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Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can
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10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as
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a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.
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Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F , Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(, ) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X ) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X ) and
- X ⊆ T (F ,X ) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f(t1, . . . , tp) ∈ T (F ,X ).
If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X ) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(, ), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X ) may be viewed as a finite
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14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X ) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X ) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t � t′ if t′ is a subterm
of t. We denote t � t′ if t � t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t � t′ ⇒ t′ ∈ F ).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑

i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, , ), g(, ), h(), a, b} and X = {x, y}. Consider the
terms
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t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X ) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X ), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X ) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X ) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X ). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, , ), g(, ), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).
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Chapter 6

Tree Transducers

6.1 Introduction

Finite state transformations of words, also called a-transducers or rational trans-
ducers in the literature, model many kinds of processes, such as coffee machines
or lexical translators. But these transformations are not powerful enough to
model syntax directed transformations, and compiler theory is an important
motivation to the study of finite state transformations of trees. Indeed, trans-
lation of natural or computing languages is directed by syntactical trees, and a
translator from LATEXinto HTML is a tree transducer. Unfortunately, from a
theoretical point of view, tree transducers do not inherit nice properties of word
transducers, and the classification is very intricate. So, in the present chapter
we focus on some aspects. In Sections 6.2 and 6.3, toy examples introduce in
an intuitive way different kinds of transducers. In Section 6.2, we summarize
main results in the word case. Indeed, this book is mainly concerned with trees,
but the word case is useful to understand the tree case and its difficulties. The
bimorphism characterization is the ideal illustration of the link between the
“machine” point of view and the “homomorphic” one. In Section 6.3, we moti-
vate and illustrate bottom-up and top-down tree transducers, using compilation
as leitmotiv. We precisely define and present the main classes of tree transduc-
ers and their properties in Section 6.4, where we observe that general classes
are not closed under composition, mainly because of alternation of copying and
nondeterministic processing. Nevertheless most useful classes, as those used in
Section 6.3, have closure properties. In Section 6.5 we present the homomorphic
point of view.

Most of the proofs are tedious and are omitted. This chapter is a very incom-
plete introduction to tree transducers. Tree transducers are extensively studied
for themselves and for various applications. But as they are somewhat compli-
cated objects, we focus here on the definitions and main general properties. It is
usefull for every theoretical computer scientist to know main notions about tree
transducers, because they are the main model of syntax directed manipulations,
and that the heart of sofware manipulations and interfaces are syntax directed.
Tree transducers are an essential frame to develop practical modular syntax di-
rected algorithms, thought an effort of algorithmic engineering remains to do.
Tree transducers theory can be fertilized by other area or can be usefull for
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other areas (example: Ground tree transducers for decidability of the first order
theory of ground rewriting). We will be happy if after reading this chapter,
the reader wants for further lectures, as monograph of Z. Fülöp and H. Vögler
(december 1998 [FV98]).

6.2 The Word Case

6.2.1 Introduction to Rational Transducers

We assume that the reader roughly knows popular notions of language theory:
homomorphisms on words, finite automata, rational expressions, regular gram-
mars. See for example the recent survey of A. Mateescu and A. Salomaa [MS96].
A rational transducer is a finite word automaton W with output. In a word
automaton, a transition rule f(q)→ q′(f) means “if W is in some state q, if it
reads the input symbol f , then it enters state q′ and moves its head one symbol
to the right”. For defining a rational transducer, it suffices to add an output,
and a transition rule f(q) → q′(m) means “if the transducer is in some state
q, if it reads the input symbol f , then it enters state q′, writes the word m on
the output tape, and moves its head one symbol to the right”. Remark that
with these notations, we identify a finite automaton with a rational transducer
which writes what it reads. Note that m is not necessarily a symbol but can
be a word, including the empty word. Furthermore, we assume that it is not
necessary to read an input symbol, i.e.we accept transition rules of the form
ε(q)→ q′(m) (ε denotes the empty word).

Graph presentations of finite automata are popular and convenient. So it is
for rational transducers. The rule f(q)→ q′(m) will be drawn

f/m
q q′

Example 54. (Language L1) Let F = {〈, 〉, ; , 0, 1, A, ..., Z}. In the following,
we will consider the language L1 defined on F by the regular grammar (the
axiom is program):
program → 〈 instruct
instruct → LOAD register | STORE register | MULT register

→ | ADD register
register → 1tailregister
tailregister → 0tailregister | 1tailregister | ; instruct | 〉

( a→ b|c is an abbreviation for the set of rules {a→ b, a→ c})
L1 is recognized by deterministic automaton A1 of Figure 6.1. Semantic of

L1 is well known: LOAD i loads the content of register i in the accumulator;
STORE i stores the content of the accumulator in register i; ADD i adds in the
accumulator the content of the accumulator and the content of register i; MULT
i multiplies in the accumulator the content of the accumulator and the content
of register i.
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D

TS

〈

end

Begin

Instruct

O AL

Tailregister

Register

A

M

O R E

TLU

D D
1

0,1

〉

;

Figure 6.1: A recognizer of L1
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A rational transducer is a tuple R = (Q,F ,F ′, Qi, Qf , ∆) where Q is a set
of states, F and F ′ are finite nonempty sets of input letters and output letters,
Qi, Qf ⊆ Q are sets of initial and final states and ∆ is a set of transduction
rules of the following type:

f(q)→ q′(m),

where f ∈ F ∪ {ε} , m ∈ F ′∗ , q, q′ ∈ Q.
R is ε-free if there is no rule f(q)→ q′(m) with f = ε in ∆.
The move relation →R is defined by: let t, t′ ∈ F∗, u ∈ F ′∗ , q, q′ ∈ Q,

f ∈ F , m ∈ F ′∗ ,

(tqft′, u)→
R

(tfq′t, um)⇔ f(q)→ q′(m) ∈ ∆,

and →∗
R is the reflexive and transitive closure of →R. A (partial) transduction

of R on tt′t′′ is a sequence of move steps of the form (tqt′t′′, u)→∗
R(tt′q′t′′, uu′).

A transduction of R from t ∈ F∗ into u ∈ F ′∗ is a transduction of the form
(qt, ε)→∗

R(tq′, u) with q ∈ Qi and q′ ∈ Qf .
The relation TR induced by R can now be formally defined by:

TR = {(t, u) | (qt, ε)
∗
→
R

(tq′, u) with t ∈ F∗, u ∈ F ′∗ , q ∈ Qi, q
′ ∈ Qf}.

