tree languages is decidable.

TATA — September 6, 2005 —

130 Automata with Constraints

4.4.5 Application to the Reducibility Theory

Consider the reducibility theory of Section 3.4.2: there are unary predicate sym-
bols ·�t which are interpreted as the set of terms which encompass t. However,
we accept now non linear terms t as indices.

Propositions 23, and 24, and 25 yield the following result:

Theorem 37. The reducibility theory associated with any sets of terms is de-
cidable.

And, as in the previous chapter, we have, as an immediate corollary:

Corollary 6. Ground reducibility is decidable.

4.5 Other Decidable Subclasses

Complexity issues and restricted classes. There are two classes of au-
tomata with equality and disequality constraints for which tighter complexity
results are known:

• For the class of automata containing only disequality constraints, empti-
ness can be decided in deterministic exponential time. For any term
rewriting system R, the set of ground R-normal forms is still recogniz-
able by an automaton of this subclass of reduction automata.

• For the class of deterministic reduction automata for which the constraints
“cannot overlap”, emptiness can be decided in polynomial time.

Combination of AWCBB and reduction automata. If you relax the
condition on equality constraints in the transition rules of reduction automata so
as to allow constraints between brothers, you obtain the biggest known subclass
of AWEDC with a decidable emptiness problem.

Formally, these automata, called generalized reduction automata, are
members of AWEDC such that there is an ordering on the states set such that,

for each rule f(q1, . . . , qn)
π1=π2∧c
−−−−−−→ q, q is a lower bound of {q1, . . . , qn}

and moreover, if |π1| > 1 or |π2| > 1, then q is strictly smaller than
each qi.

The closure and decidability results for reduction automata may be trans-
posed to generalized reduction automata, with though a longer proof for the
emptiness decision. Generalized reduction automata can thus be used for the
decision of reducibility theory extended by some restricted sort declarations. In
this extension, additionally to encompassment predicates ·�t, we allow a family
of unary sort predicates . ∈ S, where S is a sort symbol. But, sort declarations
are limited to atoms of the form t ∈ S where where non linear variables in t
only occur at brother positions. This fragment is decidable by an analog of
Theorem 37 for generalized reduction automata.

TATA — September 6, 2005 —

4.6 Tree Automata with Arithmetic Constraints 131

4.6 Tree Automata with Arithmetic Constraints

Tree automata deal with finite trees which have a width bounded by the maxi-
mal arity of the signature but there is no limitation on the depth of the trees.
A natural idea is to relax the restriction on the width of terms by allowing
function of variadic arity. This has been considered by several authors for ap-
plications to graph theory, typing in object-oriented languages, temporal logic
and automated deduction. In these applications, variadic functions are set or
multiset constructors in some sense, therefore they enjoy additional properties
like associativity and/or commutativity and several types of tree automata have
been designed for handling these properties. We describe here a class of tree
automata which recognize terms build with usual function symbols and multiset
constructors. Therefore, we deal not only with terms, but with so-called flat
terms. Equality on these terms is no longer the syntactical identity, but it is
extended by the equality of multisets under permutation of their elements. To
recognize sets of flat terms with automata, we shall use constrained rules where
the constraints are Presburger’s arithmetic formulas which set conditions on the
multiplicities of terms in multisets. These automata enjoy similar properties to
NFTA and are used to test completeness of function definitions and inductive
reducibility when associative-commutative functions are involved, provided that
some syntactical restrictions hold.

4.6.1 Flat Trees

The set of function symbols G is composed of F , the set of function symbols
and ofM, the set of function symbols for building multisets. For simplicity we
shall assume that there is only one symbol of the latter form, denoted by ⊔ and
written as an infix operator. The set of variables is denoted by X . Flat terms

are terms generated by the non-terminal T of the following grammar.

N ::= 1 | 2 | 3 . . .
T ::= S |U (flat terms)
S ::= x | f(T1, . . . , Tn) (flat terms of sort F)
U ::= N1.S1 ⊔ . . . ⊔Np.Sp (flat terms of sort ⊔)

where x ∈ X , n ≥ 0 is the arity of f , p ≥ 1 and
∑i=p

i=1 Ni ≥ 2. Moreover the
inequality Si 6=P Sj holds for i 6= j, 1 ≤ i, j < n, where =P is defined as the
smallest congruence such that:

• x =P x,

• f(s1, . . . , sn) =P f(t1, . . . , tn) if f ∈ F and si =P ti for i = 1, . . . , n,

• n1.s1 ⊔ . . . ⊔ np.sp =P m1.t1 ⊔ . . . ⊔ mq.tq if p = q and there is some
permutation σ on {1, . . . , p} such that si =P tσ(i) and ni = mσ(i) for
i = 1, . . . , p.

Example 44. 3.a and 3.a ⊔ 2.f(x, b) are flat terms, but 2.a ⊔ 1.a ⊔ f(x, b) is
not since 2.a and 1.a must be grouped together to make 3.a.

TATA — September 6, 2005 —

132 Automata with Constraints

The usual notions on terms can be generalized easily for flat terms. We
recall only what is needed in the following. A flat term is ground if it contains
no variables. The root of a flat term is defined by

• for the flat terms of sort F , root(x) = x, root(f(t1, . . . , tn)) = f ,

• for the flat terms of sort ⊔, root(s1 ⊔ . . . ⊔ sn) = ⊔.

Our notion of subterm is slightly different from the usual one. We say that
s is a subterm of t if and only if

• either s and t are identical,

• or t = f(s1, . . . , sn) and s is a subterm of some si,

• or t = n1.t1 ⊔ . . . ⊔ np.tp and s is a subterm of some ti.

For simplicity, we extend ⊔ to an operation between flat terms s, t denoting
(any) flat term obtained by regrouping elements of sort F in s and t which
are equivalent modulo =P , leaving the other elements unchanged. For instance
s = 2.a ⊔ 1.f(a, a) and t = 3.b ⊔ 2.f(a, a) yields s ⊔ t = 2.a ⊔ 3.b ⊔ 3.f(a, a).

4.6.2 Automata with Arithmetic Constraints

There is some regularity in flat terms that is likely to be captured by some class
of automata-like recognizers. For instance, the set of flat terms such that all
integer coefficients occurring in the terms are even, seems to be easily recogniz-
able, since the predicate even(n) can be easily decided. The class of automata
that we describe now has been designed for accepting such sets of ground flat
terms. A flat tree automaton with arithmetic constraints (NFTAC) over
G is a tuple (QF , Q⊔,G, Qf ,∆) where

• QF ∪Q⊔ is a finite set of states, such that

– QF is the set of states of sort F ,

– Q⊔ is the set of states of sort ⊔,

– QF ∩Q⊔ = ∅,

• Qf ⊆ QF ⊔Q⊔ is the set of final states,

• ∆ is a set of rules of the form:

– f(q1, . . . , qn) → q, for n ≥ 0, f ∈ Fn, q1, . . . , qn ∈ QF ∪ Q⊔, and
q ∈ QF ,

– N.q
c(N)
−→ q′, where q ∈ QF , q′ ∈ Q⊔, and c is a Presburger’s arith-

metic2 formula with the unique free variable N ,

– q1 ⊔ q2 → q3 where q1, q2, q3 ∈ Q⊔.

Moreover we require that

2Presburger’s arithmetic is first order arithmetic with addition and constants 0 and 1. This
fragment of arithmetic is known to be decidable.

TATA — September 6, 2005 —

4.6 Tree Automata with Arithmetic Constraints 133

– q1 ⊔ q2 → q3 is a rule of ∆ implies that q2 ⊔ q1 → q3 is also a rule of
∆,

– q1 ⊔ (q2 ⊔ q3) → q4 is a rule of ∆ implies that (q1 ⊔ q2) ⊔ q3 → q4 is
also a rule of ∆ where q2⊔q3 (resp. q1⊔q2) denotes any state q′ such
that there is a rule q2 ⊔ q3 → q′ (resp. q1 ⊔ q2 → q′).

These two conditions on ∆ will ensure that two flat terms equivalent modulo
=P reach the same states.

Example 45. Let F = {a, f} and let A = (QF , Q⊔,G, Qf ,∆) where

QF = {q}, Q⊔ = {q⊔},

Qf = {qu},

∆ =

a −→ q N.q
∃n:N=2n
−→ q⊔

f(,) −→ q q⊔ ⊔ q⊔ −→ q⊔

where stands for q or q⊔.

Let A = (QF , Q⊔,G, Qf ,∆) be a flat tree automaton. The move relation
→A is defined by: let t, t′ ∈ T (F ∪Q,X), then t→A t

′ if and only if there is a
context C ∈ C(G ∪Q) such that t = C[s] and t′ =P C[s′] where

• either there is some f(q1, . . . , qn)→ q′ ∈ ∆ and s = f(q1, . . . , qn), s′ = q′,

• or there is some N.q
c(N)
−→ q′ ∈ ∆ and s = n.q with |= c(n), s′ = q′,

• or there is some q1 ⊔ q2 → q3 ∈ ∆ and s = q1 ⊔ q2, s′ = q3.

