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Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can
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10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as
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a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.
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Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F , Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(, ) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X ) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X ) and
- X ⊆ T (F ,X ) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f(t1, . . . , tp) ∈ T (F ,X ).
If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X ) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(, ), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X ) may be viewed as a finite
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14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X ) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X ) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t � t′ if t′ is a subterm
of t. We denote t � t′ if t � t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t � t′ ⇒ t′ ∈ F ).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑

i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, , ), g(, ), h(), a, b} and X = {x, y}. Consider the
terms

TATA — September 6, 2005 —
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t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X ) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X ), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X ) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X ) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X ). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, , ), g(, ), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).
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Chapter 5

Tree Set Automata

This chapter introduces a class of automata for sets of terms called General-
ized Tree Set Automata. Languages associated with such automata are sets of
sets of terms. The class of languages recognized by Generalized Tree Set Au-
tomata fulfills properties that suffices to build automata-based procedures for
solving problems involving sets of terms, for instance, for solving systems of set
constraints.

5.1 Introduction

“The notion of type expresses the fact that one just cannot apply any operator
to any value. Inferring and checking a program’s type is then a proof of partial
correction” quoting Marie-Claude Gaudel. “The main problem in this field is to
be flexible while remaining rigorous, that is to allow polymorphism (a value can
have more than one type) in order to avoid repetitions and write very general
programs while preserving decidability of their correction with respect to types.”

On that score, the set constraints formalism is a compromise between power
of expression and decidability. This has been the object of active research for a
few years.

Set constraints are relations between sets of terms. For instance, let us define
the natural numbers with 0 and the successor relation denoted by s. Thus, the
constraint

Nat = 0 ∪ s(Nat) (5.1)

corresponds to this definition. Let us consider the following system:

Nat = 0 ∪ s(Nat)
List = cons(Nat, List) ∪ nil

List+ ⊆ List

car(List+) ⊆ s(Nat)

(5.2)

The first constraint defines natural numbers. The second constraint codes the
set of LISP-like lists of natural numbers. The empty list is nil and other lists
are obtained using the constructor symbol cons. The last two constraints rep-
resent the set of lists with a non zero first element. Symbol car has the usual
interpretation: the head of a list. Here car(List+) can be interpreted as the set
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of all terms at first position in List+, that is all terms t such that there exists u

with cons(t, u) ∈ List+. In the set constraint framework such an operator car is
often written cons

−1
1 .

Set constraints are the essence of Set Based Analysis. The basic idea is to
reason about program variables as sets of possible values. Set Based Analy-
sis involves first writing set constraints expressing relationships between sets of
program values, and then solving the system of set constraints. A single approxi-
mation is: all dependencies between the values of program variables are ignored.
Techniques developed for Set Based Analysis have been successfully applied in
program analysis and type inference and the technique can be combined with
others [HJ92].

Set constraints have also been used to define a constraint logic programming
language over sets of ground terms that generalizes ordinary logic programming
over an Herbrand domain [Koz98].

In a more general way, a system of set constraints is a conjunction of positive
constraints of the form exp ⊆ exp′1 and negative constraints of the form exp 6⊆
exp′. Right hand side and left hand side of these inequalities are set expressions,
which are built with

• function symbols: in our example 0, s, cons, nil are function symbols.

• operators: union ∪, intersection ∩, complement ∼

• projection symbols: for instance, in the last equation of system (5.2) car

denotes the first component of cons. In the set constraints syntax, this is
written cons

−1
(1).

• set variables like Nat or List.

An interpretation assigns to each set variable a set of terms only built with
function symbols. A solution is an interpretation which satisfies the system.
For example, {0, s(0), s(s(0)), . . . } is a solution of Equation (5.1).

In the set constraint formalism, set inclusion and set union express in a
natural way parametric polymorphism: List ⊆ nil ∪ cons(X, List).

In logic or functional programming, one often use dynamic procedures to
deal with type. In other words, a run-time procedure checks whether or not an
expression is well-typed. This permits maximum programming flexibility at the
potential cost of efficiency and security. Static analysis partially avoids these
drawbacks with the help of type inference and type checking procedures. The
information extracted at compile time is also used for optimization.

Basically, program sources are analyzed at compile time and an ad hoc for-
malism is used to represent the result of the analysis. For types considered as
sets of values, the set constraints formalism is well suited to represent them and
to express their relations. Numerous inference and type checking algorithms in
logic, functional and imperative programming are based on a resolution proce-
dure for set constraints.

1
exp = exp

′ for exp ⊆ exp
′ ∧ exp

′ ⊆ exp.
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Most of the earliest algorithms consider systems of set constraints with weak
power of expression. More often than not, these set constraints always have a
least solution — w.r.t. inclusion — which corresponds to a (tuple of) regular
set of terms. In this case, types are usual sorts. A sort signature defines a
tree automaton (see Section 3.4.1 for the correspondence between automata
and sorts). For instance, regular equations iontroduced in Section 2.3 such a
subclass of set constraints. Therefore, these methods are closely related finite
tree automata and use classical algorithms on these recognizers, like the ones
presented in Chapter 1.

In order to obtain a more precise information with set constraints in static
analysis, one way is to enrich the set constraints vocabulary. In one hand, with
a large vocabulary an analysis can be accurate and relevant, but on the other
hand, solutions are difficult to obtain.

Nonetheless, an essential property must be preserved: the decidability of
satisfiability. There must exists a procedure which determines whether or not a
system of set constraints has solutions. In other words, extracted information
must be sufficient to say whether the objects of an analyzed program have a type.
It is crucial, therefore, to know which classes of set constraints are decidable,
and identifying the complexity of set constraints is of paramount importance.

A second important characteristic to preserve is to represent solutions in a
convenient way. We want to obtain a kind of solved form from which one can
decide whether a system has solutions and one can “compute” them.

In this chapter, we present an automata-based algorithm for solving systems
of positive and negative set constraints where no projection symbols occurs. We
define a new class of automata recognizing sets of (codes of) n-tuples of tree
languages. Given a system of set constraints, there exists an automaton of this
class which recognizes the set of solutions of the system. Therefore properties
of our class of automata directly translate to set constraints.

In order to introduce our automata, we discuss the case of unary symbols,
i.e.the case of strings over finite alphabet. For instance, let us consider the
following constraints over the alphabet composed of two unary symbols a and
b and a constant 0:

Xaa ∪Xbb ⊆ X (5.3)

Y ⊆ X

This system of set constraints can be encoded in a formula of the monadic
second order theory of 2 successors named a and b:

∀u (u ∈ X ⇒ (uaa ∈ X ∧ ubb ∈ X))∧

∀u u ∈ Y ⇒ u ∈ X

We have depicted in Fig 5.1 (a beginning of) an infinite tree which is a
model of the formula. Each node corresponds to a string over a and b. The
root is associated with the empty string; going down to the left concatenates a
a; going down to the right concatenates a b. Each node of the tree is labelled
with a couple of points. The two components correspond to sets X and Y . A
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black point in the first component means that the current node belongs to X .
Conversely, a white point in the first component means that the current node
does not belong to X . Here we have X = {ε, aa, bb, . . .} and Y = {ε, bb, . . .}.

Figure 5.1: An infinite tree for the representation of a couple of word languages
(X, Y ). Each node is associated with a word. A black dot stands for belongs
to. X = {ε, aa, bb, . . .} and Y = {ε, bb, . . .}.

A tree language that encodes solutions of Eq. 5.3 is Rabin-recognizable by
a tree automaton which must avoid the three forbidden patterns depicted in
Figure 5.2.

•?

??

◦?

•?

??

◦?

◦•

Figure 5.2: The set of three forbidden patterns. ’?’ stands for black or white
dot. The tree depicted in Fig. 5.1 exclude these three patterns.

Given a ranked alphabet of unary symbols and one constant and a system
of set constraints over {X1, . . . , Xn}, one can encode a solution with a {0, 1}n-
valued infinite tree and the set of solutions is recognized by an infinite tree
automaton. Therefore, decidability of satisfiability of systems of set constraints
can easily be derived from Rabin’s Tree Theorem [Rab69] because infinite tree
automata can be considered as an acceptor model for n-tuples of word languages
over finite alphabet2.