A relation in F∗ ×F ′∗ is a rational transduction if and only if it is induced
by some rational transducer. We also need the following definitions: let t ∈ F∗,
TR(t) = {u | (t, u) ∈ TR}. The translated of a language L is obviously the
language defined by TR(L) = {u | ∃t ∈ L, u ∈ TR(t)}.

Example 55.
Ex. 55.1 Let us name French-L1 the translation of L1 in French (LOAD is

translated into CHARGER and STORE into STOCKER). Transducer of Figure 6.2
realizes this translation. This example illustrates the use of rational trans-
ducers as lexical transducers.

Ex. 55.2 Let us consider the rational transducer Diff defined by Q = {qi, qs, ql, qd},
F = F ′ = {a, b}, Qi = {qi}, Qf = {qs, ql, qd}, and ∆ is the set of rules:

type i a(qi)→ qi(a), b(qi)→ qi(b)

type s ε(qi)→ qs(a), ε(qi)→ qs(b), ε(qs)→ qs(a), ε(qs)→ qs(b)

type l a(qi)→ ql(ε), b(qi)→ ql(ε), a(ql)→ ql(ε), b(ql)→ ql(ε)

type d a(qi) → qd(b), b(qi) → qd(a), a(qd) → qd(ε), b(qd) → qd(ε),
ε(qd)→ qd(a), ε(qd)→ qd(b).

It is easy to prove that TDiff = {(m, m′) | m 6= m′, m, m′ ∈ {a, b}∗}.

We give without proofs some properties of rational transducers. For more
details, see [Sal73] or [MS96] and Exercises 65, 66, 68 for 1, 4 and 5. The
homomorphic approach presented in the next section can be used as an elegant
way to prove 2 and 3 (Exercise 70).

Proposition 46 (Main properties of rational transducers).
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〉/〉

end

Begin

Instruct

O/ε

Tailregister

Register

A/ε

R/ε

L/ε

D/ε
0/0

;/;

1/1

D/CHARGERA/ε

S/ε T/ε 0/ε

1/1

D/ε

T/MULTM/ε U/ε

L/ε

〈/〈

E/STOCKER

Figure 6.2: A rational transducer from L1 into French-L1.
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1. The class of rational transductions is closed under union but not closed
under intersection.

2. The class of rational transductions is closed under composition.

3. Regular languages and context-free languages are closed under rational
transduction.

4. Equivalence of rational transductions is undecidable.

5. Equivalence of deterministic rational transductions is decidable.

6.2.2 The Homomorphic Approach

A bimorphism is defined as a triple B = (Φ, L, Ψ) where L is a recognizable
language and Φ and Ψ are homomorphisms. The relation induced by B (also
denoted by B) is defined by B = {(Φ(t), Ψ(t)) | t ∈ L}. Bimorphism (Φ, L, Ψ)
is ε-free if Φ is ε-free (an homomorphism is ε-free if the image of a letter is
never reduced to ε). Two bimorphisms are equivalent if they induce the same
relation.

We can state the following theorem, generally known as Nivat Theorem [Niv68]
(see Exercises 69 and 70 for a sketch of proof).

Theorem 45 (Bimorphism theorem). Given a rational transducer, an equiv-
alent bimorphism can be constructed. Conversely, any bimorphism defines a
rational transduction. Construction preserve ε-freeness.

Example 56.

Ex. 56.1 The relation {(a(ba)n, an) | n ∈ N} ∪ {((ab)n, b3n) | n ∈ N} is
processed by transducer R and bimorphism B of Figure 6.3

b/ε

a/a

a/ε

a/ε

a/ε

b/bbbb/bbb

Φ(A) = a

Φ(B) = ba

Φ(C) = ab

Ψ(A) = ε

Ψ(B) = a

Ψ(C) = bbb

C

B

C

A

ΨΦ

Figure 6.3: Transducer R and an equivalent bimorphism B = {(Φ(t), Ψ(t)) | t ∈
AB∗ + CC∗}.

Ex. 56.2 Automaton L of Figure 6.4 and morphisms Φ and Ψ bellow define
a bimorphism equivalent to transducer of Figure 6.2
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Φ(β) = 〈 Φ(λ) = LOAD Φ(σ) = STORE Φ(µ) = MULT

Φ(α) = ADD Φ(ρ) =; Φ(ω) = 1 Φ(ζ) = 0
Φ(θ) =〉
Ψ(β) = 〈 Ψ(λ) = CHARGER Ψ(σ) = STOCKER Ψ(µ) = MULT

Ψ(α) = ADD Ψ(ρ) =; Ψ(ω) = 1 Ψ(ζ) = 0
Ψ(θ) =〉

θ
end

Register

Instruct

Tailregister

Begin λ, σ, µ, α

β

ρ

ω

ζ, ω

Figure 6.4: The control automaton L.

Nivat characterization of rational transducers makes intuitive sense. Au-
tomaton L can be seen as a control of the actions, morphism Ψ can be seen as
output function and Φ−1 as an input function. Φ−1 analyses the input — it is
a kind of part of lexical analyzer — and it generates symbolic names; regular
grammatical structure on theses symbolic names is controlled by L. Exam-
ples 56.1 and 56.2 are an obvious illustration. L is the common structure to
English and French versions, Φ generates the English version and Ψ generates
the French one. This idea is the major idea of compilation, but compilation of
computing languages or translation of natural languages are directed by syntax,
that is to say by syntactical trees. This is the motivation of the rest of the chap-
ter. But unfortunately, from a formal point of view, we will lose most of the
best results of the word case. Power of non-linear tree transducers will explain
in part this complication, but even in the linear case, there is a new phenom-
ena in trees, the understanding of which can be introduced by the “problem of
homomorphism inversion” that we describe in Exercise 71.

6.3 Introduction to Tree Transducers

Tree transducers and their generalizations model many syntax directed trans-
formations (see exercises). We use here a toy example of compiler to illustrate
how usual tree transducers can be considered as modules of compilers.