∗
→A is the reflexive and transitive closure of →A.

Example 46. Using the automaton of the previous example, one has

2.a ⊔ 6.f(a, a) ⊔ 2.f(a, 2.a)
∗
→A 2.q ⊔ 6.f(q, q) ⊔ 2.f(q, 2.q)
∗
→A 2.q ⊔ 6.q ⊔ 2.f(q, q⊔)
∗
→A 2.q ⊔ 6.q ⊔ 2.q
∗
→A q⊔ ⊔ q⊔ ⊔ q⊔

∗
→A q⊔ ⊔ q⊔

∗
→A q⊔

We define now semilinear flat languages. Let A = (QF , Q⊔,G, Qf ,∆) be
a flat tree automaton. A ground flat term t is accepted by A, if there is some
q ∈ Qf such that t

∗
→A q. The flat tree language L(A) accepted by A is the

set of all ground flat terms accepted by A. A set of flat terms is semilinear if
there L = L(A) for some NFTAC A. Two flat tree automata are equivalent if
they recognize the same language.

Example 47. The language of terms accepted by the automaton of Example 45
is the set of ground flat terms with root ⊔ such that for each subterm n1.s1 ⊔
. . . ⊔ np.sp we have that ni is an even number.

TATA — September 6, 2005 —

134 Automata with Constraints

Flat tree automata are designed to take into account the =P relation, which
is stated by the next proposition.

Proposition 27. Let s, t, be two flat terms such that s =P t, let A be a flat
tree automaton, then s

∗
→A q implies t

∗
→A q.

Proof. The proof is by structural induction on s.

Proposition 28. Given a flat term t and a flat tree automaton A, it is decidable
whether t is accepted by A.

Proof. The decision algorithm for membership for flat tree automata is nearly
the same as the one for tree automata presented in Chapter 1, using an oracle
for the decision of Presburger’s arithmetic formulas.

Our definition of flat tree automata corresponds to nondeterministic flat tree
automata. We now define deterministic flat tree automata (DFTAC).

Let A = (QF , Q⊔,G, Qf ,∆) be a NFTAC over G.

• The automaton A is deterministic if for each ground flat term t, there
is at most one state q such that t

∗
→A q.

• The automaton A is complete if for each ground flat term t, there a state
such that t

∗
→A q.

• A state q is accessible if there is one ground flat term t such that t
∗
→A q.

The automaton is reduced if all states are accessible.

4.6.3 Reducing Non-determinism

As for usual tree automata, there is an algorithm for computing an equivalent
DFTAC from any NFTAC which proves that a language recognized by a NFTAC
is also recognized by a DFTAC. The algorithm is similar to the determiniza-
tion algorithm of the class AWEDC: the ambiguity arising from overlapping
constraints is lifted by considering mutually exclusive constraints which cover
the original constraints, and using sets of states allows to get rid of the non-
determinism of rules having the same left-hand side. Here, we simply have to
distinguish between states of QF and states of Q⊔.

Determinization algorithm

input A = (QF , Q⊔,G, Qf ,∆) a NFTAC.

begin

A state [q] of the equivalent DFTAC is in 2QF ∪ 2Q⊔ .

Set Qd
F = ∅, Qd

⊔ = ∅, ∆d = ∅.

repeat

for each f of arity n, [q]1, . . . , [q]n ∈ Qd
F ∪Q

d
⊔ do

let [q] = {q | ∃f(q1, . . . , qn)→ q ∈ ∆ with qi ∈ [q]i for i = 1, . . . , n}

TATA — September 6, 2005 —

4.6 Tree Automata with Arithmetic Constraints 135

in Set Qd
F to Qd

F ∪ {[q]}
Set ∆d to ∆d ∪ {f([q]1, . . . , [q]n)→ [q]}

endfor

for each [q] ∈ QF do

for each [q′] ⊆ {q′′ | ∃N.q
c(N)
−→ q′′ ∈ ∆ with q ∈ [q]} do

let C be
(

∧

q∈[q]

∨

N.q
ci(N)
−→ q′∈∆

q′∈[q′]

ci(N)
)

∧
(

∧

q∈[q]

∧

N.q
ci(N)
−→ q′∈∆

q′ 6∈[q′]

¬ci(N)
)

in Set Qd
⊔ to Qd

F ∪ {[q
′]}

Set ∆d to ∆d ∪ {N.[q]
C(N)
−→ [q′]}

endfor

endfor

for each [q]1, [q]2 ∈ Qd
⊔ do

let [q] = {q | ∃q1 ∈ [q]1, q2 ∈ [q]2, q1 ⊔ q2 → q ∈ ∆}

in Set Qd
⊔ to Qd

F ∪ {[q]}
Set ∆d to ∆d ∪ {[q]1 ⊔ [q]2 → [q]}

endfor

until no rule can be added to ∆d

Set Qd
f = {[q] ∈ Qd

F ∪Q
d
⊔ | [q] ∩Qf 6= ∅},

end

output: Ad = (Qd
F , Q

d
⊔,F , Q

d
f ,∆d)

Proposition 29. The previous algorithm terminates and computes a determin-
istic flat tree automaton equivalent to the initial one.

Proof. The termination is obvious. The proof of the correctness relies on the
following lemma:

Lemma 6. t
∗
→Ad

[q] if and only if t
∗
→A q for all q ∈ [q].

The proof is by structural induction on t and follows the same pattern as
the proof for the class AWEDC.

Therefore we have proved the following theorem stating the equivalence be-
tween DFTAC and NFTAC.

Theorem 38. Let L be a semilinear set of flat terms, then there exists a DFTAC
that accepts L.

TATA — September 6, 2005 —

136 Automata with Constraints

4.6.4 Closure Properties of Semilinear Flat Languages

Given an automaton A = (Q,G, Qf ,∆), it is easy to construct an equivalent
complete automaton. If A is not complete then

• add two new trash states qt of sort F and q⊔t of sort ⊔,

• for each f ∈ F , q1, . . . , qn ∈ Q∪{qt, q⊔t }, such that there is no rule having
f(q1, . . . , qn) as left-hand side, then add f(q1, . . . , qn)→ qt,

• for each q of sort F , let c1(N), . . . , cm(N) be the conditions of the rules

N.q
ci(N)
−→ q′,

– if the formula ∃N (c1(N) ∨ . . . ∨ cm(N)) is not equivalent to true,

then add the rule N.q
¬(c1(N)∨...∨cm(N))(N)

−→ q⊔t ,

– if there are some q, q′ of sort ⊔ such that there is no rule q ⊔ q′ → q”,
then add the rules q ⊔ q′ → q⊔t and q′ ⊔ q → q⊔t .

– if there is some rule (q1 ⊔ q2) ⊔ q3 → q⊔t (resp. q1 ⊔ (q2 ⊔ q3) → q⊔t ,
add the rule q1 ⊔ (q2 ⊔ q3) → q⊔t (resp. (q1 ⊔ q2) ⊔ q3 → q⊔t) if it is
missing.

This last step ensures that we build a flat tree automaton, and it is straight-
forward to see that this automaton is equivalent to the initial one (same proof
as for DFTA). This is stated by the following proposition.

Theorem 39. For each flat tree automaton A, there exists a complete equivalent
automaton B.

Example 48. The automaton of Example 45 is not complete. It can be

completed by adding the states qt, q
⊔
t , and the rules N.qt

N≥0
−→ q⊔t

N.q
∃n N=2n+1
−→ q⊔t

f(,) −→ qt
where (,) stands for a pair of q, q⊔, qt, q

⊔
t such that if a rule the left hand side

of which is f(,) is not already in ∆.

Theorem 40. The class of semilinear flat languages is closed under union.

Proof. Let L (resp. M) be a semilinear flat language recognized by A =
(QF , Q⊔,G, Qf ,∆) (resp. B = (Q′

F , Q
′
⊔,G, Q

′
f ,∆

′)), then L ∪M is recognized
by C = (QF ∪Q′

F , Q⊔ ∪Q′
⊔,G, Qf ∪Q′

f ,∆ ∪∆′).

Theorem 41. The class of semilinear flat languages is closed under comple-
mentation.

Proof. Let A be an automaton recognizing L. Compute a complete automaton
B equivalent to A. Compute a deterministic automaton C equivalent to B using
the determinization algorithm. The automaton C is still complete, and we get an
automaton recognizing the complement of L by exchanging final and non-final
states in C.

TATA — September 6, 2005 —

4.6 Tree Automata with Arithmetic Constraints 137

From the closure under union and complement, we get the closure under
intersection (a direct construction of an automaton recognizing the intersection
also exists).

Theorem 42. The class of semilinear flat languages is closed under intersec-
tion.