We extend this method to set constraints with symbols of arbitrary arity.
Therefore, we define an acceptor model for mappings from T (F), where F is a
ranked alphabet, into a set E = {0, 1}n of labels. Our automata can be viewed
as an extension of infinite tree automata, but we will use weaker acceptance
condition. The acceptance condition is: the range of a successful run is in a
specified set of accepting set of states. We will prove that we can design an

2The entire class of Rabin’s tree languages is not captured by solutions of set of words

constraints. Set of words constraints define a class of languages which is strictly smaller than

Büchi recognizable tree languages.
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automaton which recognizes the set of solutions of a system of both positive
and negative set constraints. For instance, let us consider the following system:

Y 6⊆ ⊥ (5.4)

X ⊆ f(Y,∼ X) ∪ a (5.5)

where ⊥ stands for the empty set and ∼ stands for the complement symbol.
The underlying structure is different than in the previous example since it is

now the whole set of terms on the alphabet composed of a binary symbol f and
a constant a. Having a representation of this structure in mind is not trivial.
One can imagine a directed graph whose vertices are terms and such that there
exists an edge between each couple of terms in the direct subterm relation (see
figure 5.3).

f(f(a,a),a) f(a,f(a,a))

f(a,a)

f

f f

a

f

f(f(f(a,a),a),a) ... ... ...

Figure 5.3: The (beginning of the) underlying structure for a two letter alphabet
{f(, ), a}.

An automaton have to associate a state with each node following a finite set
of rules. In the case of the example above, states are also couples of • or ◦.

Each vertex is of infinite out-degree, nonetheless one can define as in the
word case forbidden patterns for incoming vertices which such an automaton
have to avoid in order to satisfy Eq. (5.5) (see Fig. 5.4, Pattern ? stands for
◦ or •). The acceptance condition is illustrated using Eq. (5.4). Indeed, to
describe a solution of the system of set constraints, the pattern ?• must occur
somewhere in a successful “run” of the automaton.

?

f

???

?

??

f

?

Figure 5.4: Forbidden patterns for (5.5).

Consequently, decidability of systems of set constraints is a consequence of
decidability of emptiness in our class of automata. Emptiness decidability is
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easy for automata without acceptance conditions (it corresponds to the case of
positive set constraints only). The proof is more difficult and technical in the
general case and is not presented here. Moreover, and this is the main advantage
of an automaton-based method, properties of recognizable sets directly translate
to sets of solutions of systems of set constraints. Therefore, we are able to prove
nice properties. For instance, we can prove that a non empty set of solutions
always contain a regular solution. Moreover we can prove the decidability of
existence of finite solutions.

5.2 Definitions and Examples

Infinite tree automata are an acceptor model for infinite trees, i.e.for mappings
from A∗ into E where A is a finite alphabet and E is a finite set of labels. We
define and study F -generalized tree set automata which are an acceptor model
for mappings from T (F) into E where F is a finite ranked alphabet and E is a
finite set of labels.

5.2.1 Generalized Tree Sets

Let F be a ranked alphabet and E be a finite set. An E-valued F-generalized

tree set g is a mapping from T (F) into E. We denote by GE the set of E-valued
F -generalized tree sets.

For the sake of brevity, we do not mention the signature F which strictly
speaking is in order in generalized tree sets. We also use the abbreviation GTS
for generalized tree sets.

Throughout the chapter, if c ∈ {0, 1}n, then ci denotes the ith component
of the tuple c. If we consider the set E = {0, 1}n for some n, a generalized tree
set g in G{0,1}n can be considered as a n-tuple (L1, . . . , Ln) of tree languages
over the ranked alphabet F where Li = {t ∈ T (F) | g(t)i = 1}.

We will need in the chapter the following operations on generalized tree sets.
Let g (resp. g′) be a generalized tree set in GE (resp. GE′). The generalized
tree set g ↑ g′ ∈ GE×E′ is defined by g ↑ g′(t) = (g(t), g′(t)), for each term t

in T (F). Conversely let g be a generalized tree set in GE×E′ and consider the
projection π from E × E′ into the E-component then π(g) is the generalized
tree set in GE defined by π(g)(t) = π(g(t)). Let G ⊆ GE×E′ and G′ ⊆ GE , then
π(G) = {π(g) | g ∈ G} and π−1(G′) = {g ∈ GE×E′ | π(g) ∈ G′}.

5.2.2 Tree Set Automata

A generalized tree set automaton A = (Q, ∆, Ω) (GTSA) over a finite set
E consist of a finite state set Q, a transition relation ∆ ⊆

⋃

p Qp×Fp×E×Q

and a set Ω ⊆ 2Q of accepting sets of states.
A run of A (or A-run) on a generalized tree set g ∈ GE is a mapping

r : T (F)→ Q with:

(r(t1), . . . , r(tp), f, g(f(t1, . . . , tp)), r(f(t1, . . . , tp))) ∈ ∆

for t1, . . . , tp ∈ T (F) and f ∈ Fp. The run r is successful if the range of r is
in Ω i.e.r(T (F)) ∈ Ω.

TATA — September 6, 2005 —



5.2 Definitions and Examples 151

A generalized tree set g ∈ GE is accepted by the automaton A if some run
r of A on g is successful. We denote by L(A) the set of E-valued generalized
tree sets accepted by a generalized tree set automaton A over E. A set G ⊆ GE

is recognizable if G = L(A) for some generalized tree set automaton A.

In the following, a rule (q1, . . . , qp, f, l, q) is also denoted by f(q1, . . . , qp) l
→ q.

Consider a term t = f(t1, . . . , tp) and a rule f(q1, . . . , qp) l
→ q, this rule can

be applied in a run r on a generalized tree set g for the term t if r(t1) =
q1,. . . ,r(tp) = qp, t is labeled by l, i.e.g(t) = l. If the rule is applied, then
r(t) = q.

A generalized tree set automaton A = (Q, ∆, Ω) over E is

• deterministic if for each tuple (q1, . . . , qp, f, l) ∈ Qp×Fp×E there is at
most one state q ∈ Q such that (q1, . . . , qp, f, l, q) ∈ ∆.

• strongly deterministic if for each tuple (q1, . . . , qp, f) ∈ Qp ×Fp there
is at most one pair (l, q) ∈ E ×Q such that (q1, . . . , qp, f, l, q) ∈ ∆.

• complete if for each tuple (q1, . . . , qp, f, l) ∈ Qp×Fp×E there is at least
one state q ∈ Q such that (q1, . . . , qp, f, l, q) ∈ ∆.

• simple if Ω is “subset-closed”, that is ω ∈ Ω⇒ (∀ω′ ⊆ ω ω′ ∈ Ω).

Successfulness for simple automata just implies some states are not assumed
along a run. For instance, if the accepting set of a GTSA A is Ω = 2Q then A is
simple and any run is successful. But, if Ω = {Q}, then A is not simple and each
state must be assumed at least once in a successful run. The definition of simple
automata will be clearer with the relationships with set constraints and the
emptiness property (see Section 5.4). Briefly, positive set constraints are related
to simple GTSA for which the proof of emptiness decision is straightforward.
Another and equivalent definition for simple GTSA relies on the acceptance
condition: a run r is successful if and only if r(T (F)) ⊆ ω ∈ Ω.

There is in general an infinite number of runs — and hence an infinite
number of GTS recognized — even in the case of deterministic generalized tree
set automata (see example 49.2). Nonetheless, given a GTS g, there is at most
one run on g for a deterministic generalized tree set automata. But, in the case
of strongly deterministic generalized tree set automata, there is at most one run
(see example 49.1) and therefore there is at most one GTS recognized.

Example 49.

Ex. 49.1 Let E = {0, 1}, F = {cons(, ), s(), nil, 0}. Let A = (Q, ∆, Ω) be
defined by Q = {Nat, List, Term}, Ω = 2Q, and ∆ is the following set of
rules:

0 0
→Nat ; s(Nat) 0

→Nat ; nil 1
→ List ;

cons(Nat, List) 1
→ List ;

cons(q, q′) 0
→Term ∀(q, q′) 6= (Nat, List) ;

s(q) 0
→Term ∀q 6= Nat .