We consider a simple class of arithmetic expressions (with usual syntax) as
source language. We assume that this language is analyzed by a LL1 parser. We
consider two target languages: L1 defined in Example 54 and an other language
L2. A transducer A translates syntactical trees in abstract trees (Figure 6.5).
A second tree transducer R illustrates how tree transducers can be seen as
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part of compilers which compute attributes over abstract trees. It decorates
abstract trees with numbers of registers (Figure 6.7). Thus R translates abstract
trees into attributed abstract trees. After that, tree transducers T1 and T2

generate target programs in L1 and L2, respectively, starting from attributed
abstract trees (Figures 6.7 and 6.8). This is an example of nonlinear transducer.
Target programs are yields of generated trees. So composition of transducers
model succession of compilation passes, and when a class of transducers is closed
by composition (see section 6.4), we get universal constructions to reduce the
number of compiler passes and to meta-optimize compilers.

We now define the source language. Let us consider the terminal alphabet
{(, ), +,×, a, b, . . . , z}. First, the context-free word grammar G1 is defined by
rules (E is the axiom):

E → M |M + E
M → F | F ×M
F → I | (E)
I → a | b | · · · | z

Another context-free word grammar G2 is defined by (E is the axiom):

E → ME′

E′ → +E | ε
M → FM ′

M ′ → ×M | ε
F → I | (E)
I → a | b | · · · | z

Let E be the axiom of G1 and G2. The semantic of these two grammars
is obvious. It is easy to prove that they are equivalent, i.e.they define the
same source language. On the one hand, G1 is more natural, on the other
hand G2 could be preferred for syntactical analysis reason, because G2 is LL1

and G1 is not LL. We consider syntactical trees as derivation trees for the
tree grammar G2. Let us consider word u = (a + b) × c. u of the source
language. We define the abstract tree associated with u as the tree ×(+(a, b), c)
defined over F = {+(, ),×(, ), a, b, c}. Abstract trees are ground terms over
F . Evaluate expressions or compute attributes over abstract trees than over
syntactical trees. The following transformation associates with a syntactical
tree t its corresponding abstract tree A(t).

I(x) → x F (x) → x
M(x, M ′(ε)) → x E(x, E′(ε)) → x

M(x, M ′(×, y)) → ×(x, y) E(x, E′(+, y)) → +(x, y)
F ((, x, )) → x

We have not precisely defined the use of the arrow →, but it is intuitive.
Likewise we introduce examples before definitions of different kinds of tree trans-
ducers (section 6.4 supplies a formal frame).

To illustrate nondeterminism, let us introduce two new transducers A and A′.
Some brackets are optional in the source language, hence A′ is nondeterministic.
Note that A works from frontier to root and A′ works fromm root to frontier.
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A: an Example of Bottom-up Tree Transducer

The following linear deterministic bottom-up tree transducer A carries out
transformation of derivation trees for G2 into the corresponding abstract trees.
Empty word ε is identified as a constant symbol in syntactical trees. States of
A are q, qε, qI , qF , qM ′ε, qE′ε, qE , q×, qM ′×, q+, qE′+, q(, and q). Final state is
qE . The set of transduction rules is:

a → q(a) b → q(b)
c → q(c) ε → qε(ε)
) → q)()) ( → q((()

+ → q+(+) × → q×(×)
I(q(x)) → qI(x) F (qI(x)) → qF (x)

M ′(qε(x)) → qM ′ε(x) E′(qε(x)) → qE′ε(x)
M(qF (x), qM ′ε(y)) → qM (x) E(qM (x), qE′ε(y)) → qE(x)
M ′(q×(x), qM (y)) → qM ′×(y) M(qF (x), qM ′×(y)) → qM (×(x, y))
E′(q+(x), qE(y)) → qE′+(y) E(qM (x), qE′+(y)) → qE(+(x, y))

F (q((x), qE(y), q)(z)) → qF (y)

The notion of (successful) run is an intuitive generalization of the notion
of run for finite tree automata. The reader should note that FTAs can be
considered as a special case of bottom-up tree transducers whose output is equal
to the input. We give in Figure 6.5 an example of run of A which translates
derivation tree t which yields (a + b)× c for context-free grammar G2 into the
corresponding abstract tree ×(+(a, b), c).

t→∗
A

(

q(

a

qM

b

qE′+

E

)

q)

F

ε

qM ′×

M

c

qE′ε

E

→∗
A

a b

+

qF

ε

qM ′×

M

c

qE′ε

E

→∗
A

a b

+ c

×

qE

Figure 6.5: Example of run of A

A
′: an Example of Top-down Tree Transducer

The inverse transformation A−1, which computes the set of derivation trees of
G2 associated with an abstract tree, is computed by a nondeterministic top-
down tree transducer A′. The states of A′ are qE , qF , qM . The initial state is
qE . The set of transduction rules is:
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qE(x) → E(qM (x), E′(ε)) qE(+(x, y)) → E(qM (x), E′(+, qE(y)))
qM (x) → M(qF (x), M ′(ε)) qM (×(x, y)) → M(qF (x), M ′(×, qM (y)))
qF (x) → F ((, qE(x), )) qF (a) → F (I(a))
qF (b) → F (I(b)) qF (c) → F (I(c))

Transducer A′ is nondeterministic because there are ε-rules like qE(x) →
E(qM (x), E′(ε)). We give in Figure 6.6 an example of run of A′ which transforms
abstract tree +(a,×(b, c)) into a syntactical tree t′ of the word a + b× c.

a

b c

×

+

qE

→A′

a

qM

+

b c

×

qE

E′

E

→∗
A′

a

I

F

ε

M ′

M

+

b c

×

qE

E′

E

→∗
A′ t′

Figure 6.6: Example of run of A′

Compilation

The compiler now transforms abstract trees into programs for some target lan-
guages. We consider two target languages. The first one is L1 of Example 54.
To simplify, we omit “;”, because they are not necessary — we introduced semi-
colons in Section 6.2 to avoid ε-rules, but this is a technical detail, because word
(and tree) automata with ε-rules are equivalent to usual ones. The second target
language is an other very simple language L2, namely sequences of two instruc-
tions +(i, j, k) (put the sum of contents of registers i and j in the register k) and
×(i, j, k). In a first pass, we attribute to each node of the abstract tree the min-
imal number of registers necessary to compute the corresponding subexpression
in the target language. The second pass generates target programs.

First pass: computation of register numbers by a deterministic linear bottom-
up transducer R.