4.6.5 Emptiness Decision

The last important property to state is that the emptiness of the language
recognized by a flat tree automaton is decidable. The decision procedure relies
on an algorithm similar to the decision procedure for tree automata combined
to a decision procedure for Presburger’s arithmetic. However a straightforward
modification of the algorithm in Chapter 1 doesn’t work. Assume that the
automaton contains the rule q⊔1 ⊔ q

⊔
1 → q⊔2 and assume that there is some

flat term t such that 1.t
∗

→A q
⊔
1 . These two hypothesis don’t imply that 1.t ⊔

1.t
∗
→A q

⊔
2 since 1.t⊔1.t is not a flat term, contrary to 2.t. Therefore the decision

procedure involves some combinatorics in order to ensure that we always deal
with correct flat terms.

From now on, let A = (QF , Q⊔,G, Qf ,∆) be some given deterministic flat
tree automaton and let M be the number of states of sort ⊔. First, we need to
control the possible infinite number of solutions of Presburger’s conditions.

Proposition 30. There is some computable B such that for each condition
c(N) of the rules of A, either each integer n validating c is smaller than B or
there are at least M + 1 integers smaller than B validating c.

Proof. First, for each constraint c(N) of a rule of ∆, we check if c(N) has a
finite number of solutions by deciding if ∃P : c(N) ⇒ N < P is true. If c(N)
has a finite number of solutions, it is easy to find a bound B1(c(N)) on these
solutions by testing ∃n : n > k ∧ c(n) for k = 1, 2, . . . until it is false. If c(N)

has an infinite number of solutions, one computes the Mth solution obtained

by checking |= c(k) for k = 1, 2, We call this Mth solution B2(c(N)). The
bound B is the maximum of all the B1(c(N))’s and B2(c(N))’s.

Now we control the maximal width of terms needed to reach a state.

Proposition 31. For all t
∗
→A q, there is some s

∗
→A q such that for each sub-

term of s of the form n1.v1 ⊔ . . . ⊔ np.vp, we have p ≤M and ni ≤ B.

Proof. The bound on the coefficients ni is a direct consequence of the previous
proposition. The proof on p is by structural induction on t. The only non-trivial
case is for t = m1.t1 ⊔ . . . ⊔mk.tk. Let us assume that t is the term with the
smallest value of k among the terms {t′ | t′

∗
→A q}.

First we show that k ≤ M . Let q⊔i be the states such that ni.ti→A q
⊔
i .

We have thus t
∗
→A q

⊔
1 ⊔ . . . ⊔ q

⊔
k

∗
→A q. By definition of DFTAC, the reduction

q⊔1 ⊔ . . . ⊔ q
⊔
k

∗
→A q has the form:

q⊔1 ⊔ . . . ⊔ q
⊔
k

∗
→
A
q⊔[12] ⊔ q

⊔
3 ⊔ . . . ⊔ q

⊔
k

∗
→
A
. . .

∗
→
A
q⊔[1...k] = q

for some states q⊔[12],. . . , q
⊔
[1...k] of Q⊔.

TATA — September 6, 2005 —

138 Automata with Constraints

Assume that k > M . The pigeonhole principle yields that q[1,...,j1] = q[1,...,j2]

for some 1 ≤ j1 < j2 ≤ k. Therefore the term

t = m1.t1 ⊔ . . . ⊔mj1 .tj1 ⊔mj2+1.tj2+1 ⊔ . . . ⊔mk.tk

also reaches the state q which contradicts our hypothesis that k is minimal.
Now, it remains only to use the induction hypothesis to replace each ti by

some si reaching the same state and satisfying the required conditions.

A term s such that for all subterm n1.v1⊔ . . . np.vp of s, we have p ≤M and
ni ≤ B will be called small. We define some extension →n

A of the move relation
by:

• t→1
A q if and only if t→A q,

• t→n
A q if and only if t

∗
→A q and

– either t = f(t1, . . . , tk) and for i = 1, . . . , k we have ti→
n−1
A qi(ti),

– or t = n1.t1 ⊔ . . . ⊔ np.tp and for i = 1, . . . , p, we have ti→
n−1
A qi(ti).

Let Ln
q = {t→p

A q | p ≤ n and t is small} with the convention that L0
q = ∅

and Lq =
⋃∞

n=1 L
n
q . By Proposition 31, t→A q if and only if there is some

s ∈ Lq such that s→A q. The emptiness decision algorithm will compute a
finite approximation Rn

q of these Ln
q such that Rn

q 6= ∅ if and only if Ln
q 6= ∅.

Some technical definition is needed first. Let L be a set of flat term, then
we define ‖ L ‖P as the number of distinct equivalence classes of terms for the
=P relation such that one representant of the class occurs in L. The reader will
check easily that the equivalence class of a flat term for the =P relation is finite.

The decision algorithm is the following one.

begin

for each state q do set R0
q to ∅.

i=1.
repeat

for each state q do set Ri
q to Ri−1

q

if ‖ Ri
q ‖P≤M then

repeat

add to Ri
q all flat terms t = f(t1, . . . , tn)

such that tj ∈ Ri−1
qj

, j ≤ n and f(q1, . . . , qn)→ q ∈ ∆

add to Ri
q all flat terms t = n1.t1 ⊔ . . . ⊔ np.tp

such that p ≤M ,nj ≤ B, tj ∈ Ri−1
qj

and n1.q1 ⊔ . . . ⊔ np.qp
∗
→A q.

until no new term can be added or ‖ Ri
q ‖P> M

endif

i=i+1

until ∃q ∈ Qf such that Ri
q 6= ∅ or ∀q,Ri

q = Ri−1
q

if ∃q ∈ QF s.t.Ri
q 6= ∅

then return not empty
else return empty endif

TATA — September 6, 2005 —

4.6 Tree Automata with Arithmetic Constraints 139

end

Proposition 32. The algorithm terminates after n iterations for some n and
Rn

q = ∅ if and only if Lq = ∅

Proof. At every iteration, either one Ri
q increases or else all the Ri

q’s are left
untouched in the repeat . . .until loop. Therefore the termination condition
will be satisfied after a finite number of iterations, since equivalence classes for
=P are finite.

By construction we have Rm
q ⊆ L

m
q , but we need the following additional

property.

Lemma 7. For all m,Rm
q = Lm

q or Rm
q ⊆ L

m
q and ‖ Rm

q ‖P> M

The proof is by induction on m.

Base case m = 0. Obvious from the definitions.

Induction step. We assume that the property is true for m and we prove that
it holds for m+ 1.
Either Lm

q = ∅ therefore Rm
q = ∅ and we are done, or Lm

q 6= ∅, which we assume
from now on.

• q ∈ QF .

– Either there is some rule f(q1, . . . , qn) → q such that Rm
qi
6= ∅ for

all i = 1, . . . , n and such that for some q′ among q1, . . . , qn, we have
‖ Rm

q′ ‖P> M . Then we can construct at least M + 1 terms t =

f(t1, . . . , t
′, . . . , tn) where t′ ∈ Rm

q′ , such that t ∈ Rm+1
q by giving

M +1 non equivalent values to t′ (corresponding values for t are also
non equivalent). This yields that ‖ Rm+1

q ‖P> M .

– Or there is no rule as above, therefore Rm+1
q = Lm+1

q .

• q ∈ Q⊔.

For each small term t = n1.t1 ⊔ . . . ⊔ np.tp such that t ∈ Lm+1
q , there

are some terms s1, . . . , sn in Rm
qi

such that ti
∗
→A qi implies that si

∗
→A qi.

What we must prove is that ‖ Rm
qi
‖P> M for some i ≤ p implies ‖

Rm+1
q ‖P> M . Since A is deterministic, we have that s

∗
→A q and t

∗
→A q

′

with q 6= q′ implies that s 6=P t. Let S be the set of states occurring in
the sequence q1, . . . , qp. We prove by induction on the cardinal of S that
if there is some qi such that ‖ Rm

qi
‖P> M , we can build at least M + 1

terms in Rm+1
q otherwise we build at least one term of Rm+1

q .

Base case S = {q′}, and therefore all the qi are equal to q′. Either
‖ Rm

q′ ‖P≤ M and we are done or ‖ Rm
q′ ‖P> M and we know that there

are s1, . . . , sM+1, . . . pairwise non equivalent terms reaching q′. Therefore,
there are at least

(

M+1
M

)

≥M + 1 different non equivalent possible terms

ni1 .si1 ⊔ . . . ⊔ nip
.sip

. Moreover each of these terms S satisfies s→m+1
A q,

which proves the result.

TATA — September 6, 2005 —

140 Automata with Constraints

Induction step. Let S = S′ ∪ {q′} where the property is true for S′. We
can assume that ‖ Rm

q′ ‖P≤ M (otherwise all ‖ Rm
qi
‖P are less than or

equal to M).

