
Tree
Automata
Techniques and
Applications

Hubert Comon Max Dauchet Rémi Gilleron

Florent Jacquemard Denis Lugiez Sophie Tison

Marc Tommasi

Contents

Introduction 9

Preliminaries 13

1 Recognizable Tree Languages and Finite Tree Automata 17
1.1 Finite Tree Automata . 18
1.2 The Pumping Lemma for Recognizable Tree Languages 26
1.3 Closure Properties of Recognizable Tree Languages 27
1.4 Tree Homomorphisms . 29
1.5 Minimizing Tree Automata . 33
1.6 Top Down Tree Automata . 36
1.7 Decision Problems and their Complexity 37
1.8 Exercises . 41
1.9 Bibliographic Notes . 45

2 Regular Grammars and Regular Expressions 49
2.1 Tree Grammar . 49

2.1.1 Definitions . 49
2.1.2 Regularity and Recognizabilty 52

2.2 Regular Expressions. Kleene’s Theorem for Tree Languages . . . 52
2.2.1 Substitution and Iteration 53
2.2.2 Regular Expressions and Regular Tree Languages 56

2.3 Regular Equations . 59
2.4 Context-free Word Languages and Regular Tree Languages . . . 61
2.5 Beyond Regular Tree Languages: Context-free Tree Languages . 64

2.5.1 Context-free Tree Languages 65
2.5.2 IO and OI Tree Grammars 65

2.6 Exercises . 67
2.7 Bibliographic notes . 69

3 Logic, Automata and Relations 71
3.1 Introduction . 71
3.2 Automata on Tuples of Finite Trees 73

3.2.1 Three Notions of Recognizability 73
3.2.2 Examples of The Three Notions of Recognizability 75
3.2.3 Comparisons Between the Three Classes 77
3.2.4 Closure Properties for Rec× and Rec; Cylindrification and

Projection . 78

TATA — September 6, 2005 —

4 CONTENTS

3.2.5 Closure of GTT by Composition and Iteration 80
3.3 The Logic WSkS . 86

3.3.1 Syntax . 86
3.3.2 Semantics . 86
3.3.3 Examples . 86
3.3.4 Restricting the Syntax . 88
3.3.5 Definable Sets are Recognizable Sets 89
3.3.6 Recognizable Sets are Definable 92
3.3.7 Complexity Issues . 94
3.3.8 Extensions . 94

3.4 Examples of Applications . 95
3.4.1 Terms and Sorts . 95
3.4.2 The Encompassment Theory for Linear Terms 96
3.4.3 The First-order Theory of a Reduction Relation: the Case

Where no Variables are Shared 98
3.4.4 Reduction Strategies . 99
3.4.5 Application to Rigid E-unification 101
3.4.6 Application to Higher-order Matching 102

3.5 Exercises . 104
3.6 Bibliographic Notes . 108

3.6.1 GTT . 108
3.6.2 Automata and Logic . 108
3.6.3 Surveys . 108
3.6.4 Applications of tree automata to constraint solving 108
3.6.5 Application of tree automata to semantic unification . . . 109
3.6.6 Application of tree automata to decision problems in term

rewriting . 109
3.6.7 Other applications . 110

4 Automata with Constraints 111
4.1 Introduction . 111
4.2 Automata with Equality and Disequality Constraints 112

4.2.1 The Most General Class 112
4.2.2 Reducing Non-determinism and Closure Properties 115
4.2.3 Undecidability of Emptiness 118

4.3 Automata with Constraints Between Brothers 119
4.3.1 Closure Properties . 119
4.3.2 Emptiness Decision . 121
4.3.3 Applications . 125

4.4 Reduction Automata . 125
4.4.1 Definition and Closure Properties 126
4.4.2 Emptiness Decision . 127
4.4.3 Finiteness Decision . 129
4.4.4 Term Rewriting Systems 129
4.4.5 Application to the Reducibility Theory 130

4.5 Other Decidable Subclasses . 130
4.6 Tree Automata with Arithmetic Constraints 131

4.6.1 Flat Trees . 131
4.6.2 Automata with Arithmetic Constraints 132
4.6.3 Reducing Non-determinism 134

TATA — September 6, 2005 —

CONTENTS 5

4.6.4 Closure Properties of Semilinear Flat Languages 136
4.6.5 Emptiness Decision . 137

4.7 Exercises . 140
4.8 Bibliographic notes . 143

5 Tree Set Automata 145
5.1 Introduction . 145
5.2 Definitions and Examples . 150

5.2.1 Generalized Tree Sets . 150
5.2.2 Tree Set Automata . 150
5.2.3 Hierarchy of GTSA-recognizable Languages 153
5.2.4 Regular Generalized Tree Sets, Regular Runs 154