States of a tree automaton can be considered as values of (finitely val-
ued) attributes, but formalism of tree automata does not allow decorating
nodes of trees with the corresponding values. On the other hand, this dec-
oration is easy with a transducer. Computation of finitely valued inherited
(respectively synthesized) attributes is modeled by top-down (respectively
bottom-up) tree transducers. Here, we use a bottom-up tree transducer
R. States of R are q0, . . . , qn. All states are final states. The set of rules
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is:

a → q0(a) b → q0(b)
c → q0(c)

+(qi(x), qi(y)) → qi+1(
+
i+1(x, y)) ×(qi(x), qi(y)) → qi+1(

+
i 1× (x, y))

if i > j
+(qi(x), qj(y)) → qi(

+
i (x, y) ×(qi(x), qj(y)) → qi(

×
i (x, y))

if i < j, we permute the order of subtrees
+(qi(x), qj(y)) → qj(

+
j (y, x)) ×(qi(x), qj(y)) → qj(

×
j (y, x))

A run t→∗
R qi(u) means that i registers are necessary to evaluate t. Root

of t is then relabelled in u by symbol +
i or ×

i .

Second pass: generation of target programs in L1 or L2, by top-down de-
terministic transducers T1 and T2. T1 contains only one state q. Set
of rules of T1 is:

q( +
i (x, y)) → ⋄(q(x), STOREi, q(y), ADDi, STOREi)

q(×
i (x, y)) → ⋄(q(x), STOREi, q(y), MULTi, STOREi)

q(a) → ⋄(LOAD, a)
q(b) → ⋄(LOAD, b)
q(c) → ⋄(LOAD, c)

where ⋄(, , , , ) and ⋄(, ) are new symbols.

State set of T2 is {q, q′} where q′ is the initial state. Set of rules of T2 is:

q( +
i (x, y)) → #(q(x), q(y), +, (, q′(x), q′(y), i, )) q′( +

i (x, y)) → i
q(×

i (x, y)) → #(q(x), q(y),×, (, q′(x), q′(y), i, )) q′(×
i (x, y)) → i

q(a) → ε q′(a) → a
q(b) → ε q′(b) → b
q(c) → ε q′(c) → c

where # is a new symbol of arity 8.

The reader should note that target programs are words formed with leaves
of trees, i.e.yields of trees. Examples of transductions computed by T1 and
T2 are given in Figures 6.7 and 6.8. The reader should also note that T1

is an homomorphism. Indeed, an homomorphism can be considered as
a particular case of deterministic transducer, namely a transducer with
only one state (we can consider it as bottom-up as well as top-down). The
reader should also note that T2 is deterministic but not linear.

6.4 Properties of Tree Transducers

6.4.1 Bottom-up Tree Transducers

We now give formal definitions. In this section, we consider academic examples,
without intuitive semantic, to illustrate phenomena and properties. Tree trans-
ducers are both generalization of word transducers and tree automata. We first
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a

b c

+ d

×

+

→∗
R

a

b c

+
1 d

×
1

+
1

q1

= q1(u).

q(u)→∗
T1

L b

⋄ S1

L c

⋄ A1 S1

⋄ S1

L d

⋄ M1 S1

⋄ S1

L a

⋄ A1 S1

⋄

where L stands for LOAD, S stands for STORE, A stands for ADD, M stands for MULT.
The corresponding program is the yield of this tree:
LOADb STORE1 LOADc ADD1 STORE1 STORE1 LOADd MULT1 STORE1 STORE1 LOADa
ADD1 STORE1

Figure 6.7: Decoration with synthesized attributes of an abstract tree, and
translation into a target program of L1.

q(u)→∗
T2

ε ε + ( b c 1 )

♯ ε × ( 1 d 1 )

♯ ε + ( 1 a 1 )

♯

The corresponding program is the yield of this tree: +(bc1)× (1d1) + (1a1)

Figure 6.8: Translation of an abstract tree into a target program of L2
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consider bottom-up tree transducers. A transition rule of a NFTA is of the type
f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)). Here we extend the definition (as we
did in the word case), accepting to change symbol f into any term.

A bottom-up Tree Transducer (NUTT) is a tuple U = (Q,F ,F ′, Qf , ∆)
where Q is a set of (unary) states, F and F ′ are finite nonempty sets of input
symbols and output symbols, Qf ⊆ Q is a set of final states and ∆ is a set of
transduction rules of the following two types:

f(q1(x1), . . . , qn(xn))→ q(u) ,

where f ∈ Fn, u ∈ T (F ′,Xn), q, q1, . . . , qn ∈ Q , or

q(x1)→ q′(u) (ε-rule),

where u ∈ T (F ′,X1), q, q′ ∈ Q.
As for NFTA, there is no initial state, because when a symbol is a leave a

(i.e.a constant symbol), transduction rules are of the form a → q(u), where
u is a ground term. These rules can be considered as “initial rules”. Let
t, t′ ∈ T (F ∪ F ′ ∪Q). The move relation →U is defined by:

t→
U

t′ ⇔























∃f(q1(x1), . . . , qn(xn))→ q(u) ∈ ∆
∃C ∈ C(F ∪ F ′ ∪Q)
∃u1, . . . , un ∈ T (F ′)
t = C[f(q1(u1), . . . , qn(un))]
t′ = C[q(u{x1←u1, . . . , xn←un})]

This definition includes the case of ε-rule as a particular case. The reflexive
and transitive closure of →U is →∗

U . A transduction of U from a ground term
t ∈ T (F) to a ground term t′ ∈ T (F ′) is a sequence of move steps of the form
t→∗

U q(t′), such that q is a final state. The relation induced by U is the relation
(also denoted by U) defined by:

U = {(t, t′) | t
∗
→
U

q(t′), t ∈ T (F), t′ ∈ T (F ′), q ∈ Qf}.

The domain of U is the set {t ∈ T (F) | (t, t′) ∈ U}. The image by U of a
set of ground terms L is the set U(L) = {t′ ∈ T (F ′) | ∃t ∈ L, (t, t′) ∈ U}.

A transducer is ε-free if it contains no ε-rule. It is linear if all tran-
sition rules are linear (no variable occurs twice in the right-hand side). It
is non-erasing if, for every rule, at least one symbol of F ′ occurs in the
right-hand side. It is said to be complete (or non-deleting) if, for every rule
f(q1(x1), . . . , qn(xn)) → q(u) , for every xi(1 ≤ i ≤ n), xi occurs at least once
in u. It is deterministic (DUTT) if it is ε-free and there is no two rules with
the same left-hand side.