Let i1, . . . , ik be the positions of q′ in q1, . . . , qp, let j1, . . . , jl be the posi-
tions of the states different from q′ in q1, . . . , qp. By induction hypothesis,
there are some flat terms sj such that nj1 .sj1 ⊔ . . . ⊔ njl

.sjl
is a valid flat

term. Since A is deterministic and q′ is different from all element of S′,
we know that si 6=P sj for any i ∈ {i1, . . . , ik}, j ∈ {j1, . . . , jk}. There-
fore, we use the same reasoning as in the previous case to build at least
Ck

M+1 ≥M + 1 pairwise non equivalent flat terms s = n1.s1 ⊔ . . . ⊔ np.sp

such that s→m+1
A q.

The termination of the algorithm implies that for each m ≥ n, Rm
q = Lm

q or
Rm

q ⊆ L
m
q and ‖ Rm

q ‖P> M . Therefore Lq = ∅ if and only if Rn
q = ∅.

The following theorem summarizes the previous results.

Theorem 43. Let A be a DFTAC, then it is decidable whether the language
accepted by A is empty or not.

The reader should see that the property that A deterministic is crucial in
proving the emptiness decision property. Therefore proving the emptiness of the
language recognized by a NFTAC implies to compute an equivalent DFTAC
first.

Another point is that the previous algorithm can be easily modified to com-
pute the set of accessible states of A.

4.7 Exercises

Exercise 52.

1. Show that the automaton A+ of Example 38 accepts only terms of the form
f(t1, s

n(0), sm(0), sn+m(0))

2. Conversely, show that, for every pair of natural numbers (n, m), there exists a
term t1 such that f(t1, s

n(0), sm(0), sn+m(0)) is accepted by A+.

3. Construct an automaton A× of the class AWEDC which has the same properties
as above, replacing + with ×

4. Give a proof that emptiness is undecidable for the class AWEDC, reducing
Hilbert’s tenth problem.

Exercise 53. Give an automaton of the class AWCBB which accepts the set of terms

t (over the alphabet {a(0), b(0), f(2)}) having a subterm of the form f(u, u). (i.e.the

set of terms that are reducible by a rule f(x, x) → v).

Exercise 54. Show that the class AWCBB is not closed under linear tree homomor-

phisms. Is it closed under inverse image of such morphisms?

Exercise 55. Give an example of two automata in AWCBB such that the set of pairs

of terms recognized respectively by the automata is not itself a member of AWCBB.

TATA — September 6, 2005 —

4.7 Exercises 141

Exercise 56. (Proposition 24) Show that the class of (languages recognized by)

reduction automata is closed under intersection and union. Show that the set of bal-

anced term on alphabet {a, f} is not recognizable by a reduction automaton, showing

that the class of languages recognized by) reduction automata is not closed under

complement.

Exercise 57. Show that the class of languages recognized by reduction automata is

preserved under linear tree homomorphisms. Show however that this is no longer true

for arbitrary tree homomorphisms.

Exercise 58. Let A be a reduction automaton. We define a ternary relation q
w
−→ q′

contained in Q × N
∗ × Q as follows:

• for i ∈ N, q
i
−→ q′ if and only if there is a rule f(q1, . . . , qn)

c
−→
A

q′ with qi = q

• q
i·w
−−→ q′ if and only if there is a state q′′ such that q

i
−→ q′′ and q′′

w
−→ q′.

Moreover, we say that a state q ∈ Q is a constrained state if there is a rule f(q1, . . . , qn)
c
−→
A

q

in A such that c is not a valid constraint.
We say that the the constraints of A cannot overlap if, for each rule f(q1, . . . , qn)

c
−→ q

and for each equality (resp. disequality) π = π′ of c, there is no strict prefix p of π

and no constrained state q′ such that q′
p
−→ q.

1. Consider the rewrite system on the alphabet {f(2), g(1), a(0)} whose left mem-
bers are f(x, g(x)), g(g(x)), f(a, a). Compute a reduction automaton, whose
constraints do not overlap and which accepts the set of irreducible ground terms.

2. Show that emptiness can be decided in polynomial time for reduction automata
whose constraints do not overlap. (Hint: it is similar to the proof of Theorem
33.)

3. Show that any language recognized by a reduction automaton whose constraints
do not overlap is an homomorphic image of a language in the class AWCBB.
Give an example showing that the converse is false.

Exercise 59. Prove the Proposition ?? along the lines of Proposition 15.

Exercise 60. The purpose of this exercise is to give a construction of an automaton
with disequality constraints (no equality constraints) whose emptiness is equivalent to
the ground reducibility of a given term t with respect to a given term rewriting system
R.

1. Give a direct construction of an automaton with disequality constraints ANF(R)

which accepts the set of irreducible ground terms

2. Show that the class of languages recognized by automata with disequality con-
straints is closed under intersection. Hence the set of irreducible ground in-
stances of a linear term is recognized by an automaton with disequality con-
straints.

3. Let ANF(R) = (QNF,F , Q
f

NF, ∆NF). We compute ANF,t
def
= (QNF,t,F , Q

f

NF,t, ∆NF,t)
as follows:

• QNF,t
def
= {tσ|p | p ∈ Pos(t)}×QNF where σ ranges over substitutions from

NLV (t) (the set of variables occurring at least twice in t) into Q
f
NF.

• For all f(q1, . . . , qn)
c
−→ q ∈ ∆NF, and all u1, . . . , un ∈ {tσ|p | p ∈ Pos(t)},

∆NF,t contains the following rules:

TATA — September 6, 2005 —

142 Automata with Constraints

– f([qu1 , q1], . . . , [qun , qn])
c∧c′

−−−→ [qf(u1,...,un), q] if f(u1, . . . , un) = tσ0

and c′ is constructed as sketched below.

– f([qu1 , q1], . . . , [qun , qn])
c
−→ [qf(u1,...,un), q] if [qf(u1,...,un), q] ∈ QNF,t

and we are not in the first case.

– f([qu1 , q1], . . . , [qun , qn])
c
−→ [qq , q] in all other cases

c′ is constructed as follows. From f(u1, . . . , un) we can retrieve the rules applied
at position p in t. Assume that the rule at p checks π1 6= π2. This amounts to
check pπ1 6= pπ2 at the root position of t. Let D be all disequalities pπ1 6= pπ2

obtained in this way. The non linearity of t implies some equalities: let E be
the set of equalities p1 = p2, for all positions p1, p2 such that t|p1 = t|p2 is a
variable. Now, c′ is the set of disequalities π 6= π′ which are not in D and that
can be inferred from D, E using the rules

pp1 6= p2, p = p′ ⊢ p′p1 6= p2

p 6= p′, pp1 = p2 ⊢ p′p1 6= p2

For instance, let t = f(x, f(x, y)) and assume that the automaton ANF con-

tains a rule f(q, q)
16=2
−−→ q. Then the automaton ANF,t will contain the rule

f([qq , q], [qf(q,q), q])
16=2∧16=22
−−−−−−−→ q.

The final states are [qu, qf] where qf ∈ Q
f

NF and u is an instance of t.

Prove that ANF,t accepts at least one term if and only if t is not ground reducible
by R.

Exercise 61. Prove Theorem 37 along the lines of the proof of Theorem 27.

Exercise 62. Show that the algorithm for deciding emptiness of deterministic com-

plete flat tree automaton works for non-deterministic flat tree automata such that for

each state q the number of non-equivalent terms reaching q is 0 or greater than or

equal to 2.

Exercise 63. (Feature tree automata)
Let F be a finite set of feature symbols (or attributes) denoted by f, g, . . . and S be
a set of constructor symbols (or sorts) denoted by A, B, In this exercise and the
next one, a tree is a rooted directed acyclic graph, a multitree is a tree such that the
nodes are labeled over S and the edges over F . A multitree is either (A, ∅) or (A, E)
where E is a finite multiset of pairs (f, t) with f a feature and t a multitree. A feature
tree is a multitree such that the edges outgoing from the same node are labeled by
different features. The + operation takes a multitree t = (A, E), a feature f and a
multitree t′ to build the multitree (A,E ∪ (f, t′)) denoted by t + ft′.

1. Show that t + f1t1 + f2t2 = t + f2t2 + f1t1 (OI axiom: order independence
axiom) and that the algebra of multitrees is isomorphic to the quotient of the
free term algebra over {+} ∪ F ∪ S by OI .

2. A deterministic M-automaton is a triple (A, h, Qf) where A is an finite {+} ∪
F ∪S-algebra, h : M → A is a homomorphism, Qf (the final states) is a subset
of the set of the values of sort M. A tree is accepted if and only if h(t) ∈ Qf .

(a) Show that a M-automaton can be identified with a bottom-up tree au-
tomaton such that all trees equivalent under OI reach the same states.

(b) A feature tree automaton is a M-automaton such that for each sort s (M
or F), for each q the set of the c’s of arity 0 interpreted as q in A is finite
or co-finite. Give a feature tree to recognize the set of natural numbers
where n is encoded as (0, {suc, (0, {. . . , (0, ∅)})}) with n edges labeled by
suc.