5.3 Closure and Decision Properties 157
5.3.1 Closure properties . 157
5.3.2 Emptiness Property . 160
5.3.3 Other Decision Results . 162

5.4 Applications to Set Constraints 163
5.4.1 Definitions . 163
5.4.2 Set Constraints and Automata 163
5.4.3 Decidability Results for Set Constraints 164

5.5 Bibliographical Notes . 166

6 Tree Transducers 169
6.1 Introduction . 169
6.2 The Word Case . 170

6.2.1 Introduction to Rational Transducers 170
6.2.2 The Homomorphic Approach 174

6.3 Introduction to Tree Transducers 175
6.4 Properties of Tree Transducers 179

6.4.1 Bottom-up Tree Transducers 179
6.4.2 Top-down Tree Transducers 182
6.4.3 Structural Properties . 184
6.4.4 Complexity Properties . 185

6.5 Homomorphisms and Tree Transducers 185
6.6 Exercises . 187
6.7 Bibliographic notes . 189

7 Alternating Tree Automata 191
7.1 Introduction . 191
7.2 Definitions and Examples . 191

7.2.1 Alternating Word Automata 191
7.2.2 Alternating Tree Automata 193
7.2.3 Tree Automata versus Alternating Word Automata 194

7.3 Closure Properties . 196
7.4 From Alternating to Deterministic Automata 197
7.5 Decision Problems and Complexity Issues 197
7.6 Horn Logic, Set Constraints and Alternating Automata 198

7.6.1 The Clausal Formalism 198
7.6.2 The Set Constraints Formalism 199
7.6.3 Two Way Alternating Tree Automata 200

TATA — September 6, 2005 —

6 CONTENTS

7.6.4 Two Way Automata and Definite Set Constraints 202
7.6.5 Two Way Automata and Pushdown Automata 203

7.7 An (other) example of application 203
7.8 Exercises . 204
7.9 Bibliographic Notes . 205

TATA — September 6, 2005 —

CONTENTS 7

Acknowledgments

Many people gave substantial suggestions to improve the contents of this
book. These are, in alphabetic order, Witold Charatonik, Zoltan Fülöp, Werner
Kuich, Markus Lohrey, Jun Matsuda, Aart Middeldorp, Hitoshi Ohsaki, P.
K. Manivannan, Masahiko Sakai, Helmut Seidl, Stephan Tobies, Ralf Treinen,
Thomas Uribe, Sandor Vágvölgyi, Kumar Neeraj Verma, Toshiyuki Yamada.

TATA — September 6, 2005 —

8 CONTENTS

TATA — September 6, 2005 —

Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can

TATA — September 6, 2005 —

10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as

TATA — September 6, 2005 —

Introduction 11

a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.

TATA — September 6, 2005 —

12 Introduction

TATA — September 6, 2005 —

Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F , Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(,) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X) and
- X ⊆ T (F ,X) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X), then f(t1, . . . , tp) ∈ T (F ,X).
If X = ∅ then T (F ,X) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(,), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X) may be viewed as a finite

TATA — September 6, 2005 —

14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t � t′ if t′ is a subterm
of t. We denote t � t′ if t � t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t � t′ ⇒ t′ ∈ F).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑
i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, ,), g(,), h(), a, b} and X = {x, y}. Consider the
terms

TATA — September 6, 2005 —

Preliminaries 15

t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, ,), g(,), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).

TATA — September 6, 2005 —

Chapter 7

Alternating Tree Automata

7.1 Introduction

Complementation of non-deterministic tree (or word) automata requires a deter-
minization step. This is due to an asymmetry in the definition. Two transition
rules with the same left hand side can be seen as a single rule with a disjunctive
right side. A run of the automaton on a given tree has to choose some member
of the disjunction. Basically, determinization gathers the disjuncts in a single
state.

Alternating automata restore some symmetry, allowing both disjunctions
and conjunctions in the right hand sides. Then complementation is much easier:
it is sufficient to exchange the conjunctions and the disjunction signs, as well as
final and non-final states. In particular, nothing similar to determinization is
needed.