A is strongly deterministic, simple, and not complete. L(A) is a singleton
set. Indeed, there is a unique run r on a unique generalized tree set g ∈
G{0,1}n . The run r maps every natural number on state Nat, every list on
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state List and the other terms on state Term. Therefore g maps a natural
number on 0, a list on 1 and the other terms on 0. Hence, we say that L(A)
is the regular tree language L of Lisp-like lists of natural numbers.

Ex. 49.2 Let E = {0, 1}, F = {cons(, ), s(), nil, 0}, and let A′ = (Q′, ∆′, Ω′)
be defined by Q′ = Q, Ω′ = Ω, and

∆′ = ∆ ∪ {cons(Nat, List) 0
→List, nil 0

→ List}.

A′ is deterministic (but not strongly), simple, and not complete, and L(A′)
is the set of all subsets of the regular tree language L of Lisp-like lists of
natural numbers. Indeed, successful runs can now be defined on generalized
tree sets g such that a term in L is labeled by 0 or 1.

Ex. 49.3 Let E = {0, 1}2, F = {cons(, ), s(), nil, 0}, and let A = (Q, ∆, Ω)
be defined by Q = {Nat, Nat

′, List, Term}, Ω = 2Q, and ∆ is the following
set of rules:

0 (0,0)
→ Nat ; 0 (1,0)

→ Nat
′ ; s(Nat) (0,0)

→ Nat

s(Nat) (1,0)
→ Nat

′ ; s(Nat
′) (0,0)
→ Nat ; s(Nat

′) (1,0)
→ Nat

′

nil
(0,1)
→ List ; cons(Nat

′, List) (0,1)
→ List ;

s(q) (0,0)
→ Term ∀q 6= Nat

cons(q, q′) (0,0)
→ Term ∀(q, q′) 6= (Nat

′, List)

A is deterministic, simple, and not complete, and L(A) is the set of 2-tuples
of tree languages (N ′, L′) where N ′ is a subset of the regular tree language
of natural numbers and L′ is the set of Lisp-like lists of natural numbers
over N ′.

Let us remark that the set N ′ may be non-regular. For instance, one can
define a run on a characteristic generalized tree set gp of Lisp-like lists of
prime numbers. The generalized tree set gp is such that gp(t) = (1, 0) when
t is a (code of a) prime number.

In the previous examples, we only consider simple generalized tree set au-
tomata. Moreover all runs are successful runs. The following examples are
non-simple generalized tree set automata in order to make clear the interest of
acceptance conditions. For this, compare the sets of generalized tree sets ob-
tained in examples 49.3 and 50 and note that with acceptance conditions, we
can express that a set is non empty.

Example 50. Example 49.3 continued
Let E = {0, 1}2, F = {cons(, ), nil, s(), 0}, and let A′ = (Q′, ∆′, Ω′) be

defined by Q′ = Q, ∆′ = ∆, and Ω′ = {ω ∈ 2Q | Nat
′ ∈ ω}. A′ is deterministic,

not simple, and not complete, and L(A′) is the set of 2-tuples of tree languages
(N ′, L′) where N ′ is a subset of the regular tree language of natural numbers
and L′ is the set of Lisp-like lists of natural numbers over N ′, and N ′ 6= ∅.
Indeed, for a successful r on g, there must be a term t such that r(t) = Nat

′

therefore, there must be a term t labelled by (1, 0), henceforth N ′ 6= ∅.
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5.2.3 Hierarchy of GTSA-recognizable Languages

Let us define:

• RGTS, the class of languages recognizable by GTSA,

• RDGTS, the class of languages recognizable by deterministic GTSA,

• RSGTS, the class of languages recognizable by Simple GTSA.

The three classes defined above are proved to be different. They are also
closely related to classes of languages defined from the set constraint theory
point of view.

RGTS

RDGTS

RSGTS

Figure 5.5: Classes of GTSA-recognizable languages

Classes of GTSA-recognizable languages have also different closure prop-
erties. We will prove in Section 5.3.1 that RSGTS and the entire class RGTS

are closed under union, intersection, projection and cylindrification; RDGTS is
closed under complementation and intersection.

We propose three examples that illustrate the differences between the three
classes. First, RDGTS is not a subset of RSGTS.

Example 51. Let E = {0, 1}, F = {f, a} where a is a constant and f is unary.
Let us consider the deterministic but non-simple GTSA A1 = ({q0, q1}, ∆1, Ω1)
where ∆1 is:

a 0
→ q0, a 1

→ q1,

f(q0) 0
→ q0, f(q1) 0

→ q0,

f(q0) 1
→ q1, f(q1) 1

→ q0.

and Ω1 = {{q0, q1}, {q1}}. Let us prove that

L(A1) = {L | L 6= ∅}

is not in RSGTS.
Assume that there exists a simple GTSA As with n states such that L(A1) =

L(As). Hence, As recognizes also each one of the singleton sets {f i(a)} for i > 0.
Let us consider some i greater than n + 1, we can deduce that a run r on the
GTS g associated with {f i(a)} maps two terms fk(a) and f l(a), k < l < i to
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the same state. We have g(t) = 0 for every term t�f l(a) and r “loops” between
fk(a) and f l(a). Therefore, one can build another run r0 on a GTS g0 such
that g0(t) = 0 for each t ∈ T (F). Since As is simple, and since the range of r0

is a subset of the range of r, g0 is recognized, hence the empty set is recognized
which contradicts the hypothesis.

Basically, using simple GTSA it is not possible to enforce a state to be
assumed somewhere by every run. Consequently, it is not possible to express
global properties of generalized tree languages such as non-emptiness.

Second, RSGTS is not a subset of RDGTS.

Example 52. Let us consider the non-deterministic but simple GTSA A2 =
({qf , qh}, ∆2, Ω2) where ∆2 is:

a 0
→ qf | qh, a 1

→ qf | qh,

f(qf ) 1
→ qf | qh, h(qh) 1

→ qf | qh,

f(qh) 0
→ qf | qh, h(qf ) 0

→ qf | qh,

and Ω2 = 2{qf ,qh}. It is easy to prove that L(A2) = {L | ∀t f(t) ∈ L ⇔ h(t) 6∈
L}. The proof that no deterministic GTSA recognizes L(A2) is left to the reader.

We terminate with an example of a non-deterministic and non-simple gen-
eralized tree set automaton. This example will be used in the proof of Proposi-
tion 36.

Example 53. Let A = (Q, ∆, Ω) be defined by Q = {q, q′}, Ω = {Q}, and ∆ is
the following set of rules:

a 1
→ q ; a 1

→ q′ ; a 0
→ q′ ; f(q) 1

→ q ;
f(q′) 0

→ q′ ; f(q′) 1
→ q′ ; f(q′) 1

→ q ;

The proof that A is not deterministic, not simple, and not complete, and
L(A) = {L ⊆ T (F) | ∃t ∈ T (F) ((t ∈ L) ∧ (∀t′ ∈ T (F) (t � t′)⇒ (t′ ∈ L)))} is
left as an exercise to the reader.

5.2.4 Regular Generalized Tree Sets, Regular Runs

As we mentioned it in Example 49.3, the set recognized by a GTSA may contain
GTS corresponding to non-regular languages. But regularity is of major interest
for practical reasons because it implies a GTS or a language to be finitely defined.

A generalized tree set g ∈ GE is regular if there exist a finite set R, a
mapping α : T (F)→ R, and a mapping β : R→ E satisfying the following two
properties.

1. g = αβ (i.e.g = β ◦ α),
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2. α is closed under contexts, i.e.for all context c and terms t1, t2, we have

(α(t1) = α(t2))⇒ (α(c[t1]) = α(c[t2]))

In the case E = {0, 1}n, regular generalized tree sets correspond to n-tuples
of regular tree languages.