Example 57.
Ex. 57.1 Tree transducer A defined in Section 6.3 is a linear DUTT. Tree

transducer R in Section 6.3 is a linear and complete DUTT.

Ex. 57.2 States of U1 are q, q′; F = {f(), a}; F ′ = {g(, ), f(), f ′(), a}; q′ is
the final state; the set of transduction rules is:

a → q(a)
f(q(x)) → q(f(x)) | q(f ′(x)) | q′(g(x, x))
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U1 is a complete, non linear NUTT. We now give the transductions of
the ground term f(f(f(a))). For the sake of simplicity, fffa stands for
f(f(f(a))). We have:

U1({fffa}) = {g(ffa, ffa), g(ff ′a, ff ′a), g(f ′fa, f ′fa), g(f ′f ′a, f ′f ′a)}.

U1 illustrates an ability of NUTT, that we describe following Gécseg and
Steinby.

B1- “Nprocess and copy” A NUTT can first process an input sub-
tree nondeterministically and then make copies of the resulting
output tree.

Ex. 57.3 States of U2 are q, q′; F = F ′ = {f(), f ′(), a}; q is the final state;
the set of transduction rules is defined by:

a → q(a)
f(q(x)) → q′(a)

f ′(q′(x)) → q(a)

U2 is a non complete DUTT. The tree transformation induced by U2 is

{

(t, a) |
t is accepted by the DFTA of final state q and rules
a→ q(a), f(q(x))→ q′(f(x)), f ′(q′(x))→ q(f ′(x))

}

.

B2- “check and delete” A NUTT can first check regular con-
straints on input subterms and delete these subterms afterwards.

Bottom-up tree transducers translate the input trees from leaves to root, so
bottom-up tree transducers are also called frontier-to-root transducers. Top-
down tree transducers work in opposite direction.

6.4.2 Top-down Tree Transducers

A top-down Tree Transducer (NDTT) is a tuple D = (Q,F ,F ′, Qi, ∆) where
Q is a set of (unary) states, F and F ′ are finite nonempty sets of input sym-
bols and output symbols, Qi ⊆ Q is a set of initial states and ∆ is a set of
transduction rules of the following two types:

q(f(x1, . . . , xn))→ u[q1(xi1 ), . . . , qp(xip
)] ,

where f ∈ Fn, u ∈ Cp(F ′), q, q1, . . . , qp ∈ Q, , xi1 , . . . , xip
∈ Xn, or

q(x)→ u[q1(x), . . . , qp(x)] (ε-rule),

where u ∈ Cp(F ′), q, q1, . . . , qp ∈ Q, x ∈ X .
As for top-down NFTA, there is no final state, because when a symbol is a

leave a (i.e.a constant symbol), transduction rules are of the form q(a) → u,
where u is a ground term. These rules can be considered as “final rules”. Let
t, t′ ∈ T (F ∪ F ′ ∪Q). The move relation →D is defined by:
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t→
D

t′ ⇔























∃q(f(x1, . . . , xn))→ u[q1(xi1 ), . . . , qp(xip
)] ∈ ∆

∃C ∈ C(F ∪ F ′ ∪Q)
∃u1, . . . , un ∈ T (F)
t = C[q(f(u1, . . . , un))]
t′ = C[u[q1(v1), . . . , qp(vp)])] where vj = uk if xij

= xk

This definition includes the case of ε-rule as a particular case. →∗
D is the

reflexive and transitive closure of→D. A transduction of D from a ground term
t ∈ T (F) to a ground term t′ ∈ T (F ′) is a sequence of move steps of the form
q(t)→∗

D t′, where q is an initial state. The transformation induced by D is the
relation (also denoted by D) defined by:

D = {(t, t′) | q(t)
∗
→
D

t′, t ∈ T (F), t′ ∈ T (F ′), q ∈ Qi}.

The domain of D is the set {t ∈ T (F) | (t, t′) ∈ D}. The image of a set
of ground terms L by D is the set D(L) = {t′ ∈ T (F ′) | ∃t ∈ L, (t, t′) ∈ D}.
ε-free, linear, non-erasing, complete (or non-deleting), deterministic top-down
tree transducers are defined as in the bottom-up case.

Example 58.

Ex. 58.1 Tree transducers A′, T1, T2 defined in Section 6.3 are examples of
NDTT.

Ex. 58.2 Let us now define a non-deterministic and non linear NDTT D1.
States of D1 are q, q′. The set of input symbols is F = {f(), a}. The set of
output symbols is F ′ = {g(, ), f(), f ′(), a}. The initial state is q. The set
of transduction rules is:

q(f(x))→ g(q′(x), q′(x)) (copying rule)

q′(f(x))→ f(q′(x)) | f ′(q′(x)) (non deterministic relabeling)

q′(a)→ a

D1 transduces f(f(f(a))) (or briefly fffa) into the set of 16 trees:

{g(ffa, ffa), g(ffa, ff ′a), g(ffa, f ′fa), . . . , g(f ′f ′a, f ′fa), g(f ′f ′a, f ′f ′a)}.

D1 illustrates a new property.

D- “copy and Nprocess” A NDTT can first make copies of an
input subtree and then process different copies independently and
nondeterministically .
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6.4.3 Structural Properties

In this section, we use tree transducers U1, U2 and D1 of the previous section in
order to point out differences between top-down and bottom-up tree transducers.

Theorem 46 (Comparison Theorem).

1. There is no top-down tree transducer equivalent to U1 or to U2.

2. There is no bottom-up tree transducer equivalent to D1.

3. Any linear top-down tree transducer is equivalent to a linear bottom-up tree
transducer. In the linear complete case, classes of bottom-up and top-down
tree transducers are equal.

It is not hard to verify that neither NUTT nor NDTT are closed under
composition. Therefore, comparison of D-property “copy and Nprocess” and
U -property “Nprocess and copy” suggests an important question:

does alternation of copying and non-determinism induces an infinite
hierarchy of transformations?

The answer is affirmative [Eng78, Eng82], but it was a relatively long-standing
open problem. The fact that top-down transducers copy before non-deterministic
processes, and bottom-up transducers copy after non-deterministic processes
(see Exercise 75) suggests too that we get by composition two intricate infinite
hierarchies of transformation. The following theorem summarizes results.

Theorem 47 (Hierarchy theorem). By composition of NUTT, we get an
infinite hierarchy of transformations. Any composition of n NUTT can be pro-
cessed by composition of n+1 NDTT, and conversely (i.e.any composition of n
NDTT can be processed by composition of n + 1 NUTT).