This nice formalism is more concise. The counterpart is that decision prob-
lems are more complex, as we will see in Section 7.5.

There are other nice features: for instance, if we see a tree automaton as
a finite set of monadic Horn clauses, then moving from non-deterministic to
alternating tree automata consists in removing a very simple assumption on the
clauses. This is explained in Section 7.6. In the same vein, removing another
simple assumption yields two-way alternating tree automata, a more powerful
device (yet not more expressive), as described in Section 7.6.3.

Finally, we also show in Section 7.2.3 that, as far as emptiness is concerned,
tree automata correspond to alternating word automata on a single-letter al-
phabet, which shows the relationship between computations (runs) of a word
alternating automaton and computations of a tree automaton.

7.2 Definitions and Examples

7.2.1 Alternating Word Automata

Let us start first with alternating word automata.
If Q is a finite set of states, B+(Q) is the set of positive propositional formulas

over the set of propositional variables Q. For instance, q1∧ (q2∨q3)∧ (q2∨q4) ∈
B+({q1, q2, q3, q4}).

TATA — September 6, 2005 —

192 Alternating Tree Automata

Alternating word automata are defined as deterministic word automata, ex-
cept that the transition function is a mapping from Q×A to B+(Q) instead of
being a mapping from Q×A to Q. We assume a subset Q0 of Q of initial states

and a subset Qf of Q of final states.

Example 59. Assume that the alphabet is {0, 1} and the set of states is
{q0, q1, q2, q3, q4, q

′
1, q

′
2}, Q0 = {q0}, Qf = {q0, q1, q2, q3, q4} and the transitions

are:
q00 → (q0 ∧ q1) ∨ q′1 q01 → q0

q10 → q2 q11 → true
q20 → q3 q21 → q3

q30 → q4 q31 → q4

q40 → true q41 → true
q′10 → q′1 q′11 → q′2
q′20 → q′2 q′21 → q′1

A run of an alternating word automaton A on a word w is a finite tree ρ

labeled with Q× N such that:

• The root of ρ is labeled by some pair (q, 0).

• If ρ(p) = (q, i) and i is strictly smaller than the length of w, w(i + 1) = a,
δ(q, a) = φ, then there is a set S = {q1, . . . , qn} of states such that S |= φ,
positions p1, . . . , pn are the successor positions of p in ρ and ρ(pj) =
(qj , i + 1) for every j = 1, ...n.

The notion of satisfaction used here is the usual one in propositional calculus:
the set S is the set of propositions assigned to true, while the propositions not
belonging to S are assumed to be assigned to false. Therefore, we have the
following:

• there is no run on w such that w(i + 1) = a for some i, ρ(p) = (q, i) and
δ(q, i) = false

• if δ(q, w(i + 1)) = true and ρ(p) = (q, i), then p can be a leaf node, in
which case it is called a success node.

• All leaf nodes are either success nodes as above or labeled with some (q, n)
such that n is the length of w.

A run of an alternating automaton is successful on w if and only if

• all leaf nodes are either success nodes or labeled with some (q, n), where
n is the length of w, such that q ∈ Qf .

• the root node ρ(ǫ) = (q0, 0) with q0 ∈ Q0.

Example 60. Let us come back to Example 59. We show on Figure 7.1 two
runs on the word 00101, one of which is successful.

TATA — September 6, 2005 —

7.2 Definitions and Examples 193

0

0

1

1

0

q0, 2 q1, 2

q’2q′

2
, 5

q0, 3

q0, 5

q0, 1

q2, 2

q3, 3

q4, 4

q1, 1q0, 1

q0, 2 q1, 2 q2, 2

q3, 3

q4, 4
q0, 4 q1, 4

q1, 1

q0, 3

q′

1
, 4

q0, 0 q0, 0

Figure 7.1: Two runs on the word 00101 of the automaton defined in Exam-
ple 59. The right one is successful.

Note that non-deterministic automata are the particular case of alternating
automata in which only disjunctions (no conjunctions) occur in the transition
relation. In such a case, if there is a succesful run on w, then there is also a
successful run, which is a string.

Note also that, in the definition of a run, we can always choose the set S to
be a minimal satisfaction set: if there is a successful run of the automaton, then
there is a successful one in which we always choose a minimal set S of states.