Although the definition of regularity could lead to the definition of regular
run — because a run can be considered as a generalized tree set in GQ, we use
stronger conditions for a run to be regular. Indeed, if we define regular runs
as regular generalized tree sets in GQ, regularity of generalized tree sets and
regularity of runs do not correspond in general. For instance, one could define
regular runs on non-regular generalized tree sets in the case of non-strongly de-
terministic generalized tree set automata, and one could define non-regular runs
on regular generalized tree sets in the case of non-deterministic generalized tree
set automata. Therefore, we only consider regular runs on regular generalized
tree sets:

A run r on a generalized tree set g is regular if r ↑ g ∈ GE×Q

is regular. Consequently, r and g are regular generalized tree sets.

Proposition 33. Let A be a generalized tree set automaton, if g is a regular
generalized tree set in L(A) then there exists a regular A-run on g.

Proof. Consider a generalized tree set automaton A = (Q, ∆, Ω) over E and a
regular generalized tree set g in L(A) and let r be a successful run on g. Let
L be a finite tree language closed under the subterm relation and such that
F0 ⊆ L and r(L) = r(T (F)). The generalized tree set g is regular, therefore
there exist a finite set R, a mapping α : T (F)→ R closed under context and a
mapping β : R→ E such that g = αβ. We now define a regular run r′ on g.

Let L⋆ = L∪{⋆} where ⋆ is a new constant symbol and let φ be the mapping
from T (F) into Q×R×L⋆ defined by φ(t) = (r(t), α(t), u) where u = t if t ∈ L

and u = ⋆ otherwise. Hence R′ = φ(T (F)) is a finite set because R′ ⊆ Q×R×L⋆.
For each ρ in R′, let us fix tρ ∈ T (F) such that φ(tρ) = ρ.

The run r′ is now (regularly) defined via two mappings α′ and β′. Let β′ be
the projection from Q × R × L⋆ into Q and let α′ : T (F) → R′ be inductively
defined by:

∀a ∈ F0 α′(a) = φ(a);

and

∀f ∈ Fp∀t1, . . . , tp ∈ T (F)

α′(f(t1, . . . , tp)) = φ(f(tα′(t1), . . . , tα′(tp))).

Let r′ = α′β′. First we can easily prove by induction that ∀t ∈ L α′(t) = φ(t)
and deduce that ∀t ∈ L r′(t) = r(t). Thus r′ and r coincide on L. It remains
to prove that (1) the mapping α′ is closed under context, (2) r′ is a run on g

and (3) r′ is a successful run.

(1) From the definition of α′ we can easily derive that the mapping α′ is closed
under context.
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(2) We prove that the mapping r′ = α′β′ is a run on g, that is if t = f(t1, . . . , tp)
then (r′(t1), . . . , r

′(tp), f, g(t), r′(t)) ∈ ∆.

Let us consider a term t = f(t1, . . . , tp). From the definitions of α′, β′, and
r′, we get r′(t) = r(t′) with t′ = f(tα′(t1), . . . , tα′(tp)). The mapping r is a run
on g, hence (r(tα′(t1)), . . . , r(tα′(tp)), f, g(t′), r(t′)) ∈ ∆, and thus it suffices to
prove that g(t) = g(t′) and, for all i, r′(ti) = r(tα′(ti)).

Let i ∈ {1, . . . , p}, r′(ti) = β′(α′(ti)) by definition of r′. By definition of tα′(ti),
α′(ti) = φ(tα′(ti)), therefore r′(ti) = β′(φ(tα′(ti))). Now, using the definitions
of φ and β′, we get r′(ti) = r(tα′(ti)).

In order to prove that g(t) = g(t′), we prove that α(t) = α(t′). Let π be
the projection from R′ into R. We have α(t′) = π(φ(t′)) by definition of
φ and π. We have α(t′) = π(α′(t)) using definitions of t′ and α′. Now
α(t′) = π(φ(tα′(t))) because φ(tα′(t)) = α′(t) by definition of tα′(t). And then
α(t′) = α(tα′(t)) by definition of π and φ. Therefore it remains to prove that
α(tα′(t)) = α(t). The proof is by induction on the structure of terms.

If t ∈ F0 then tα′(t) = t, so the property holds (note that this property holds
for all t ∈ L). Let us suppose that t = f(t1, . . . , tp) and α(tα′(ti)) = α(ti) ∀i ∈
{1, . . . , p}. First, using induction hypothesis and closure under context of α,
we get

α(f(t1, . . . , tp)) = α(f(tα′(t1), . . . , tα′(tp)))

Therefore,

α(f(t1, . . . , tp)) = α(f(tα′(t1), . . . , tα′(tp)))

= π(φ(f(tα′(t1), . . . , tα′(tp)))) ( def. of φ and π)

= π(α′(f(t1, . . . , tp))) ( def. of α′)

= π(φ(tα′(f(t1,...,tp)))) ( def. of tα′(f(t1,...,tp)))

= α(tα′(f(t1,...,tp))) ( def. of φ and π).

(3) We have r′(T (F)) = r′(L) = r(L) = r(T (F)) using the definition of r′, the
definition of L, and the equality r′(L) = r(L). The run r is a successful run.
Consequently r′ is a successful run.

Proposition 34. A non-empty recognizable set of generalized tree sets contains
a regular generalized tree set.

Proof. Let us consider a generalized tree set automaton A and a successful run
r on a generalized tree set g. There exists a tree language closed under the
subterm relation F such that r(F ) = r(T (F)). We define a regular run rr on a
regular generalized tree set gg in the following way.

The run rr coincides with r on F : ∀t ∈ F , rr(t) = r(t) and gg(t) = g(t). The
runs rr and gg are inductively defined on T (F)\F : given q1, . . . , qp in r(T (F)),
let us fix a rule f(q1, . . . , qp) l

→ q such that q ∈ r(T (F)). The rule exists since
r is a run. Therefore, ∀t = f(t1, . . . , tp) 6∈ F such that rr(ti) = qi for all i ≤ p,
we define rr(t) = q and gg(t) = l, following the fixed rule f(q1, . . . , qp) l

→ q.
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From the preceding, we can also deduce that a finite and recognizable set of
generalized tree sets only contains regular generalized tree sets.

5.3 Closure and Decision Properties

5.3.1 Closure properties

This section is dedicated to the study of classical closure properties on GTSA-
recognizable languages. For all positive results — union, intersection, projec-
tion, cylindrification — the proofs are constructive. We show that the class of
recognizable sets of generalized tree sets is not closed under complementation
and that non-determinism cannot be reduced for generalized tree set automata.

Set operations on sets of GTS have to be distinguished from set operations
on sets of terms. In particular, in the case where E = {0, 1}n, if G1 and G2 are
sets of GTS in GE , then G1 ∪G2 contains all GTS in G1 and G2. This is clearly
different from the set of all (L1

1 ∪ L2
1, . . . , L

1
n ∪ L2

n) where (L1
1, . . . , L

1
n) belongs

to G1 and (L2
1, . . . , L

2
n) belongs to G2.

Proposition 35. The class RGTS is closed under intersection and union, i.e.if
G1, G2 ⊆ GE are recognizable, then G1 ∪G2 and G1 ∩G2 are recognizable.

This proof is an easy modification of the classical proof of closure properties
for tree automata, see Chapter 1.

Proof. Let A1 = (Q1, ∆1, Ω1) and A2 = (Q2, ∆2, Ω2) be two generalized tree
set automata over E. Without loss of generality we assume that Q1 ∩Q2 = ∅.

Let A = (Q, ∆, Ω) with Q = Q1 ∪Q2, ∆ = ∆1 ∪∆2, and Ω = Ω1 ∪Ω2. It is
immediate that L(A) = L(A1) ∪ L(A2).

We denote by π1 and π2 the projections from Q1 ×Q2 into respectively Q1

and Q2. Let A′ = (Q′, ∆′, Ω′) with Q′ = Q1 ×Q2, ∆′ is defined by

(f(q1, . . . , qp) l
→ q ∈ ∆′)⇔ (∀i ∈ {1, 2} f(πi(q1), . . . , πi(qp)) l

→πi(q) ∈ ∆i) ,

where q1, . . . , qp, q ∈ Q′, f ∈ Fp, l ∈ E, and Ω′ is defined by

Ω′ = {ω ∈ 2Q′

| πi(ω) ∈ Ωi , i ∈ {1, 2}}.