TATA — September 6, 2005 —

4.8 Bibliographic notes 143

(c) Show that the class of languages accepted by feature tree automata is
closed under boolean operations and that the emptiness of a language
accepted by a feature automaton is decidable.

(d) A non-deterministic feature tree automaton is a tuple (Q, P, h, Qf) such
that Q is the set of states of sort M, P the set of states of sort F , h is
composed of three functions h1 : S → 2Q, h2 : F → 2P and the transition
function + : Q×P ×Q → 2Q. Moreover q + p1q1 + p2q2 = q + p2q2 + p1q1

for each q, q1, q2, p1, p2, {s ∈ S | p ∈ h1(s)} and {f ∈ F | p ∈ h2(f)} are
finite or co-finite for each p. Show that any non-deterministic feature tree
automaton is equivalent to a deterministic feature tree automaton.

Exercise 64. (Characterization of recognizable flat feature languages)
A flat feature tree is a feature tree of depth 1 where depth is defined by depth((A, ∅)) =
0 and depth((A,E)) = 1+max{depth(t) | (f, t) ∈ E}. Counting constraints are defined
by: C(x) ::= card(ϕ ∈ F | ∃y.(xϕy)∧ Ty}) = n mod m

| Sx

| C(x) ∨ C(x)
| C(x) ∧ C(x)

where n, m are integers, S and T finite or co-finite subsets of S , F a finite or co-finite
subset of F and n mod 0 is defined as n. The semantics of the first type of constraint
is: C(x) holds if the number of edges of x going from the root to a node labeled by a
symbol of T is equal to n mod m. The semantics of Sx is: Sx holds if the root of x is
labeled by a symbol of S.

1. Show that the constraints are closed under negation. Show that the following
constraints can be expressed in the constraint language (F is a finite subset of
F , f ∈ F , A ∈ S): there is one edge labeled f from the root, a given finite
subset of F . There is no edge labeled f from the root, the root is labeled by A.

2. A set L of flat multitrees is counting definable if and only if there some counting
constraint C such that L = {x | C(x) holds}. Show that a set of flat feature trees
is counting definable if and only if it is recognizable by a feature tree automaton.
hint: identify flat trees with multisets over (F ∪{root})×S and + with multiset
union.

4.8 Bibliographic notes

RATEG appeared in Mongy’s thesis [Mon81]. Unfortunately, as shown in
[Mon81] the emptiness problem is undecidable for the class RATEG (and hence
for AWEDC). The undecidability can be even shown for a more restricted class
of automata with equality tests between cousins (see [Tom92]).
The remarkable subclass AWCBB is defined in [BT92]. This paper presents the
results cited in Section 4.3, especially Theorem 33.
Concerning complexity, the result used in Section 4.3.2 (EXPTIME-completeness
of the emptiness of the intersection of n recognizable tree languages) may be
found in [FSVY91, Sei94b].
[DCC95] is concerned with reduction automata and their use as a tool for the
decision of the encompassment theory in the general case.
The first decidability proof for ground reducibility is due to [Pla85]. In [CJ97a],
ground reducibility decision is shown EXPTIME-complete. In this work, an
EXPTIME algorithm for emptiness decision for AWEDC with only disequality
constrained The result mentioned in Section 4.5.

TATA — September 6, 2005 —

144 Automata with Constraints

The class of generalized reduction automata is introduced in [CCC+94]. In this
paper, a efficient cleaning algorithm is given for emptiness decision.

There have been many work dealing with automata where the width of
terms is not bounded. In [Cou89], Courcelle devises an algebraic notion of rec-
ognizability and studies the case of equational theories. Then he gives several
equational theories corresponding to several notions of trees like ordered or un-
ordered, ranked or unranked trees and provides the tree automata to accept
these objects. Actually the axioms used for defining these notions are commu-
tativity (for unordered) or associativity (for unranked) and what is needed is to
build tree automata such that all element of the same equivalence class reach
the same state. Trees can be also defined as finite, acyclic rooted ordered graphs
of bounded degree. Courcelle [Cou92] has devised a notion of recognizable set of
graphs and suggests to devise graph automata for accepting recognizable graphs
of bounded tree width. He gives such automata for trees defined as unbounded,
unordered, undirected, unrooted trees (therefore these are not what we call tree
in this book). Actually, he shows that recognizable sets of graphs are (homomor-
phic image of) sets of equivalence class of terms, where the equivalence relation
is the congruence induced by a set of equational axioms including associativity-
commutativity axiom and identity element. He gives several equivalent notions
for recognizability from which he gets the definitions of automata for accepting
recognizable languages. Hedge automata [PQ68, Mur00, BKMW01] are au-
tomata that deal with unranked but ordered terms, and use constraint which
are membership to some regular word expressions on an alphabet which is the
set of states of the automaton. These automata are closed under the boolean
operations and emptiness can be decided. Such automata are used for XML
applications. Generalization of tree automata with Presburger’s constraints can
be found in [LD02].

Feature tree are a generalization of first-order trees introduced for modeling
record structures. A feature tree is a finite tree whose nodes are labelled by
constructor symbols and edges are labelled by feature symbols Niehren and
Podelski [NP93] have studied the algebraic structures of feature trees and have
devised feature tree automata for recognizing sets of feature trees. They have
shown that this class of feature trees enjoys the same properties as regular tree
language and they give a characterization of these sets by requiring that the
numbern of occurrences of a feature f satisfies a Presburger formula ψf (N).
See Exercise 63 for more details. Equational tree automata, introduced by
H.Ohsaki, allow equational axioms to take place during a run. For instance using
AC axioms allows to recognize languages which are closed under associativity-
commutativity which is not the case of ordinary regular languages. See [Ohs01]
for details.

TATA — September 6, 2005 —

Bibliography

[AD82] A. Arnold and M. Dauchet. Morphismes et bimorphismes d’arbres.
Theorical Computer Science, 20:33–93, 1982.

[AG68] M. A. Arbib and Y. Give’on. Algebra automata I: Parallel program-
ming as a prolegomena to the categorical approach. Information
and Control, 12(4):331–345, April 1968.

[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complex-
ity of set constraints. In E. Börger, Y. Gurevich, and K. Meinke,
editors, Proceedings of Computer Science Logic, volume 832 of Lec-
ture Notes in Computer Science, pages 1–17, 1993. Techn. Report
93-1352, Cornell University.

[AKW95] A. Aiken, D. Kozen, and E.L. Wimmers. Decidability of systems
of set constraints with negative constraints. Information and Com-
putation, 122(1):30–44, October 1995.

[AM78] M.A. Arbib and E.G. Manes. Tree transformations and semantics
of loop-free programs. Acta Cybernetica, 4:11–17, 1978.

[AM91] A. Aiken and B. R. Murphy. Implementing regular tree expressions.
In Proceedings of the ACM conf. on Functional Programming Lan-
guages and Computer Architecture, pages 427–447, 1991.

[AU71] A. V. Aho and J. D. Ullmann. Translations on a context-free gram-
mar. Information and Control, 19:439–475, 1971.

[AW92] A. Aiken and E.L. Wimmers. Solving Systems of Set Constraints.
In Proceedings, Seventh Annual IEEE Symposium on Logic in Com-
puter Science [IEE92], pages 329–340.

[Bak78] B.S. Baker. Generalized syntax directed translation, tree transduc-
ers, and linear space. Journal of Comput. and Syst. Sci., 7:876–891,
1978.

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision
Problem. Perspectives of Mathematical Logic. Springer Verlag,
1997.

[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are
the monadic class. In Proceedings, Eighth Annual IEEE Sympo-
sium on Logic in Computer Science, pages 75–83. IEEE Computer
Society Press, 19–23 June 1993.

TATA — September 6, 2005 —

208 BIBLIOGRAPHY

[BJ97] A. Bouhoula and J.-P. Jouannaud. Automata-driven automated
induction. In Proceedings, 12th Annual IEEE Symposium on Logic
in Computer Science [IEE97].

[BKMW01] A. Brüggemann-Klein, M.Murata, and D. Wood. Regular tree and
regular hedge languages over unranked alphabets. Technical Report
HKTUST-TCSC-2001-05, HKUST Theoretical Computer Science
Center Research, 2001.

[Boz99] S. Bozapalidis. Equational elements in additive algebras. Theory
of Computing Systems, 32(1):1–33, 1999.

[Boz01] S. Bozapalidis. Context-free series on trees. ICOMP, 169(2):186–
229, 2001.

[BR82] Jean Berstel and Christophe Reutenauer. Recognizable formal
power series on trees. TCS, 18:115–148, 1982.

[Bra68] W. S. Brainerd. The minimalization of tree automata. Information
and Control, 13(5):484–491, November 1968.

[Bra69] W. S. Brainerd. Tree generating regular systems. Information and
Control, 14(2):217–231, February 1969.