7.2.2 Alternating Tree Automata

Now, let us switch to alternating tree automata: the definitions are simple
adaptations of the previous ones.

Definition 14. An alternating tree automaton over F is a tuple A = (Q,F , I, ∆)
where Q is a set of states, I ⊆ Q is a set of initial states and ∆ is a mapping

from Q×F to B+(Q×N) such that ∆(q, f) ∈ B+(Q×{1, . . . , Arity(f)}) where

Arity(f) is the arity of f .

Note that this definition corresponds to a top-down automaton, which is
more convenient in the alternating case.

Definition 15. Given a term t ∈ T (F) and an alternating tree automaton A
on F , a run of A on t is a tree ρ on Q × N

∗ such that ρ(ε) = (q, ε) for some

state q and

if ρ(π) = (q, p), t(p) = f and δ(q, f) = φ, then there is a subset S =
{(q1, i1), . . . , (qn, in)} of Q× {1, . . . , Arity(f)} such that S |= φ, the

successor positions of π in ρ are {π1, . . . , πn} and ρ(π ·j) = (qj , p·ij)
for every j = 1..n.

A run ρ is successful if ρ(ε) = (q, ε) for some initial state q ∈ I.

TATA — September 6, 2005 —

194 Alternating Tree Automata

Note that (completely specified) non-deterministic top-down tree automata
are the particular case of alternating tree automata. For a set of non-deterministic
rules q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)), Delta(q, f) is defined by:

∆(q, f) =
∨

(q1,...,qn)∈S

Arity(f)∧

i=1

(qi, i)

Example 61. Consider the automaton on the alphabet {f(,), a, b} whose
transition relation is defined by:

∆ f a b

q2 [((q1, 1) ∧ (q2, 2)) ∨ ((q1, 2) ∧ (q2, 1))] ∧ (q4, 1) true false
q1 ((q2, 1) ∧ (q2, 2)) ∨ ((q1, 2) ∧ (q1, 1)) false true
q4 ((q3, 1) ∧ (q3, 2)) ∨ ((q4, 1) ∧ (q4, 2)) true true
q3 ((q3, 1) ∧ (q2, 2)) ∨ ((q4, 1) ∧ (q1, 2)) ∧ (q5, 1)) false true
q5 false true false

Assume I = {q2}. A run of the automaton on the term t = f(f(b, f(a, b)), b).
is depicted on Figure 7.2.

In the case of a non-deterministic top-down tree automaton, the different
notions of a run coincide as, in such a case, the run obtained from Definition 15
on a tree t is a tree whose set of positions is the set of positions of t, possibly
changing the ordering of sons.

Words over an alphabet A can be seen as trees over the set of unary function
symbols A and an additional constant #. For convenience, we read the words
from right to left. For instance, aaba is translate into the tree a(b(a(a(#)))).
Then an alternating word automaton A can be seen as an alternating tree
automaton whose initial states are the final states of A, the transitions are the
same and there is additional rules δ(q0, #) = true for the initial state q0 of A
and δ(q, #) = false for other states.

7.2.3 Tree Automata versus Alternating Word Automata

It is interesting to remark that, guessing the input tree, it is possible to reduce
the emptiness problem for (non-deterministic, bottom-up) tree automata to
the emptiness problem for an alternating word automaton on a single letter
alphabet: assume thatA = (Q,F , Qf , ∆) is a non-deterministic tree automaton,
then construct the alternating word automaton on a one letter alphabet {a} as
follows: the states are Q × F , the initial states are Qf × F and the transition
rules:

δ((q, f), a) =
∨

f(q1,...,qn)→q∈∆

n∧

i=1

∨

fj∈F

((qi, fj), i)

Conversely, it is also possible to reduce the emptiness problem for an alter-
nating word automaton over a one letter alphabet {a} to the emptiness prob-
lem of non-deterministic tree automata, introducing a new function symbol for
each conjunction; assume the formulas in disjunctive normal form (this can

TATA — September 6, 2005 —

7.2 Definitions and Examples 195

f

f b

b f

a b

q2,ε

q2,1 q4,1 q1,2

q1,11 q2,12 q4,11 q3,11 q3,12

q4,121 q2,121 q1,122 q5,121 q4,121 q1,122

Figure 7.2: A run of an alternating tree automaton

TATA — September 6, 2005 —

196 Alternating Tree Automata

be assumed w.l.o.g, see Exercise 82), then replace each transition δ(q, a) =∨n

i=1

∧ki

j=1(qi,j , i) with fi(qi,1, . . . , qi,ki
)→ q.