One can easily verify that L(A′) = L(A1) ∩ L(A2) .

Let us remark that the previous constructions also prove that the classRSGTS

is closed under union and intersection.
The class languages recognizable by deterministic generalized tree set au-

tomata is closed under complementation. But, this property is false in the
general case of GTSA-recognizable languages.

Proposition 36. (a) Let A be a generalized tree set automaton, there exists
a complete generalized tree set automaton Ac such that L(A) = L(Ac).

(b) If Acd is a deterministic and complete generalized tree set automaton, there
exists a generalized tree set automaton A′ such that L(A′) = GE−L(Acd).
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(c) The class of GTSA-recognizable languages is not closed under complemen-
tation.

(d) Non-determinism can not be reduced for generalized tree set automata.

Proof. (a) Let A = (Q, ∆, Ω) be a generalized tree set automaton over E and let
q′ be a new state, i.e.q′ 6∈ Q. Let Ac = (Qc, ∆c, Ωc) be defined by Qc = Q∪{q′},
Ωc = Ω, and

∆c = ∆ ∪ {(q1, . . . , qp, f, l, q′) | {(q1, . . . , qp, f, l)} ×Q ∩∆ = ∅;

q1, . . . , qp ∈ Qc, f ∈ Fp, l ∈ E}.

Ac is complete and L(A) = L(Ac). Note that Ac is simple if A is simple.

(b) Acd = (Q, ∆, Ω) be a deterministic and complete generalized tree set
automaton over E. The automaton A′ = (Q′, ∆′, Ω′) with Q′ = Q, ∆′ = ∆,
and Ω′ = 2Q − Ω recognizes the set GE − L(Acd).

(c) E = {0, 1}, F = {c, a} where a is a constant and c is of arity 1. Let
G = {g ∈ G{0,1}n | ∃t ∈ T (F) ((g(t) = 1)∧ (∀t′ ∈ T (F) (t� t′)⇒ (g(t′) = 1)))}.
Clearly, G is recognizable by a non deterministic GTSA (see Example 53). Let
G = G{0,1}n − G, we have G = {g ∈ G{0,1}n | ∀t ∈ T (F) ∃t′ ∈ T (F) (t � t′) ∧

(g(t′) = 0)} and G is not recognizable. Let us suppose that G is recognized
by an automaton A = (Q, ∆, Ω) with Card(Q) = k − 2 and let us consider the
generalized tree set g defined by: g(ci(a)) = 0 if i = k × z for some integer z,
and g(ci(a)) = 1 otherwise. The generalized tree set g is in G and we consider
a successful run r on g. We have r(T (F)) = ω ∈ Ω therefore there exists some
integer n such that r({g(ci(a)) | i ≤ n}) = ω. Moreover we can suppose that n

is a multiple of k. As Card(Q) = k − 2 there are two terms u and v in the set
{ci(a) | n+1 ≤ i ≤ n+k−1} such that r(u) = r(v). Note that by hypothesis, for
all i such that n+1 ≤ i ≤ n+k+1, g(ci(a)) = 1. Consequently, a successful run
g′ could be defined from g on the generalized tree set g′ defined by g′(t) = g(t)
if t = ci(a) when i ≤ n, and g′(t) = 1 otherwise. This leads to a contradiction
because g′ 6∈ G.

(d) This result is a consequence of (b) and (c).

We will now prove the closure under projection and cylindrification. We will
first prove a stronger lemma.

Lemma 8. Let G ⊆ GE1
be a GTSA-recognizable language and let R ⊆ E1×E2.

The set R(G) = {g′ ∈ GE2
| ∃g ∈ G ∀t ∈ T (F) (g(t), g′(t)) ∈ R} is recognizable.

Proof. Let A = (Q, ∆, Ω) such that L(A) = G. Let A′ = (Q′, ∆′, Ω′) where

Q′ = Q, ∆′ = {f(q1, . . . , qp) l′

→ q | ∃l ∈ E1 f(q1, . . . , qp) l
→ q ∈ ∆ and (l, l′) ∈ R}

and Ω′ = Ω. We prove that R(G) = L(A′).

⊇ Let g′ ∈ L(A′) and let r′ be a successful run on g′. We construct a generalized
tree set g such that for all t ∈ T (F), (g(t), g′(t)) ∈ R and such that r′ is
also a successful A-run on g.
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Let a be a constant. According to the definition of ∆′, a g′(a)
→ r′(a) ∈ ∆′

implies that there exists la such that (la, g′(a)) ∈ R and a la→ r′(a) ∈ ∆.
So let g(a) = la.

Let t = f(t1, . . . , tp) with ∀i r′(ti) = qi. There exists a rule f(q1, . . . , qp)
g′(t)
→ r′(t)

in ∆′ because r′ is a run on g′ and again, from the definition of ∆′, there
exists lt ∈ E1 such that f(q1, . . . , qp) lt→ r′(t) in ∆ with (lt(t), g

′(t)) ∈ R.
So, we define g(t) = lt. Clearly, g is a generalized tree set and r′ is a
successful run on g and for all t ∈ T (F), (g(t), g′(t)) ∈ R by construction.

⊆ Let g′ ∈ R(G) and let g ∈ G such that ∀t ∈ T (F) (g(t), g′(t)) ∈ R. One can
easily prove that any successful A-run on g is also a successful A′-run on
g′.

Let us recall that if g is a generalized tree set in GE1×···×En
, the ith projection

of g (on the Ei-component, 1 ≤ i ≤ n) is the GTS πi(g) defined by: let π from
E1 × · · · ×En into Ei, such that π(l1, . . . , ln) = li and let πi(g)(t) = π(g(t)) for
every term t. Conversely, the ith cylindrification of a GTS g denoted by π−1

i (g)
is the set of GTS g′ such that πi(g

′) = g. Projection and cylindrification are
usually extended to sets of GTS.

Corollary 7. (a) The class of GTSA-recognizable languages is closed under
projection and cylindrification.

(b) Let G ⊆ GE and G′ ⊆ GE′ be two GTSA-recognizable languages. The set
G ↑ G′ = {g ↑ g′ | g ∈ G, g′ ∈ G′} is a GTSA-recognizable language in
GE×E′ .

Proof. (a) The case of projection is an immediate consequence of Lemma 8
using E1 = E × E′, E2 = E, and R = π where π is the projection from
E × E′ into E. The case of cylindrification is proved in a similar way.

(b) Consequence of (a) and of Proposition 35 because G ↑ G′ = π−1
1 (G) ∩

π−1
2 (G′) where π−1

1 (respectively π−1
2 ) is the inverse projection from E to

E × E′ (respectively from E′ to E × E′).
Let us remark that the construction preserves simplicity, so RSGTS is closed

under projection and cylindrification.

We now consider the case E = {0, 1}n and we give two propositions without
proof. Proposition 37 can easily be deduced from Corollary 7. The proof of
Proposition 38 is an extension of the constructions made in Examples 49.1 and
49.2.

Proposition 37. Let A and A′ be two generalized tree set automata over
{0, 1}n.

(a) {(L1 ∪ L′
1, . . . , Ln ∪ L′

n) | (L1, . . . , Ln) ∈ L(A) and (L′
1, . . . , L

′
n) ∈ L(A′)}

is recognizable.

(b) {(L1 ∩ L′
1, . . . , Ln ∩ L′

n) | (L1, . . . , Ln) ∈ L(A) and (L′
1, . . . , L

′
n) ∈ L(A′)}

is recognizable.
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(c) {(L1, . . . , Ln) | (L1, . . . , Ln) ∈ L(A)} is recognizable, where Li = T (F) −
Li, ∀i.

Proposition 38. Let E = {0, 1}n and let (F1, . . . , Fn) be a n-tuple of regular
tree languages. There exist deterministic simple generalized tree set automata
A , A′, and A′′ such that

• L(A) = {(F1, . . . , Fn)};

• L(A′) = {(L1, . . . , Ln) | L1 ⊆ F1, . . . , Ln ⊆ Fn};

• L(A′′) = {(L1, . . . , Ln) | F1 ⊆ L1, . . . , Fn ⊆ Ln}.