Transducer A′ of Section 6.3 shows that it can be useful to consider ε-rules,
but usual definitions of tree transducers in literature exclude this case of non
determinism. This does not matter, because it is easy to check that all important
results of closure or non-closure hold simultaneously for general classes and ε-
free classes. Deleting is also a minor phenomenon. Indeed, it gives rise to the
“check and delete” property, which is specific to bottom-up transducers, but
it does not matter for hierarchy theorem, which remains true if we consider
complete transducers.

Section 6.3 suggests that for practical use, non-determinism and non-linearity
are rare. Therefore, it is important to note than if we assume linearity or deter-
minism, hierarchy of Theorem 48 collapses. Following results supply algorithms
to compose or simplify transducers.

Theorem 48 (Composition Theorem).

1. The class of linear bottom-up transductions is closed under composition.

2. The class of deterministic bottom-up transductions is closed under com-
position.

3. The class of linear top-down transductions is included in the class of lin-
ear bottom-up transductions. These classes are equivalent in the complete
case.
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4. Any composition of deterministic top-down transductions is equivalent to
a deterministic complete top-down transduction composed with a linear
homomorphism.

The reader should note that bottom-up determinism and top-down deter-
minism are incomparable (see Exercise 72).

Recognizable tree languages play a crucial role because derivation trees of
context-free word grammars are recognizable. Fortunately, we get:

Theorem 49 (Recognizability Theorem). The domain of a tree transducer
is a recognizable tree language. The image of a recognizable tree language by a
linear tree transducer is recognizable.

6.4.4 Complexity Properties

We present now some decidability and complexity results. As for structural
properties, the situation is more complicated than in the word case, especially
for top-down tree transducers. Most of problems are untractable in the worst
case, but empirically “not so much complex” in real cases, though there is a lake
of “algorithmic engineering” to get performant algorithms. As in the word case,
emptiness is decidable, and equivalence in undecidable in the general case but is
decidable in the k-valued case (a transducer is k-valued if there is no tree which
is transduced in more than k different terms; so a deterministic transducer is a
particular case of 1-valued transducer).

Theorem 50 (Recidability and complexity). Emptiness of tree transduc-
tions is decidable. Equivalence of k-valued tree transducers is decidable.

Emptiness for bottom-up transducers is essentially the same as emptiness
for tree automata and therefore PTIME complete. Emptiness for top-down
automata, however, is essentially the same as emptiness for alternating topdown
tree automata, giving DEXPTIME completeness for emptiness. The complexity
PTIME for testing single-valuedness in the bottom-up case is contained in Seidl
[Sei92]. Ramsey theory gives combinatorial properties onto which equivalence
tests for k-valued tree transducers [Sei94a].

Theorem 51 (Equivalence Theorem). Equivalence of deterministic tree
transducers is decidable.

6.5 Homomorphisms and Tree Transducers

Exercise 74 illustrates how decomposition of transducers using homomorphisms
can help to get composition results, but we are far from the nice bimorphism
theorem of the word case, and in the tree case, there is no illuminating the-
orem, but many complicated partial statements. Seminal paper of Engelfriet
[Eng75] contains a lot of decomposition and composition theorems. Here, we
only present the most significant results.

A delabeling is a linear, complete, and symbol-to-symbol tree homomor-
phism (see Section 1.4). This very special kind of homomorphism changes only
the label of the input letter and possibly order of subtrees. Definition of tree
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bimorphisms is not necessary, it is the same as in the word case. We get the fol-
lowing characterization theorem. We say that a bimorphism is linear, (respec-
tively complete, etc) if the two morphisms are linear, (respectively complete,
etc).

Theorem 52. The class of bottom-up tree transductions is equivalent to the
class of bimorphisms (Φ, L, Ψ) where Φ is a delabeling.

Relation defined by (Φ, L, Ψ) is computed by a transduction which is linear
(respectively complete, ε-free) if Ψ is linear (respectively complete, ε-free).

Remark that Nivat Theorem illuminates the symmetry of word transduc-
tions: the inverse relation of a rational transduction is a rational transduction.
In the tree case, non-linearity obviously breaks this symmetry, because a tree
transducer can copy an input tree and process several copies, but it can never
check equality of subtrees of an input tree. If we want to consider symmetric
relations, we have two main situations. In the non-linear case, it is easy to prove
that composition of two bimorphisms simulates a Turing machine. In the linear
and the linear complete cases, we get the following results.

Theorem 53 (Tree Bimorphisms). .

1. The class LCFB of linear complete ε-free tree bimorphisms satisfies LCFB ⊂
LCFB

2 = LCFB
3.

2. The class LB of linear tree bimorphisms satisfies LB ⊂ LB
2 ⊂ LB

3 ⊂
LB

4 = LB
5.

Proof of LCFB
2 = LCFB

3 requires many refinements and we omit it.

To prove LCFB ⊂ LCFB
2 we use twice the same homomorphism Φ(a) =

a, Φ(f(x)) = f(x), Φ(g(x, y)) = g(x, y)), Φ(h(x, y, z)) = g(x, g(y, z)).

For any subterms (t1, . . . , t2p+2) , let

t = h(t1, t2, h(t3, t4, h(t2i+1, t2i+2, . . . , h(t2p−1, t2p, g(t2p+1, t2p+2) . . . )))

and

t′ = g(t1, h(t2, t3, h(t4, . . . , h(t2i, t2i+1, h(t2i+2, t2i+3, . . . , h(t2p, t2p+1, t2p+2) . . . ))).

We get t′ ∈ (Φ ◦ Φ−1)(t). Assume that Φ ◦ Φ−1 can be processed by some
Ψ−1 ◦Ψ′. Consider for simplicity subterms ti of kind fni(a). Roughly, if lengths
of ti are different enough, Ψ and Ψ′ must be supposed linear complete. Suppose
that for some u we have Ψ(u) = t and Ψ′(u) = t′, then for any context u′

of u, Ψ(u′) is a context of t with an odd number of variables, and Ψ′(u′) is
a context of t′ with an even number of variables. That is impossible because
homomorphisms are linear complete.

Point 2 is a refinement of point 1 (see Exercise 79).