7.3 Closure Properties

One nice feature of alternating automata is that it is very easy to perform the
Boolean operations (for short, we confuse here the automaton and the language
recognized by the automaton). First, we show that we can consider automata
with only one initial state, without loss of generality.

Lemma 10. Given an alternating tree automaton A, we can compute in linear

time an automaton A′ with only one initial state and which accepts the same

language as A.

Proof. Add one state q0 to A, which will become the only initial state, and the
transitions:

δ(q0, f) =
∨

q∈I

δ(q, f)

Proposition 47. Union, intersection and complement of alternating tree au-

tomata can be performed in linear time.

Proof. We consider w.l.o.g. automata with only one initial state. Given A1 and
A2, with a disjoint set of states, we compute an automaton A whose states are
those of A1 and A2 and one additional state q0. Transitions are those of A1

and A2 plus the additional transitions for the union:

δ(q0, f) = δ1(q
0
1 , f) ∨ δ2(q

0
2 , f)

where q0
1 , q0

2 are the initial states of A1 and A2 respectively. For the intersection,
we add instead the transitions:

δ(q0, f) = δ1(q
0
1 , f) ∧ δ2(q

0
2 , f)

Concerning the complement, we simply exchange ∧ and ∨ (resp. true and

false) in the transitions. The resulting automaton Ã will be called the dual

automaton in what follows.
The proof that these constructions are correct for union and intersection are

left to the reader. Let us only consider here the complement.
We prove, by induction on the size of t that, for every state q, t is accepted

either by A or Ã in state q and not by both automata.
If t is a constant a, then δ(q, a) is either true or false. If δ(q, a) = true,

then δ̃(q, a) = false and t is accepted by A and not by Ã. The other case is
symmetric.

Assume now that t = f(t1, . . . , tn) and δ(q, f) = φ. Let S be the set of
pairs (qj , ij) such that tij

is accepted from state qj by A. t is accepted by A, iff

S |= φ. Let S̃ be the complement of S in Q× [1..n]. By induction hypothesis,

(qj , i) ∈ S̃ iff ti is accepted in state qj by Ã.

We show that S̃ |= φ̃ iff S 6|= φ. (φ̃ is the dual formula, obtained by ex-
changing ∧ and ∨ on one hand and true and false on the other hand in φ). We

TATA — September 6, 2005 —

7.4 From Alternating to Deterministic Automata 197

show this by induction on the size of φ: if φ is true (resp. false), then S |= φ

and S̃ 6|= φ̃ (resp. S̃ = ∅) and the result is proved. Now, let, φ be, e.g., φ1 ∧ φ2.
S 6|= φ iff either S 6|= φ1 or S 6|= φ2, which, by induction hypothesis, is equivalent

to S̃ |= φ̃1 or S̃ |= φ̃2. By construction, this is equivalent to S̃ |= φ̃. The case
φ = φ1 ∨ φ2 is similar.

Now t is accepted in state q by A iff S |= φ iff S̃ 6|= φ̃ iff t not accepted in

state q by Ã.

7.4 From Alternating to Deterministic Automata

The expressive power of alternating automata is exactly the same as finite
(bottom-up) tree automata.

Theorem 54. If A is an alternating tree automaton, then there is a finite

deterministic bottom-up tree automaton A′ which accepts the same language.

A′ can be computed from A in deterministic exponential time.

Proof. Assume A = (Q,F , I, ∆), then A′ = (2Q,F , Qf , δ) where Qf = {S ∈
2Q | S ∩ I 6= ∅} and δ is defined as follows:

f(S1, . . . , Sn)→ {q ∈ Q | S1 × {1} ∪ . . . ∪ Sn × {n} |= ∆(q, f)}

A term t is accepted by A′ in state S iff t is accepted by A in all states q ∈ S.
This is proved by induction on the size of t: if t is a constant, then t is accepted in
all states q such that ∆(q, t) = true. Now, if t = f(t1, . . . , tn) we let S1, . . . , Sn

are the set of states in which t1, . . . , tn are respectively accepted by A. t is
accepted by A in a state q iff there is S0 ⊆ Q×{1, . . . , n} such that S0 |= ∆(q, f)
and, for every pair (qi, j) ∈ S0, tj is accepted in qi. In other words, t is accepted
byA in state q iff there is an S0 ⊆ S1×{1}∪. . .∪Sn×{n} such that S0 |= ∆(q, f),
which is in turn equivalent to S1×{1}∪ . . .∪Sn×{n} |= ∆(q, f). We conclude
by an application of the induction hypothesis.