5.3.2 Emptiness Property

Theorem 44. The emptiness property is decidable in the class of generalized
tree set automata. Given a generalized tree set automaton A, it is decidable
whether L(A) = ∅.

Labels of the generalized tree sets are meaningless for the emptiness deci-
sion thus we consider “label-free” generalized tree set automata. Briefly, the
transition relation of a “label-free” generalized tree set automata is a relation
∆ ⊆ ∪p Qp ×Fp ×Q.

The emptiness decision algorithm for simple generalized tree set automata
is straightforward. Indeed, Let ω be a subset of Q and let COND(ω) be the
following condition:

∀p ∀f ∈ Fp ∀q1, . . . , qp ∈ ω ∃q ∈ ω (q1, . . . , qp, f, q) ∈ ∆

We easily prove that there exists a set ω satisfying COND(ω) if and only if
there exists an A-run. Therefore, the emptiness problem for simple generalized
tree set automata is decidable because 2Q is finite and COND(ω) is decidable.
Decidability of the emptiness problem for simple generalized tree set automata
is NP-complete (see Prop. 39).

The proof is more intricate in the general case, and it is not given in this
book. Without the property of simple GTSA, we have to deal with a reachability
problem of a set of states since we have to check that there exists ω ∈ Ω and a
run r such that r assumes exactly all the states in ω.

We conclude this section with a complexity result of the emptiness problem
in the class of generalized tree set automata.

Let us remark that a finite initial fragment of a “label-free” generalized tree
set corresponds to a finite set of terms that is closed under the subterm relation.
The size or the number of nodes in such an initial fragment is the number of
different terms in the subterm-closed set of terms (the cardinality of the set of
terms). The size of a GTSA is given by:

‖A‖ = |Q|+
∑

f(q1,...,qp) l→ q∈∆

(arity(f) + 3) +
∑

ω∈Ω

|ω|.

Let us consider a GTSA A with n states. The proof shows that one must
consider at most all initial fragments of runs —hence corresponding to finite
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tree languages closed under the subterm relation— of size smaller than B(A),
a polynomial in n, in order to decide emptiness for A. Let us remark that the
polynomial bound B(A) can be computed. The emptiness proofs relies on the
following lemma:

Lemma 9. There exists a polynomial function f of degree 4 such that:

Let A = (Q, ∆, Ω) be a GTSA. There exists a successful run rs such
that rs(T (F)) = ω ∈ Ω if and only if there exists a run rm and a
closed tree language F such that:

• rm(T (F)) = rm(F ) = ω;

• Card(F ) ≤ f(n) where n is the number of states in ω.

Proposition 39. The emptiness problem in the class of (simple) generalized
tree set automata is NP-complete.

Proof. Let A = (Q, ∆, Ω) be a generalized tree set automaton over E. Let
n = Card(Q).

We first give a non-deterministic and polynomial algorithm for deciding
emptiness: (1) take a tree language F closed under the subterm relation such
that the number of different terms in it is smaller than B(A); (2) take a run
r on F ; (3) compute r(F ); (4) check whether r(F ) = ω is a member of Ω; (5)
check whether ω satisfies COND(ω).

From Theorem 44, this algorithm is correct and complete. Moreover, this
algorithm is polynomial in n since (1) the size of F is polynomial in n: step
(2) consists in labeling the nodes of F with states following the rules of the
automaton – so there is a polynomial number of states, step (3) consists in
collecting the states; step (4) is polynomial and non-deterministic and finally,
step (5) is polynomial.

We reduce the satisfiability problem of boolean expressions into the empti-
ness problem for generalized tree set automata. We first build a generalized
tree set automaton A such that L(A) is the set of (codes of) satisfiable boolean
expressions over n variables {x1, . . . , xn}.

Let F = F0∪F1∪F2 where F0 = {x1, . . . , xn}, F1 = {¬}, and F2 = {∧,∨}.
A boolean expression is a term of T (F). Let Bool = {0, 1} be the set of boolean
values. Let A = (Q, ∆, Ω), be a generalized tree set automaton such that
Q = {q0, q1}, Ω = 2Q and ∆ is the following set of rules:

xj
i
→ qi where j ∈ {1, . . . , n} and i ∈ Bool

¬(qi) ¬i
→ q¬i where i ∈ Bool

∨(qi1 , qi2 )
i1∨i2→ qi1∨i2 where i1, i2 ∈ Bool

∧(qi1 , qi2 )
i1∧i2→ qi1∧i2 where i1, i2 ∈ Bool

One can easily prove that L(A) = {Lv | v is a valuation of {x1, . . . , xn}}
where Lv = {t | t is a boolean expression which is true under v}. Lv corresponds
to a run rv on a GTS gv and gv labels each xj either by 0 or 1. Hence, gv can
be considered as a valuation v of x1, . . . , xn. This valuation is extended in gv to
every node, that is to say that every term (representing a boolean expression)
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is labeled either by 0 or 1 accordingly to the usual interpretation of ¬, ∧, ∨. A
given boolean expression is hence labeled by 1 if and only if it is true under the
valuation v.

Now, we can derive an algorithm for the satisfiability of any boolean expres-
sion e: build Ae a generalized tree set automaton such that L(A) is the set of
all tree languages containing e: {L | e ∈ L}; build Ae∩A and decide emptiness.

We get then the reduction because Ae ∩ A is empty if and only if e is not
satisfiable.

Now, it remains to prove that the reduction is polynomial. The size of A
is 2 ∗ n + 10. The size of Ae is the length of e plus a constant. So we get the
result.

5.3.3 Other Decision Results

Proposition 40. The inclusion problem and the equivalence problem for deter-
ministic generalized tree set automata are decidable.

Proof. These results are a consequence of the closure properties under inter-
section and complementation (Propositions 35, 36), and the decidability of the
emptiness property (Theorem 44).

Proposition 41. Let A be a generalized tree set automaton. It is decidable
whether or not L(A) is a singleton set.

Proof. Let A be a generalized tree set automaton. First it is decidable whether
L(A) is empty or not (Theorem 44). Second if L(A) is non empty then a regular
generalized tree set g in L(A) can be constructed (see the proof of Theorem
44). Construct the strongly deterministic generalized tree set automaton A′

such that L(A′) is a singleton set reduced to the generalized tree set g. Finally,

build A∩A
′
to decide the equivalence of A and A′. Note that we can build A

′
,

since A′ is deterministic (see Proposition 36).

Proposition 42. Let L = (L1, . . . , Ln) be a tuple of regular tree language and
let A be a generalized tree set automaton over {0, 1}n. It is decidable whether
L ∈ L(A).

Proof. This result just follows from closure under intersection and emptiness
decidability.

First construct a (strongly deterministic) generalized tree set automaton AL

such that L(A) is reduced to the singleton set {L}. Second, construct A ∩ AL

and decide whether L(A ∩AL) is empty or not.

Proposition 43. Given a generalized tree set automaton over E = {0, 1, }n

and I ⊆ {1, . . . , n}. The following two problems are decidable:

1. It is decidable whether or not there exists (L1, . . . , Ln) in L(A) such that
all the Li are finite for i ∈ I.

2. Let x1 . . . , xn be natural numbers. It is decidable whether or not there
exists (L1, . . . , Ln) in L(A) such that Card(Li) = xi for each i ∈ I.

The proof is technical and not given in this book. It relies on Lemma 9 of
the emptiness decision proof.
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5.4 Applications to Set Constraints

In this section, we consider the satisfiability problem for systems of set con-
straints. We show a decision algorithm using generalized tree set automata.

5.4.1 Definitions

Let F be a finite and non-empty set of function symbols. Let X be a set of
variables. We consider special symbols ⊤, ⊥, ∼, ∪, ∩ of respective arities 0, 0,
1, 2, 2. A set expression is a term in TF ′(X ) where F ′ = F ∪ {⊤,⊥,∼,∪,∩}.