This example shows a stronger fact: the relation cannot be processed by
any bimorphism, even non-linear, nor by any bottom-up transducer A direct
characterization of these transformations is given in [AD82] by a special class of
top-down tree transducers, which are not linear but are “globally” linear, and
which are used to prove LCFB

2 = LCFB
3.
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6.6 Exercises

Exercises 65 to 71 are devoted to the word case, which is out of scoop of this
book. For this reason, we give precise hints for them.

Exercise 65. The class of rational transductions is closed under rational operations.

Hint: for closure under union, connect a new initial state to initial state with (ε, ε)-

rules (parallel composition). For concatenation, connect by the same way final states

of the first transducer to initial states of the second (serial composition). For iteration,

connect final states to initial states (loop operation).

Exercise 66. The class of rational transductions is not closed under intersection. Hint:

consider rational transductions {(anbp, an) | n, p ∈ N} and {(anbp, ap) | n, p ∈ N}.

Exercise 67. Equivalence of rational transductions is undecidable. Hint: Associate

the transduction TP = {(f(u), g(u)) | u ∈ Σ+ with each instance P = (f, g) of the Post

correspondance Problem such that TP defines {(Φ(m), Ψ(m)) | m ∈ Σ∗}. Consider

Diff of example 55.2. Diff 6= Diff ∪ TP if and only if P satisfies Post property.

Exercise 68. Equivalence of deterministic rational transductions is decidable. Hint:

design a pumping lemma to reduce the problem to a bounded one by suppression of

loops (if difference of lengths between two transduced subwords is not bounded, two

transducers cannot be equivalent).

Exercise 69. Build a rational transducer equivalent to a bimorphism. Hint: let f(q) →

q′(f) a transition rule of L. If Φ(f) = ε, introduce transduction rule ε(q) → q′(Ψ(f)).

If Φ(f) = a0 . . . an, introduce new states q1, . . . , qn and transduction rules a0(q) →

q1(ε), . . . ai(qi) → qi+1(ε), . . . an(qn) → q′(Ψ(f)).

Exercise 70. Build a bimorphism equivalent to a rational transducer. Hint: consider

the set ∆ of transition rules as a new alphabet. We may speak of the first state q and

the second state q′ in a letter “f(q) → q′(m)”. The control language L is the set of

words over this alphabet, such that (i) the first state of the first letter is initial (ii) the

second state of the last letter is final (iii) in every two consecutive letters of a word,

the first state of the second equals the second state of the first. We define Φ and Ψ by

Φ(f(q)− > q′(m)) = f and Ψ(f(q)− > q′(m)) = m.

Exercise 71. Homomorphism inversion and applications. An homomorphism Φ is
non-increasing if for every symbol a, Φ(a) is the empty word or a symbol.

1. For any morphism Φ, find a bimorphism (Φ′, L, Ψ) equivalent to Φ−1, with Φ′

non-increasing, and such that furthermore Φ′ is ε-free if Φ is ε-free. Hint: Φ−1

is equivalent to a transducer R (Exercise 69), and the output homomorphism Φ′

associated to R as in Exercise 70 is non-increasing. Furthermore, if Φ is ε-free,
R and Φ′ are ε-free.

2. Let Φ and Ψ two homomorphism. If Φ is non-increasing, build a transducer
equivalent to Ψ ◦ Φ−1 (recall that this notation means that we apply Ψ before
Φ−1). Hint and remark: as Φ is non-increasing, Φ−1 satisfies the inverse homo-
morphism property Φ−1(MM ′) = Φ−1(M)Φ−1(M ′) (for any pair of words or
languages M and M ′). This property can be used to do constructions “symbol
by symbol”. Here, it suffices that the transducer associates Φ−1(Ψ(a)) with a,
for every symbol a of the domain of Ψ.

3. Application: prove that classes of regular and context-free languages are closed
under bimorphisms (we admit that intersection of a regular language with a
regular or context-free language, is respectively regular or context-free).
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4. Other application: prove that bimorphisms are closed under composition. Hint:
remark that for any application f and set E, {(x, f(x)) | f(x) ∈ E} = {(x, f(x)) |
x ∈ f−1(E)}.

Exercise 72. We identify words with trees over symbols of arity 1 or 0. Let relations

U = {(fna, fna) | n ∈ N} ∪ {(fnb, gnb) | n ∈ N} and D = {(ffna, ffna) | n ∈

N} ∪ {(gfna, gfnb) | n ∈ N}. Prove that U is a deterministic linear complete bottom-

up transduction but not a deterministic top-down transduction. Prove that D is a

deterministic linear complete top-down transduction but not a deterministic bottom-

up transduction.

Exercise 73. Prove point 3 of Comparison Theorem. Hint. Use rule-by-rule tech-

niques as in Exercise 74.

Exercise 74. Prove Composition Theorem. Hints: Prove 1 and 2 using composition

“rule-by-rule”, illustrated as following. States of A ◦ B are products of states of A

and states of B. Let f(q(x))→A q′(g(x, g(x, a))) and g(q1(x), g(q2(y), a)→B q4(u).

Subterms substituted to x and y in the composition must be equal, and determinism

implies q1 = q2. Then we build new rule f((q, q1)(x))→A◦B(q′, q4)(u). To prove 3

for example, associate q(g(x, y)) → u(q′(x), q′′(y)) with g(q′(x), q′′(y)) → q(u), and

conversely. For 4, Using ad hoc kinds of “rule-by-rule” constructions, prove DDTT ⊂

DCDTT◦LHOM and LHOM◦DCDTT ⊂ DCDTT◦LHOM (L means linear, C complete,

D deterministic - and suffix DTT means top-down tree transducer as usually).

Exercise 75. Prove NDTT = HOM ◦ NLDTT and NUTT = HOM ◦ NLBTT. Hint: to

prove NDTT ⊂ HOM ◦NLDTT use a homomorphism H to produce in advance as may

copies of subtrees of the input tree as the NDTT may need, ant then simulate it by a

linear NDTT.

Exercise 76. Use constructions of composition theorem to reduce the number of

passes in process of Section 6.3.

Exercise 77. Prove recognizability theorem. Hint: as in exercise 74, “naive” con-

structions work.

Exercise 78. Prove Theorem 52. Hint: “naive” constructions work.