Unfortunately the exponential blow-up is unavoidable, as a consequence of
Proposition 47 and Theorems 14 and 11.

7.5 Decision Problems and Complexity Issues

Theorem 55. The emptiness problem and the universality problem for alter-

nating tree automata are DEXPTIME-complete.

Proof. The DEXPTIME membership is a consequence of Theorems 11 and 54.

The DEXPTIME-hardness is a consequence of Proposition 47 and Theo-
rem 14.

The membership problem (given t and A, is t accepted by A ?) can be
decided in polynomial time. This is left as an exercise.

TATA — September 6, 2005 —

198 Alternating Tree Automata

7.6 Horn Logic, Set Constraints and Alternat-
ing Automata

7.6.1 The Clausal Formalism

Viewing every state q as a unary predicate symbol Pq, tree automata can be
translated into Horn clauses in such a way that the language recognized in state
q is exactly the interpretation of Pq in the least Herbrand model of the set of
clauses.

There are several advantages of this point of view:

• Since the logical setting is declarative, we don’t have to distinguish be-
tween top-down and bottom-up automata. In particular, we have a defi-
nition of bottom-up alternating automata for free.

• Alternation can be expressed in a simple way, as well as push and pop
operations, as described in the next section.

• There is no need to define a run (which would correspond to a proof in
the logical setting)

• Several decision properties can be translated into decidability problems for
such clauses. Typically, since all clauses belong to the monadic fragment,
there are decision procedures e.g. relying on ordered resolution strategies.

There are also weaknesses: complexity issues are harder to study in this
setting. Many constructive proofs, and complexity results have been obtained
with tree automata techniques.

Tree automata can be translated into Horn clauses. With a tree automaton
A = (Q,F , Qf , ∆) is associated the following set of Horn clauses:

Pq(f(x1, . . . , xn))← Pq1
(x1), . . . , Pqn

(xn)

if f(q1, . . . , qn)→ q ∈ ∆. The language accepted by the automaton is the union
of interpretations of Pq, for q ∈ Qf , in the least Herbrand model of clauses.

Also, alternating tree automata can be translated into Horn clauses. Alter-
nation can be expressed by variable sharing in the body of the clause. Con-
sider an alternating tree automaton (Q,F , I, ∆). Assume that the transi-
tions are in disjunctive normal form (see Exercise 82). With a transition

∆(q, f) =
∨m

i=1

∧ki

j=1(qj , ij) is associated the clauses

Pq(f(x1, . . . , xn))←
ki∧

j=1

Pqj
(xij

)

We can also add ǫ-transitions, by allowing clauses

P (x)← Q(x)

In such a setting, automata with equality constraints between brothers,
which are studied in Section 4.3, are simply an extension of the above class
of Horn clauses, in which we allow repeated variables in the head of the clause.

TATA — September 6, 2005 —

7.6 Horn Logic, Set Constraints and Alternating Automata 199

Allowing variable repetition in an arbitrary way, we get alternating automata
with contraints between brothers, a class of automata for which emptiness is
decidable in deterministic exponential time. (It is expressible in Löwenheim’s
class with equality, also called sometimes the monadic class).

Still, for tight complexity bounds, for closure properties (typically by com-
plementation) of automata with equality tests between brothers, we refer to
Section 4.3. Note that it is not easy to derive the complexity results obtained
with tree automata techniques in a logical framework.

7.6.2 The Set Constraints Formalism

We introduced and studied general set constraints in Chapter 5. Set constraints
and, more precisely, definite set constraints provide with an alternative descrip-
tion of tree automata.

Definite set constraints are conjunctions of inclusions

e ⊆ t

where e is a set expression built using function application, intersection and
variables and t is a term set expression, constructed using function application
and variables only.

Given an assignment σ of variables to subsets of T (F), we can interpret the
set expressions as follows:

[[f(e1, . . . , en)]]σ
def
= {f(t1, . . . , tn) | ti ∈ [[ei]]σ}

[[e1 ∩ e2]]σ
def
= [[e1]]σ ∩ [[e2]]σ

[[X]]σ
def
= Xσ

Then σ is a solution of a set constraint if inclusions hold for the corresponding
interpretation of expressions.