A set constraint is either a positive set constraint of the form e ⊆ e′ or a
negative set constraint of the form e 6⊆ e′ (or ¬(e ⊆ e′)) where e and e′ are set

expressions, and a system of set constraints is defined by
∧k

i=1 SCi where the
SCi are set constraints.

An interpretation I is a mapping from X into 2T (F). It can immediately be
extended to set expressions in the following way:

I(⊤) = T (F);

I(⊥) = ∅;

I(f(e1, . . . , ep)) = f(I(e1), . . . , I(ep));

I(∼ e) = T (F) \ I(e);

I(e ∪ e′) = I(e) ∪ I(e′);

I(e ∩ e′) = I(e) ∩ I(e′).

We deduce an interpretation of set constraints in Bool = {0, 1}, the Boolean
values. For a system of set constraints SC, all the interpretations I such that
I(SC) = 1 are called solutions of SC. In the remainder, we will consider
systems of set constraints of n variables X1, . . . , Xn. We will make no distinction
between a solution I of a system of set constraints and a n-tuple of tree languages
(I(X1), . . . , I(Xn)). We denote by SOL(SC) the set of all solutions of a system
of set constraints SC.

5.4.2 Set Constraints and Automata

Proposition 44. Let SC be a system of set constraints (respectively of positive
set constraints) of n variables X1, . . . , Xn. There exists a deterministic (respec-
tively deterministic and simple) generalized tree set automaton A over {0, 1}n

such that L(A) is the set of characteristic generalized tree sets of the n-tuples
(L1, . . . , Ln) of solutions of SC.

Proof. First we reduce the problem to a single set constraint. Let SC = C1 ∧
. . . ∧ Ck be a system of set constraints. A solution of SC satisfies all the
constraints Ci. Let us suppose that, for every i, there exists a deterministic
generalized tree set automatonAi such that SOL(Ci) = L(A). As all variables in
{X1, . . . , Xn} do not necessarily occur in Ci, using Corollary 7, we can construct
a deterministic generalized tree set automatonAn

i over {0, 1}n satisfying: L(An
i )

is the set of (L1, . . . , Ln) which corresponds to solutions of Ci when restricted
to the variables of Ci. Using closure under intersection (Proposition 35), we can
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construct a deterministic generalized tree set automaton A over {0, 1}n such
that SOL(SC) = L(A).

Therefore we prove the result for a set constraint SC of n variables X1, . . . , Xn.
Let E(exp) be the set of set variables and of set expression exp with a root sym-
bol in F which occur in the set expression exp:

E(exp) =
{

exp′ ∈ TF ′(X ) | exp′ � exp and such that

either Head(exp′) ∈ F or exp′ ∈ X
}

.

If SC ≡ exp1 ⊆ exp2 or SC ≡ exp1 6⊆ exp2 then E(SC) = E(exp1)∪E(exp2).

Let us consider a set constraint SC and let ϕ be a mapping ϕ from E(SC)
into Bool. Such a mapping is easily extended first to any set expression occurring
in SC and second to the set constraint SC. The symbols ∪, ∩, ∼, ⊆ and 6⊆ are
respectively interpreted as ∨, ∧, ¬, ⇒ and ¬ ⇒.

We now define the generalized tree set automaton A = (Q, ∆, Ω) over E =
{0, 1}n.

• The set of states is Q is the set {ϕ | ϕ : E(SC)→ Bool}.

• The transition relation is defined as follows: f(ϕ1, . . . , ϕp) l
→ϕ ∈ ∆ where

ϕ1, . . . , ϕp ∈ Q, f ∈ Fp, l = (l1, . . . , ln) ∈ {0, 1}n, and ϕ ∈ Q satisfies:

∀i ∈ {1, . . . , n} ϕ(Xi) = li (5.6)

∀e ∈ E(SC) \ X (ϕ(e) = 1)⇔

(

e = f(e1, . . . , ep)
∀i 1 ≤ i ≤ p ϕi(ei) = 1

)

(5.7)

• The set of accepting sets of states Ω is defined depending on the case of a
positive or a negative set constraint.

– If SC is positive, Ω = {ω ∈ 2Q | ∀ϕ ∈ ω ϕ(SC) = 1};

– If SC is negative, Ω = {ω ∈ 2Q | ∃ϕ ∈ ω ϕ(SC) = 1}.

In the case of a positive set constraint, we can choose the state set Q = {ϕ |
ϕ(SC) = 1} and Ω = 2Q. Consequently, A is deterministic and simple.

The correctness of this construction is easy to prove and is left to the reader.

5.4.3 Decidability Results for Set Constraints

We now summarize results on set constraints. These results are immediate
consequences of the results of Section 5.4.2. We use Proposition 44 to encode
sets of solutions of systems of set constraints with generalized tree set automata
and then, each point is deduced from Theorem 44, or Propositions 38, 43, 40,
41.
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Properties on sets of solutions

Satisfiability The satisfiability problem for systems of set constraints is decid-
able.

Regular solution There exists a regular solution, that is a tuple of regular
tree languages, in any non-empty set of solutions.

Inclusion, Equivalence Given two systems of set constraints SC and SC′, it
is decidable whether or not SOL(SC) ⊆ SOL(SC′).

Unicity Given a system SC of set constraints, it is decidable whether or not
there is a unique solution in SOL(SC).

Properties on solutions

fixed cardinalities, singletons Given a system SC of set constraints over
(X1, . . . , Xn), I ⊆ {1, . . . , n}, and x1 . . . , xn natural numbers;

• it is decidable whether or not there is a solution (L1, . . . , Ln) ∈
SOL(SC) such that Card(Li) = xi for each i ∈ I.

• it is decidable whether or not all the Li are finite for i ∈ I.

In both cases, proofs are constructive and exhibits a solution.

Membership Given SC a system of set constraints over (X1, . . . , Xn) and a
n-tuple (L1, . . . , Ln) of regular tree languages, it is decidable whether or
not (L1, . . . , Ln) ∈ SOL(SC).

Proposition 45. Let SC be a system of positive set constraints, it is decidable
whether or not there is a least solution in SOL(SC).

Proof. Let SC be a system of positive set constraints. Let A be the deter-
ministic, simple generalized tree set automaton over {0, 1}n such that L(A) =
SOL(SC) (see Proposition 44). We define a partial ordering � on G{0,1}n by:

∀l, l′ ∈ {0, 1}n l � l′ ⇔ (∀i l(i) ≤ l′(i))
∀g, g′ ∈ G{0,1}n g � g′ ⇔ (∀t ∈ T (F) g(t) � g′(t))

The problem we want to deal with is to decide whether or not there exists a
least generalized tree set w.r.t.� in L(A). To this aim, we first build a minimal
solution if it exists, and second, we verify that this solution is unique.

Let ω be a subset of states such that COND(ω) (see the sketch of proof
page 160). Let Aω = (ω, ∆ω, 2ω) be the generalized tree set automaton A
restricted to state set ω.

Now let ∆ω
min defined by: for each (q1, . . . , qp, f) ∈ ωp ×Fp, choose in the

set ∆ω one rule (q1, . . . , qp, f, l, q) such that l is minimal w.r.t.�. Let Aω
min =

(ω, ∆ω
min, 2ω). Consequently,

1. There exists only one run rω on a unique generalized tree set gω in
Aω

min because for all q1, . . . , qp ∈ ω and f ∈ Fp there is only one rule
(q1, . . . , qp, f, l, q) in ∆ω

min;

2. the run rω on gω is regular;
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3. the generalized tree set gω is minimal w.r.t.� in L(Aω).

Points 1 and 2 are straightforward. The third point follows from the fact
that A is deterministic. Indeed, let us suppose that there exists a run r′ on a
generalized tree set g′ such that g′ ≺ gω. Therefore, ∀t g′(t) � gω(t), and there
exists (w.l.o.g.) a minimal term u = f(u1, . . . , up) w.r.t.the subterm ordering
such that g′(u) ≺ gω(u). Since A is deterministic and ∀v � u gω(v) = g′(v), we
have rω(ui) = r′(ui). Hence, the rule (rω(u1), . . . , rω(up), f, gω(u), rω(u)) is not
such that gω(u) is minimal in ∆ω, which contradicts the hypothesis.