Exercise 79. Prove point 2 of Theorem 53. Hint: E denote the class of homomor-

phisms which are linear and symbol-to-symbol. L, LC, LCF denotes linear, linear

complete, linear complete ε-free homomorphisms, respectively. Prove LCS = L ◦ E =

E ◦ L and E−1 ◦ L ⊂ L ◦ E−1. Deduce from these properties and from point 1 of

Theorem 53 that LB4 = E ◦ LCFB2 ◦ E−1. To prove that LB3 6= LB4, consider

Ψ1 ◦ Ψ−1

2 ◦ Φ ◦ Φ−1 ◦ Ψ2 ◦ Ψ−1

1 , where Φ is the homomorphism used in point 1 of

Theorem 53; Ψ1 identity on a, f(x), g(x, y), h(x, y, z), Ψ1(e(x)) = x; Ψ2 identity on

a, f(x), g(x, y) and Ψ2(c(x, y, z) = b(b(x, y), z).

Exercise 80. Sketch of proof of LCFB2 = LCFB3 (difficult). Distance D(x, y, u) of
two nodes x and y in a tree u is the sum of the lengths of two branches which join x
and y to their younger common ancestor in u. D(x, u) denotes the distance of x to
the root of u.

Let H the class of deterministic top-down transducers T defined as follows: q0, . . . , qn

are states of the transducer, q0 is the initial state. For every context, consider the re-
sult ui of the run starting from qi(u). ∃k,∀ context u such that for every variable x
of u, D(x, u) > k:

• u0 contains at least an occurrence of each variable of u,
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• for any i, ui contains at least a non variable symbol,

• if two occurrences x′ and x′′ of a same variable x occur in ui, D(x′, x”, ui) < k.

Remark that LCF is included in H and that there is no right hand side of rule with
two occurrences of the same variable associated with the same state. Prove that

1. LCF−1 ⊆ Delabeling−1 ◦ H

2. H ◦ Delabeling−1 ⊆ Delabeling−1 ◦ H

3. H ⊆ LCFB2

4. Conclude. Compare with Exercise 71

Exercise 81. Prove that the image of a recognizable tree language by a linear tree

transducer is recognizable.

6.7 Bibliographic notes

First of all, let us precise that several surveys have been devoted (at least in
part) to tree transducers for 25 years. J.W. Thatcher [Tha73], one of the main
pioneer, did the first one in 1973, and F. Gécseg and M. Steinby the last one
in 1996 [GS96]. Transducers are formally studied too in the book of F. Gécseg
and M. Steinby [GS84] and in the survey of J.-C. Raoult [Rao92]. Survey of M.
Dauchet and S. Tison [DT92] develops links with homomorphisms.

In section 6.2, some examples are inspired by the old survey of Thatcher,
because seminal motivation remain, namely modelization of compilers or, more
generally, of syntax directed transformations as interfacing softwares, which
are always up to date. Among main precursors, we can distinguish Thatcher
[Tha73], W.S. Brainerd [Bra69], A. Aho, J.D. Ullman [AU71], M. A. Arbib, E.
G. Manes [AM78]. First approaches where very linked to practice of compilation,
and in some way, present tree transducers are evolutions of generalized syntax
directed translations (B.S. Backer [Bak78] for example), which translate trees
into strings. But crucial role of tree structure have increased later.

Many generalizations have been introduced, for example generalized finite
state transformations which generalize both the top-down and the bottom-up
tree transducers (J. Engelfriet [Eng77]); modular tree transducers (H. Vogler
[EV91]); synchronized tree automata (K. Salomaa [Sal94]); alternating tree au-
tomata (G.Slutzki [Slu85]); deterministic top-down tree transducers with iter-
ated look-ahead (G. Slutzki, S. Vàgvölgyi [SV95]). Ground tree transducers
GTT are studied in Chapter 3 of this book. The first and the most natural
generalization was introduction of top-down tree transducers with look-ahead.
We have seen that “check and delete” property is specific to bottom-up tree
transducers, and that missing of this property in the non-complete top-down
case induces non closure under composition, even in the linear case (see Com-
position Theorem). Top-down transducers with regular look-ahead are able to
recognize before the application of a rule at a node of an input tree whether
the subtree at a son of this node belongs to a given recognizable tree language.
This definition remains simple and gives to top-down transducers a property
equivalent to “check and delete”.

Contribution of Engelfriet to the theory of tree transducers is important,
especially for composition, decomposition and hierarchy main results ([Eng75,
Eng78, Eng82]).
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We did not many discuss complexity and decidability in this chapter, because
the situation is classical. Since many problems are undecidable in the word
case, they are obviously undecidable in the tree case. Equivalence decidability
holds as in the word case for deterministic or finite-valued tree transducers (Z.
Zachar [Zac79], Z. Esik [Esi83], H. Seidl [Sei92, Sei94a]).

TATA — September 6, 2005 —





Bibliography

[AD82] A. Arnold and M. Dauchet. Morphismes et bimorphismes d’arbres.
Theorical Computer Science, 20:33–93, 1982.

[AG68] M. A. Arbib and Y. Give’on. Algebra automata I: Parallel program-
ming as a prolegomena to the categorical approach. Information
and Control, 12(4):331–345, April 1968.

[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complex-
ity of set constraints. In E. Börger, Y. Gurevich, and K. Meinke,
editors, Proceedings of Computer Science Logic, volume 832 of Lec-
ture Notes in Computer Science, pages 1–17, 1993. Techn. Report
93-1352, Cornell University.

[AKW95] A. Aiken, D. Kozen, and E.L. Wimmers. Decidability of systems
of set constraints with negative constraints. Information and Com-
putation, 122(1):30–44, October 1995.

[AM78] M.A. Arbib and E.G. Manes. Tree transformations and semantics
of loop-free programs. Acta Cybernetica, 4:11–17, 1978.

[AM91] A. Aiken and B. R. Murphy. Implementing regular tree expressions.
In Proceedings of the ACM conf. on Functional Programming Lan-
guages and Computer Architecture, pages 427–447, 1991.

[AU71] A. V. Aho and J. D. Ullmann. Translations on a context-free gram-
mar. Information and Control, 19:439–475, 1971.

[AW92] A. Aiken and E.L. Wimmers. Solving Systems of Set Constraints.
In Proceedings, Seventh Annual IEEE Symposium on Logic in Com-
puter Science [IEE92], pages 329–340.

[Bak78] B.S. Baker. Generalized syntax directed translation, tree transduc-
ers, and linear space. Journal of Comput. and Syst. Sci., 7:876–891,
1978.
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