When we restrict the left members of inclusions to variables, we get an-
other formalism for alternating tree automata: such set constraints have always
a least solution, which is accepted by an alternating tree automaton. More
precisely, we can use the following translation from the alternating automaton
A = (Q,F , I, ∆): assume again that the transitions are in disjunctive normal
form (see Exercise 82) and construct, the inclusion constraints

f(X1,f,q,d, . . . , Xn,f,q,d) ⊆ Xq

⋂

(q′,j)∈d

Xq′ ⊆ Xj,f,q,d

for every (q, f) ∈ Q × F and d a disjunct of ∆(q, f). (An intersection over an
empty set has to be understood as the set of all trees).

Then, the language recognized by the alternating tree automaton is the
union, for q ∈ I, of Xqσ where σ is the least solution of the constraint.

Actually, we are constructing the constraint in exactly the same way as we
constructed the clauses in the previous section. When there is no alternation, we
get an alternative definition of non-deterministic automata, which corresponds
to the algebraic characterization of Chapter 2.

Conversely, if all right members of the definite set constraint are variables,
it is not difficult to construct an alternating tree automaton which accepts the
least solution of the constraint (see Exercise 85).

TATA — September 6, 2005 —

200 Alternating Tree Automata

7.6.3 Two Way Alternating Tree Automata

Definite set constraints look more expressive than alternating tree automata,
because inclusions

X ⊆ f(Y, Z)

cannot be directly translated into automata rules.
We define here two-way tree automata which will easily correspond to definite

set constraints on one hand and allow to simulate, e.g., the behavior of standard
pushdown word automata.

It is convenient here to use the clausal formalism in order to define such
automata. A clause

P (u)← P1(x1), . . . , Pn(xn)

where u is a linear, non-variable term and x1, . . . , xn are (not necessarily dis-
tinct) variables occurring in u, is called a push clause. A clause

P (x)← Q(t)

where x is a variable and t is a linear term, is called a pop clause. A clause

P (x)← P1(x), . . . , Pn(x)

is called an alternating clause (or an intersection clause).

Definition 16. An alternating two-way tree automaton is a tuple (Q, Qf ,F , C)
where Q is a finite set of unary function symbols, Qf is a subset of Q and C is a

finite set of clauses each of which is a push clause, a pop clause or an alternating

clause.

Such an automaton accepts a tree t if t belongs to the interpretation of some
P ∈ Qf in the least Herbrand model of the clauses.

Example 62. Consider the following alternating two-way automaton on the
alphabet F = {a, f(,)}:

1. P1(f(f(x1, x2), x3)) ← P2(x1), P2(x2), P2(x3)
2. P2(a)
3. P1(f(a, x)) ← P2(x)
4. P3(f(x, y)) ← P1(x), P2(y)
5. P4(x) ← P3(x), P1(x)
6. P2(x) ← P4(f(x, y))
7. P1(y) ← P4(f(x, y))

The clauses 1,2,3,4 are push clauses. Clause 5 is an alternating clause and
clauses 6,7 are pop clauses.

If we compute the least Herbrand model, we successively get for the five first
steps:

step 1 2 3 4 5

P1 f(a, a), f(f(a, a), a) a

P2 a f(a, a)

P3 f(f(a, a), a), f(f(f(a, a), a), a)

P4 f(f(a, a), a)

TATA — September 6, 2005 —

7.6 Horn Logic, Set Constraints and Alternating Automata 201

These automata are often convenient in expressing some problems (see the
exercises and bibliographic notes). However they do not increase the expressive
power of (alternating) tree automata:

Theorem 56. For every alternating two-way tree automaton, it is possible to

compute in deterministic exponential time a tree automaton which accepts the

same language.

We do not prove the result here (see the bibliographic notes instead). A
simple way to compute the equivalent tree automaton is as follows: first flat-
ten the clauses, introducing new predicate symbols. Then saturate the set of
clauses, using ordered resolution (w.r.t.subterm ordering) and keeping only non-
subsumed clauses. The saturation process terminates in exponential time. The
desired automaton is obtained by simply keeping only the push clauses of this
resulting set of clauses.