Consider the generalized tree sets gω for all subsets of states ω satisfying
COND(ω). If there is no such gω, then there is no least generalized tree set g

in L(A). Otherwise, each generalized tree set defines a n-tuple of regular tree
languages and inclusion is decidable for regular tree languages. Hence we can
identify a minimal generalized tree set g among all gω. This GTS g defines a
n-tuple (F1, . . . , Fn) of regular tree languages. Let us remark this construction
does not ensure that (F1, . . . , Fn) is minimal in L(A).

There is a deterministic, simple generalized tree set automaton A′ such that
L(A′) is the set of characteristic generalized tree sets of all (L1, . . . , Ln) satis-
fying F1 ⊆ L1, . . . , Fn ⊆ Ln (see Proposition 38). Let A′′ be the deterministic
generalized tree set automaton such that L(A′′) = L(A) ∩ L(A′) (see Proposi-
tion 35). There exists a least generalized tree set w.r.t.� in L(A) if and only if
the generalized tree set automata A and A′′ are equivalent. Since equivalence
of generalized tree set automata is decidable (see Proposition 40) we get the
result.

5.5 Bibliographical Notes

We now survey decidability results for satisfiability of set constraints and some
complexity issues.

Decision procedures for solving set constraints arise with [Rey69], and Mishra
[Mis84]. The aim of these works was to obtain new tools for type inference and
type checking [AM91, Hei92, HJ90b, JM79, Mis84, Rey69].

First consider systems of set constraints of the form:

X1 = exp1, . . . , Xn = expn (5.8)

where the Xi are distinct variables and the expi are disjunctions of set expres-
sions of the form f(Xi1 , . . . , Xip

) with f ∈ Fp. These systems of set constraints
are essentially tree automata, therefore they have a unique solution and each
Xi is interpreted as a regular tree language.

Suppose now that the expi are set expressions without complement symbols.
Such systems are always satisfiable and have a least solution which is regular.
For example, the system

Nat = s(Nat) ∪ 0
X = X ∩ Nat

List = cons(X, List) ∪ nil

has a least solution

Nat = {si(0) | i ≥ 0} , X = ∅ , List = {nil}.
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[HJ90a] investigate the class of definite set constraints which are of the form
exp ⊆ exp′, where no complement symbol occurs and exp′ contains no set opera-
tion. Definite set constraints have a least solution whenever they have a solution.
The algorithm presented in [HJ90a] provides a specific set of transformation
rules and, when there exists a solution, the result is a regular presentation of
the least solution, in other words a system of the form (5.8).

Solving definite set constraints is EXPTIME-complete [CP97]. Many devel-
opments or improvements of Heinzte and Jaffar’s method have been proposed
and some are based on tree automata [DTT97].

The class of positive set constraints is the class of systems of set constraints
of the form exp ⊆ exp′, where no projection symbol occur. In this case, when a
solution exists, set constraints do not necessarily have a least solution. Several
algorithms for solving systems in this class were proposed, [AW92] generalize
the method of [HJ90a], [GTT93, GTT99] give an automata-based algorithm,
and [BGW93] use the decision procedure for the first order theory of monadic
predicates. Results on the computational complexity of solving systems of set
constraints are presented in a paper of [AKVW93]. The systems form a natural
complexity hierarchy depending on the number of elements of F of each arity.
The problem of existence of a solution of a system of positive set constraints is
NEXPTIME-complete.

The class of positive and negative set constraints is the class of systems of set
constraints of the form exp ⊆ exp′ or exp 6⊆ exp′, where no projection symbol
occur. In this case, when a solution exists, set constraints do not necessarily
have, neither a minimal solution, nor a maximal solution. Let F = {a, b()}.
Consider the system (b(X) ⊆ X) ∧ (X 6⊆ ⊥), this system has no minimal
solution. Consider the system (X ⊆ b(X) ∪ a) ∧ (⊤ 6⊆ X), this system has
no maximal solution. The satisfiability problem in this class turned out to
be much more difficult than the positive case. [AKW95] give a proof based
on a reachability problem involving Diophantine inequalities. NEXPTIME-
completeness was proved by [Ste94]. [CP94a] gives a proof based on the ideas
of [BGW93].

The class of positive set constraints with projections is the class of systems of
set constraints of the form exp ⊆ exp′ with projection symbols. Set constraints
of the form f−1

i (X) ⊆ Y can easily be solved, but the case of set constraints of
the form X ⊆ f−1

i (Y ) is more intricate. The problem was proved decidable by
[CP94b].

The expressive power of these classes of set constraints have been studied and
have been proved to be different [Sey94]. In [CK96, Koz93], an axiomatization is
proposed which enlightens the reader on relationships between many approaches
on set constraints.

Furthermore, set constraints have been studied in a logical and topological
point of view [Koz95, MGKW96]. This last paper combine set constraints with
Tarskian set constraints, a more general framework for which many complexity
results are proved or recalled. Tarskian set constraints involve variables, relation
and function symbols interpreted relative to a first order structure.

Topological characterizations of classes of GTSA recognizable sets, have also
been studied in [Tom94, Sey94]. Every set in RSGTS is a compact set and every
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set in RGTS is the intersection between a compact set and an open set. These
remarks give also characterizations for the different classes of set constraints.
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and automata with constraints. Journal of Symbolic Computation,
20:215–233, 1995.

[DGN+98] A. Degtyarev, Y. Gurevich, P. Narendran, M. Veanes, and
A. Voronkov. The decidability of simultaneous rigid e-unification
with one variable. In T. Nipkow, editor, 9th International Con-
ference on Rewriting Techniques and Applications, volume 1379 of
Lecture Notes in Computer Science, 1998.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Com-
puter Science, volume B, chapter Rewrite Systems, pages 243–320.
Elsevier, 1990.

[DM97] I. Durand and A. Middeldorp. Decidable call by need computations
in term rewriting. In W. McCune, editor, Proc. 14th Conference on
Automated Deduction, volume 1249 of Lecture Notes in Artificial
Intelligence, pages 4–18. Springer Verlag, 1997.

[Don65] J. E. Doner. Decidability of the weak second-order theory of two
successors. Notices Amer. Math. Soc., 12:365–468, March 1965.

[Don70] J. E. Doner. Tree acceptors and some of their applications. Journal
of Comput. and Syst. Sci., 4:406–451, 1970.

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems
is decidable. In Proceedings, Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 242–248. IEEE Computer Soci-
ety Press, 4–7 June 1990.

[DT92] M. Dauchet and S. Tison. Structural complexity of classes of tree
languages. In M. Nivat and A. Podelski, editors, Tree Automata
and Languages, pages 327–353. Elsevier Science, 1992.

[DTHL87] M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne. Decidability
of the confluence of ground term rewriting systems. In Proceed-
ings, Symposium on Logic in Computer Science, pages 353–359.
The Computer Society of the IEEE, 22–25 June 1987.

TATA — September 6, 2005 —



BIBLIOGRAPHY 211

[DTT97] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set
constraints with tree automata. In G. Smolka, editor, Proceedings
of the 3th International Conference on Principles and Practice of
Constraint Programming, volume 1330 of Lecture Notes in Com-
puter Science, pages 62–76, oct 1997.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations. a
comparision. Mathematical System Theory, 9:198–231, 1975.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead.
Mathematical System Theory, 10:198–231, 1977.

[Eng78] J. Engelfriet. A hierarchy of tree transducers. In Proceedings of the
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regular, 22

generalized tree set automaton, 18,
see GTSA

ground substitution, 11
ground terms, 9
GTS, see generalized tree set
GTSA

complete, 19
deterministic, 19
run, 18
simple, 19
strongly deterministic, 19
sucessful run, 18

height, 10

linear, 9
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program analysis, 14
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set constraints, 13
size, 10
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subterm ordering, 10

terms, 9
tree, 9

tree automaton
generalized, see GTSA

type inference, 14

variable position, 10
variables, 9

TATA — September 6, 2005 —