[BT92] B. Bogaert and S. Tison. Equality and disequality constraints on
direct subterms in tree automata. In A. Finkel and M. Jantzen, ed-
itors, 9th Annual Symposium on Theoretical Aspects of Computer
Science, volume 577 of Lecture Notes in Computer Science, pages
161–171, 1992.

[Büc60] J. R. Büchi. On a decision method in a restricted second order
arithmetic. In Stanford Univ. Press., editor, Proc. Internat. Congr.
on Logic, Methodology and Philosophy of Science, pages 1–11, 1960.

[CCC+94] A.-C. Caron, H. Comon, J.-L. Coquidé, M. Dauchet, and F. Jacque-
mard. Pumping, cleaning and symbolic constraints solving. In Pro-
ceedings, International Colloquium Automata Languages and Pro-
gramming, volume 820 of Lecture Notes in Computer Science, pages
436–449, 1994.

[CD94] H. Comon and C. Delor. Equational formulae with membership
constraints. Information and Computation, 112(2):167–216, Au-
gust 1994.

[CDGV94] J.-L. Coquide, M. Dauchet, R. Gilleron, and S. Vagvolgyi. Bottom-
up tree pushdown automata : Classification and connection with
rewrite systems. Theorical Computer Science, 127:69–98, 1994.

[CG90] J.-L. Coquidé and R. Gilleron. Proofs and reachability problem
for ground rewrite systems. In Proc. IMYCS’90, Smolenice Castle,
Czechoslovakia, November 1990.

[Chu62] A. Church. Logic, arithmetic, automata. In Proc. International
Mathematical Congress, 1962.

TATA — September 6, 2005 —

BIBLIOGRAPHY 209

[CJ97a] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-
complete. In Proceedings, 12th Annual IEEE Symposium on Logic
in Computer Science [IEE97], pages 26–34.

[CJ97b] H. Comon and Y. Jurski. Higher-order matching and tree au-
tomata. In M. Nielsen and W. Thomas, editors, Proc. Conf. on
Computer Science Logic, volume 1414 of LNCS, pages 157–176,
Aarhus, August 1997. Springer-Verlag.

[CK96] A. Cheng and D. Kozen. A complete Gentzen-style axiomatization
for set constraints. In Proceedings, International Colloquium Au-
tomata Languages and Programming, volume 1099 of Lecture Notes
in Computer Science, pages 134–145, 1996.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation.
Journal of the ACM, 28:114–133, 1981.

[Com89] H. Comon. Inductive proofs by specification transformations. In
Proceedings, Third International Conference on Rewriting Tech-
niques and Applications, volume 355 of Lecture Notes in Computer
Science, pages 76–91, 1989.

[Com95] H. Comon. Sequentiality, second-order monadic logic and tree au-
tomata. In Proceedings, Tenth Annual IEEE Symposium on Logic
in Computer Science. IEEE Computer Society Press, 26–29 June
1995.

[Com98a] H. Comon. Completion of rewrite systems with membership con-
straints. Part I: deduction rules. Journal of Symbolic Computation,
25:397–419, 1998. This is a first part of a paper whose abstract ap-
peared in Proc. ICALP 92, Vienna.

[Com98b] H. Comon. Completion of rewrite systems with membership con-
straints. Part II: Constraint solving. Journal of Symbolic Compu-
tation, 25:421–453, 1998. This is the second part of a paper whose
abstract appeared in Proc. ICALP 92, Vienna.

[Cou86] B. Courcelle. Equivalences and transformations of regular systems–
applications to recursive program schemes and grammars. Theori-
cal Computer Science, 42, 1986.

[Cou89] B. Courcelle. On Recognizable Sets and Tree Automata, chapter
Resolution of Equations in Algebraic Structures. Academic Press,
m. Nivat and Ait-Kaci edition, 1989.

[Cou92] B. Courcelle. Recognizable sets of unrooted trees. In M. Nivat
and A. Podelski, editors, Tree Automata and Languages. Elsevier
Science, 1992.

[CP94a] W. Charatonik and L. Pacholski. Negative set constraints with
equality. In Proceedings, Ninth Annual IEEE Symposium on Logic
in Computer Science, pages 128–136. IEEE Computer Society
Press, 4–7 July 1994.

TATA — September 6, 2005 —

210 BIBLIOGRAPHY

[CP94b] W. Charatonik and L. Pacholski. Set constraints with projections
are in NEXPTIME. In Proceedings of the 35th Symp. Foundations
of Computer Science, pages 642–653, 1994.

[CP97] W. Charatonik and A. Podelski. Set Constraints with Intersec-
tion. In Proceedings, 12th Annual IEEE Symposium on Logic in
Computer Science [IEE97].

[Dau94] M. Dauchet. Rewriting and tree automata. In H. Comon and J.-P.
Jouannaud, editors, Proc. Spring School on Theoretical Computer
Science: Rewriting, Lecture Notes in Computer Science, Odeillo,
France, 1994. Springer Verlag.

[DCC95] M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Reduction properties
and automata with constraints. Journal of Symbolic Computation,
20:215–233, 1995.

[DGN+98] A. Degtyarev, Y. Gurevich, P. Narendran, M. Veanes, and
A. Voronkov. The decidability of simultaneous rigid e-unification
with one variable. In T. Nipkow, editor, 9th International Con-
ference on Rewriting Techniques and Applications, volume 1379 of
Lecture Notes in Computer Science, 1998.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Com-
puter Science, volume B, chapter Rewrite Systems, pages 243–320.
Elsevier, 1990.

[DM97] I. Durand and A. Middeldorp. Decidable call by need computations
in term rewriting. In W. McCune, editor, Proc. 14th Conference on
Automated Deduction, volume 1249 of Lecture Notes in Artificial
Intelligence, pages 4–18. Springer Verlag, 1997.

[Don65] J. E. Doner. Decidability of the weak second-order theory of two
successors. Notices Amer. Math. Soc., 12:365–468, March 1965.

[Don70] J. E. Doner. Tree acceptors and some of their applications. Journal
of Comput. and Syst. Sci., 4:406–451, 1970.

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems
is decidable. In Proceedings, Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 242–248. IEEE Computer Soci-
ety Press, 4–7 June 1990.

[DT92] M. Dauchet and S. Tison. Structural complexity of classes of tree
languages. In M. Nivat and A. Podelski, editors, Tree Automata
and Languages, pages 327–353. Elsevier Science, 1992.

[DTHL87] M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne. Decidability
of the confluence of ground term rewriting systems. In Proceed-
ings, Symposium on Logic in Computer Science, pages 353–359.
The Computer Society of the IEEE, 22–25 June 1987.

TATA — September 6, 2005 —

BIBLIOGRAPHY 211

[DTT97] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set
constraints with tree automata. In G. Smolka, editor, Proceedings
of the 3th International Conference on Principles and Practice of
Constraint Programming, volume 1330 of Lecture Notes in Com-
puter Science, pages 62–76, oct 1997.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations. a
comparision. Mathematical System Theory, 9:198–231, 1975.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead.
Mathematical System Theory, 10:198–231, 1977.

[Eng78] J. Engelfriet. A hierarchy of tree transducers. In Proceedings of the
third Les Arbres en Algèbre et en Programmation, pages 103–106,
Lille, 1978.

[Eng82] J. Engelfriet. Three hierarchies of transducers. Mathematical Sys-
tem Theory, 15:95–125, 1982.

[ES78] J. Engelfriet and E.M. Schmidt. IO and OI II. Journal of Comput.
and Syst. Sci., 16:67–99, 1978.

[Esi83] Z. Esik. Decidability results concerning tree transducers. Acta
Cybernetica, 5:303–314, 1983.

[EV91] J. Engelfriet and H. Vogler. Modular tree transducers. Theorical
Computer Science, 78:267–303, 1991.

[EW67] S. Eilenberg and J. B. Wright. Automata in general algebras. In-
formation and Control, 11(4):452–470, 1967.

[FSVY91] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic pro-
grams as types for logic programs. In Proc. 6th IEEE Symp. Logic
in Computer Science, Amsterdam, pages 300–309, 1991.

[FV88] Z. Fülöp and S. Vágvölgyi. A characterization of irreducible sets
modulo left-linear term rewiting systems by tree automata. Un
type rr ??, Research Group on Theory of Automata, Hungarian
Academy of Sciences, H-6720 Szeged, Somogyi u. 7. Hungary, 1988.

[FV89] Z. Fülöp and S. Vágvölgyi. Congruential tree languages are the
same as recognizable tree languages–A proof for a theorem of D.
kozen. Bulletin of the European Association of Theoretical Com-
puter Science, 39, 1989.

[FV98] Z. Fülöp and H. Vögler. Formal Models Based on Tree Transduc-
ers. Monographs in Theoretical Computer Science. Springer Verlag,
1998.

[GB85] J. H. Gallier and R. V. Book. Reductions in tree replacement
systems. Theorical Computer Science, 37(2):123–150, 1985.

[Gen97] T. Genet. Decidable approximations of sets of descendants and
sets of normal forms - extended version. Technical Report RR-
3325, Inria, Institut National de Recherche en Informatique et en
Automatique, 1997.

TATA — September 6, 2005 —

212 BIBLIOGRAPHY

[GJV98] H. Ganzinger, F. Jacquemard, and M. Veanes. Rigid reachability.
In Proc. ASIAN’98, volume 1538 of Lecture Notes in Computer
Science, pages 4–??, Berlin, 1998. Springer-Verlag.

[GMW97] H. Ganzinger, C. Meyer, and C. Weidenbach. Soft typing for or-
dered resolution. In W. McCune, editor, Proc. 14th Conference on
Automated Deduction, volume 1249 of Lecture Notes in Artificial
Intelligence. Springer Verlag, 1997.

[Gou00] Jean Goubault-Larrecq. A method for automatic cryptographic
protocol verification. In Proc. 15 IPDPS 2000 Workshops, Can-
cun, Mexico, May 2000, volume 1800 of Lecture Notes in Computer
Science, pages 977–984. Springer Verlag, 2000.

[GRS87] J. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid
E-unification: Equational matings. In Proc. 2nd IEEE Symp. Logic
in Computer Science, Ithaca, NY, June 1987.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, 1984.

[GS96] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 1–68. Springer Verlag, 1996.

[GT95] R. Gilleron and S. Tison. Regular tree languages and rewrite sys-
tems. Fundamenta Informaticae, 24:157–176, 1995.

[GTT93] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set
constraints with negated subset relationships. In Proceedings of
the 34th Symp. on Foundations of Computer Science, pages 372–
380, 1993. Full version in the LIFL Tech. Rep. IT-247.

[GTT99] R. Gilleron, S. Tison, and M. Tommasi. Set constraints and au-
tomata. Information and Control, 149:1 – 41, 1999.

[Gue83] I. Guessarian. Pushdowm tree automata. Mathematical System
Theory, 16:237–264, 1983.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie
Mellon University, 1992.

[HJ90a] N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set
Constraints. In Proceedings, Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 42–51. IEEE Computer Society
Press, 4–7 June 1990.

[HJ90b] N. Heintze and J. Jaffar. A finite presentation theorem for approx-
imating logic programs. In Proceedings of the 17th ACM Symp. on
Principles of Programming Languages, pages 197–209, 1990. Full
version in the IBM tech. rep. RC 16089 (#71415).

[HJ92] N. Heintze and J. Jaffar. An engine for logic program analysis. In
Proceedings, Seventh Annual IEEE Symposium on Logic in Com-
puter Science [IEE92], pages 318–328.

TATA — September 6, 2005 —

BIBLIOGRAPHY 213

[HL91] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting
systems I. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages 395–414. MIT
Press, 1991. This paper was written in 1979.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979.

[IEE92] IEEE Computer Society Press. Proceedings, Seventh Annual IEEE
Symposium on Logic in Computer Science, 22–25 June 1992.

[IEE97] IEEE Computer Society Press. Proceedings, 12th Annual IEEE
Symposium on Logic in Computer Science, 1997.

[Jac96] F. Jacquemard. Decidable approximations of term rewriting sys-
tems. In H. Ganzinger, editor, Proceedings. Seventh International
Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, 1996.

[JM79] N. D. Jones and S. S. Muchnick. Flow Analysis and Optimization
of LISP-like Structures. In Proceedings of the 6th ACM Symposium
on Principles of Programming Languages, pages 244–246, 1979.

[Jon87] N. Jones. Abstract interpretation of declarative languages, chapter
Flow analysis of lazy higher-order functional programs, pages 103–
122. Ellis Horwood Ltd, 1987.

[Jr.76] William H. Joyner Jr. Resolution strategies as decision procedures.
Journal of the ACM, 23(3):398–417, 1976.

[KFK97] Y. Kaji, T. Fujiwara, and T. Kasami. Solving a unification problem
under constrained substitutions using tree automata. Journal of
Symbolic Computation, 23(1):79–118, January 1997.

[Koz92] D. Kozen. On the Myhill-Nerode theorem for trees. Bulletin of
the European Association of Theoretical Computer Science, 47:170–
173, June 1992.

[Koz93] D. Kozen. Logical aspects of set constraints. In E. Börger, Y. Gure-
vich, and K. Meinke, editors, Proceedings of Computer Science
Logic, volume 832 of Lecture Notes in Computer Science, pages
175–188, 1993.

[Koz95] D. Kozen. Rational spaces and set constraints. In Proceedings of
the 6th International Joint Conference on Theory and Practice of
Software Development, volume 915 of Lecture Notes in Computer
Science, pages 42–61, 1995.

[Koz98] D. Kozen. Set constraints and logic programming. Information
and Computation, 142(1):2–25, 1998.

[Kuc91] G. A. Kucherov. On relationship between term rewriting systems
and regular tree languages. In R. Book, editor, Proceedings. Fourth
International Conference on Rewriting Techniques and Applica-
tions, volume 488 of Lecture Notes in Computer Science, pages
299–311, April 1991.

TATA — September 6, 2005 —

214 BIBLIOGRAPHY

[Kui99] W. Kuich. Full abstract families of tree series i. In Juhani
Karhumäki, Hermann A. Maurer, and Gheorghe Paun andy Grze-
gorz Rozenberg, editors, Jewels are Forever, pages 145–156. SV,
1999.

[Kui01] W. Kuich. Pushdown tree automata, algebraic tree systems, and
algebraic tree series. Information and Computation, 165(1):69–99,
2001.

[KVW00] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic
approach to branching time model-checking. Journal of the ACM,
47(2):312–360, 2000.

[LD02] Denis Lugiez and Silvano DalZilio. Multitrees automata, pres-
burger’s constraints and tree logics. Technical Report 8, Labo-
ratoire d’Informatique Fondamentale de Marseille, 2002.

[LM87] J.-L. Lassez and K. Marriott. Explicit representation of terms
defined by counter examples. Journal of Automated Reasoning,
3(3):301–318, September 1987.

[LM93] D. Lugiez and J.-L. Moysset. Complement problems and tree au-
tomata in AC-like theories. In P. Enjalbert, A. Finkel, and K. W.
Wagner, editors, 10th Annual Symposium on Theoretical Aspects
of Computer Science, volume 665 of Lecture Notes in Computer
Science, pages 515–524, Würzburg, 25–27 February 1993.

[LM94] Denis Lugiez and Jean-Luc Moysset. Tree automata help one to
solve equational formulae in ac-theories. Journal of Symbolic Com-
putation, 18(4):297–318, 1994.

[Loh01] M. Lohrey. On the parallel complexity of tree automata. In Proceed-
ings of the 12th Conference on Rewriting and Applications, pages
201–216, 2001.

[MGKW96] D. McAllester, R. Givan, D. Kozen, and C. Witty. Tarskian set con-
straints. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, pages 138–141. IEEE Computer Society Press,
27–30 July 1996.

[Mis84] P. Mishra. Towards a Theory of Types in PROLOG. In Proceedings
of the 1st IEEE Symposium on Logic Programming, pages 456–461,
Atlantic City, 1984.

[MLM01] M. Murata, D. Lee, and M. Mani. Taxonomy of xml schema lan-
guages using formal language theory. In In Extreme Markup Lan-
guages, 2001.

[Mon81] J. Mongy. Transformation de noyaux reconnaissables d’arbres.
Forêts RATEG. PhD thesis, Laboratoire d’Informatique Fonda-
mentale de Lille, Université des Sciences et Technologies de Lille,
Villeneuve d’Ascq, France, 1981.

TATA — September 6, 2005 —

BIBLIOGRAPHY 215

[MS96] A. Mateescu and A. Salomaa. Aspects of classical language theory.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, volume 1, pages 175–246. Springer Verlag, 1996.

[Mur00] M. Murata. “Hedge Automata: a Formal Model for XML
Schemata”. Web page, 2000.

[MW67] J. Mezei and J. B. Wright. Algebraic automata and context-free
sets. Information and Control, 11:3–29, 1967.

[Niv68] M. Nivat. Transductions des langages de Chomsky. Thèse d’etat,
Paris, 1968.

[NP89] M. Nivat and A. Podelski. Resolution of Equations in Algebraic
Structures, volume 1, chapter Tree monoids and recognizable sets
of finite trees, pages 351–367. Academic Press, New York, 1989.

[NP93] J. Niehren and A. Podelski. Feature automata and recognizable
sets of feature trees. In Proceedings TAPSOFT’93, volume 668 of
Lecture Notes in Computer Science, pages 356–375, 1993.

[NP97] M. Nivat and A. Podelski. Minimal ascending and descending tree
automata. SIAM Journal on Computing, 26(1):39–58, February
1997.

[NT99] T. Nagaya and Y. Toyama. Decidability for left-linear growing
term rewriting systems. In M. Rusinowitch F. Narendran, editor,
10th International Conference on Rewriting Techniques and Appli-
cations, volume 1631 of Lecture Notes in Computer Science, pages
256–270, Trento, Italy, 1999. Springer Verlag.

[Ohs01] Hitoshi Ohsaki. Beyond the regularity: Equational tree automata
for associative and commutative theories. In Proceedings of CSL
2001, volume 2142 of Lecture Notes in Computer Science. Springer
Verlag, 2001.

[Oya93] M. Oyamaguchi. NV-sequentiality: a decidable condition for call-
by-need computations in term rewriting systems. SIAM Journal
on Computing, 22(1):114–135, 1993.

[Pel97] N. Peltier. Tree automata and automated model building. Funda-
menta Informaticae, 30(1):59–81, 1997.

[Pla85] D. A. Plaisted. Semantic confluence tests and completion method.
Information and Control, 65:182–215, 1985.

[Pod92] A. Podelski. A monoid approach to tree automata. In Nivat and
Podelski, editors, Tree Automata and Languages, Studies in Com-
puter Science and Artificial Intelligence 10. North-Holland, 1992.

[PQ68] C. Pair and A. Quere. Définition et étude des bilangages réguliers.
Information and Control, 13(6):565–593, 1968.

TATA — September 6, 2005 —

216 BIBLIOGRAPHY

[Rab69] M. O. Rabin. Decidability of Second-Order Theories and Automata
on Infinite Trees. Transactions of the American Mathematical So-
ciety, 141:1–35, 1969.

[Rab77] M. O. Rabin. Handbook of Mathematical Logic, chapter Decidable
theories, pages 595–627. North Holland, 1977.

[Rao92] J.-C. Raoult. A survey of tree transductions. In M. Nivat and
A. Podelski, editors, Tree Automata and Languages, pages 311–
325. Elsevier Science, 1992.

[Rey69] J. C. Reynolds. Automatic Computation of Data Set Definition.
Information Processing, 68:456–461, 1969.

[Sal73] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[Sal88] K. Salomaa. Deterministic tree pushdown automata and monadic
tree rewriting systems. Journal of Comput. and Syst. Sci., 37:367–
394, 1988.

[Sal94] K. Salomaa. Synchronized tree automata. Theorical Computer
Science, 127:25–51, 1994.

[Sei89] H. Seidl. Deciding equivalence of finite tree automata. In Annual
Symposium on Theoretical Aspects of Computer Science, 1989.

[Sei90] H. Seidl. Deciding equivalence of finite tree automata. SIAM Jour-
nal on Computing, 19, 1990.

[Sei92] H. Seidl. Single-valuedness of tree transducers is decidable in poly-
nomial time. Theorical Computer Science, 106:135–181, 1992.

[Sei94a] H. Seidl. Equivalence of finite-valued tree transducers is decidable.
Mathematical System Theory, 27:285–346, 1994.

[Sei94b] H. Seidl. Haskell overloading is DEXPTIME-complete. Information
Processing Letters, 52(2):57–60, 1994.

[Sén97] G. Sénizergues. The equivalence problem for deterministic push-
down automata is decidable. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, Automata, Languages and Pro-
gramming, 24th International Colloquium, volume 1256 of Lec-
ture Notes in Computer Science, pages 671–681, Bologna, Italy,
7–11 July 1997. Springer-Verlag.

[Sey94] F. Seynhaeve. Contraintes ensemblistes. Master’s thesis, LIFL,
1994.

[Slu85] G. Slutzki. Alternating tree automata. Theorical Computer Sci-
ence, 41:305–318, 1985.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring ex-
ponential time. In Proc. 5th ACM Symp. on Theory of Computing,
pages 1–9, 1973.

TATA — September 6, 2005 —

BIBLIOGRAPHY 217

[Ste94] K. Stefansson. Systems of set constraints with negative constraints
are nexptime-complete. In Proceedings, Ninth Annual IEEE Sym-
posium on Logic in Computer Science, pages 137–141. IEEE Com-
puter Society Press, 4–7 July 1994.

[SV95] G. Slutzki and S. Vagvolgyi. Deterministic top-down tree transduc-
ers with iterated look-ahead. Theorical Computer Science, 143:285–
308, 1995.

[Tha70] J. W. Thatcher. Generalized sequential machines. Journal of Com-
put. and Syst. Sci., 4:339–367, 1970.

[Tha73] J. W. Thatcher. Tree automata: an informal survey. In A.V.
Aho, editor, Currents in the theory of computing, pages 143–178.
Prentice Hall, 1973.

[Tho90] W. Thomas. Handbook of Theoretical Computer Science, volume B,
chapter Automata on Infinite Objects, pages 134–191. Elsevier,
1990.

[Tho97] W. Thomas. Languages, automata and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 389–456. Springer Verlag, 1997.

[Tis89] S. Tison. Fair termination is decidable for ground systems. In Pro-
ceedings, Third International Conference on Rewriting Techniques
and Applications, volume 355 of Lecture Notes in Computer Sci-
ence, pages 462–476, 1989.

[Tiu92] J. Tiuryn. Subtype inequalities. In Proceedings, Seventh Annual
IEEE Symposium on Logic in Computer Science [IEE92], pages
308–317.

[Tom92] M. Tommasi. Automates d’arbres avec tests d’égalité entre cousins
germains. Mémoire de DEA, Univ. Lille I, 1992.

[Tom94] M. Tommasi. Automates et contraintes ensemblistes. PhD thesis,
LIFL, 1994.

[Tra95] B. Trakhtenbrot. Origins and metamorphoses of the trinity: Logic,
nets, automata. In Proceedings, Tenth Annual IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 26–29
June 1995.

[Tre96] R. Treinen. The first-order theory of one-step rewriting is undecid-
able. In H. Ganzinger, editor, Proceedings. Seventh International
Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, pages 276–286, 1996.

[TW65] J. W. Thatcher and J. B. Wright. Generalized finite automata.
Notices Amer. Math. Soc., 820, 1965. Abstract No 65T-649.

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata
with an application to a decision problem of second-order logic.
Mathematical System Theory, 2:57–82, 1968.

TATA — September 6, 2005 —

218 BIBLIOGRAPHY

[Uri92] T. E. Uribe. Sorted Unification Using Set Constraints. In D. Ka-
pur, editor, Proceedings of the 11th International Conference on
Automated Deduction, New York, 1992.

[Vea97a] M. Veanes. On computational complexity of basic decision prob-
lems of finite tree automata. Technical report, Uppsala Computing
Science Department, 1997.

[Vea97b] M. Veanes. On simultaneous rigid E-unification. PhD thesis, Com-
puting Science Department, Uppsala University, Uppsala, Sweden,
1997.

[Zac79] Z. Zachar. The solvability of the equivalence problem for determin-
istic frontier-to-root tree transducers. Acta Cybernetica, 4:167–177,
1979.

TATA — September 6, 2005 —

Index

|=, 14
AWCBB, 21

acceptance
by an automaton, 15

accepted, 35
accepts, 15
accessible, 36
arity, 9
automaton

generalized reduction automa-
ton, 32

reduction automaton, 28
with constraints between broth-

ers, 21
with equality and disequality con-

straints, 14
automaton with constraints between

brothers, 21
automaton with equality and dise-

quality constraints, 14

close equalities, 29
closed, 10
complete, 17, 36
complete specification

of an automaton with constraints,
17

constraint
disequality constraint, 14
equality constraint, 14

context, 11

determinacy
of an automaton with constraints,

17
deterministic, 17, 36
determinization, 17
disequality constraint, 14
domain, 11

equality constraint, 14

equivalent, 35

finite states, 14
Flat terms, 33
flat tree automaton with arithmetic

constraints, 34
frontier position, 10

generalized reduction automata, 32
ground, 34
ground reducibility, 27, 32
ground substitution, 11
ground terms, 9

height, 10

language
accepted by an automaton with

constraints, 15
language accepted, 15
linear, 9

overlapping constraints, 43

position, 10
pumping, 24
pumping lemma

for automata with constraints
between brothers, 24

ranked alphabet, 9
RATEG, 13
recognition

by an automaton, 15
recognized, 15
recognizes, 15
reduced, 36
reducibility theory, 27, 32
reduction automaton, 28
remote equalities, 29
replacement

simultaneous replacement, 24

TATA — September 6, 2005 —

220 INDEX

root, 34
root symbol, 10
run, 15

of an automaton, 15

semilinear, 35
semilinear flat languages, 35
size, 10, 16, 17

of a constraint, 16
of an automaton with constraints,

17
substitution, 11
subterm, 10
subterm ordering, 10

target state, 14
terms, 9
transition rules, 14
tree, 9
tree automaton

reduction automaton, 13
with constraints between broth-

ers, 13

variable position, 10
variables, 9

TATA — September 6, 2005 —