Example 63. Let us come back to Example 62 and show how we get an equiv-
alent finite tree automaton.

First flatten the clauses: Clause 1 becomes

1. P1(f(x, y)) ← P5(x), P2(y)
8. P5(f(x, y)) ← P2(x), P2(y)

Now we start applying resolution;

From 4 + 5: 9. P4(f(x, y)) ← P1(x), P2(y), P1(f(x, y))
Form 9 + 6: 10. P2(x) ← P1(x), P2(y)
From 10 + 2: 11. P2(x) ← P1(x)

Clause 11 subsumes 10, which is deleted.

From 9 + 7: 12. P1(y) ← P1(x), P2(y)
From 12 +1: 13. P1(y) ← P2(y), P5(x), P2(z)
From 13 + 8: 14. P1(y) ← P2(y), P2(x1), P2(x2), P2(z)

Clause 14. can be simplified and, by superposition with 2. we get

From 14 + 2: 15. P1(y) ← P2(y)

At this stage, from 11. and 15. we have P1(x) ↔ P2(x), hence, for simplicity,
we will only consider P1, replacing every occurrence of P2 with P1.

From 1 +5: 16. P4(f(x, y)) ← P3(f(x, y)), P5(x), P1(y)
From 1 + 9: 17. P4(f(x, y)) ← P1(x), P1(y), P5(x)
From 2 +5: 18. P4(a) ← P3(a)
From 3 +5: 19. P4(f(a, x)) ← P3(f(a, x)), P1(x)
From 3+ 9: 20. P4(f(a, x)) ← P1(x), P1(a)
From 2 + 20: 21. P4(f(a, x)) ← P1(x)

TATA — September 6, 2005 —

202 Alternating Tree Automata

Clause 21. subsumes both 20 and 19. These two clauses are deleted.

From 5 + 6: 22. P1(x) ← P3(f(x, y)), P1(f(x, y))
From 5 +7: 23. P1(y) ← P3(f(x, y)), P1(f(x, y))
From 16 + 6: 24. P1(x) ← P3(f(x, y)), P5(x), P1(y)
From 23 +1: 25. P1(y) ← P3(f(x, y)), P5(x), P1(y)

Now every new inference yields a redundant clause and the saturation termi-
nates, yielding the automaton:

1. P1(f(x, y)) ← P5(x), P2(y)
2. P1(a)
3. P1(f(a, x)) ← P1(x)
4. P3(f(x, y)) ← P1(x), P1(y)
8. P5(f(x, y)) ← P1(x), P1(y)
11. P1(x) ← P1(y)
15. P2(x) ← P1(x)
21. P4(f(a, x)) ← P1(x)

Of course, this automaton can be simplified: P1 and P2 accept all terms in
T (F).

It follows from Theorems 56, 55 and 11 that the emptiness problem (resp.
universality problems) are DEXPTIME-complete for two-way alternating au-
tomata.

7.6.4 Two Way Automata and Definite Set Constraints

There is a simple reduction of two-way automata to definite set constraints:
A push clause P (f(x1, . . . , xn)) ← P1(xi1), . . . , Pn(xin

) corresponds to an
inclusion constraint

f(e1, . . . , en) ⊆ XP

where each ej is the intersection, for ik = j of the variables XPk
. A (conditional)

pop clause P (xi)← Q(f(x1, . . . , xn)), P1(x1), . . . Pk(xk) corresponds to

f(e1, . . . , en) ∩XQ ⊆ f(⊤, . . . , XP ,⊤, . . .)

where, again, each ej is the intersection, for ik = j of the variables XPk
and⊤ is a

variable containing all term expressions. Intersection clauses P (x)← Q(x), R(x)
correspond to constraints

XQ ∩XR ⊆ XP

Conversely, we can translate the definite set constraints into two-way au-
tomata, with additional restrictions on some states. We cannot do better since
a definite set constraint could be unsatisfiable.

Introducing auxiliary variables, we only have to consider constraints:

1. f(X1, . . . , Xn) ⊆ X ,

2. X1 ∩ . . . ∩Xn ⊆ X ,

3. X ⊆ f(X1, . . . , Xn).

TATA — September 6, 2005 —

7.7 An (other) example of application 203

The first constraints are translated to push clauses, the second kind of con-
straints is translated to intersection clauses. Consider the last constraints. It
can be translated into the pop clauses:

PXi
(xi)← PX(f(x1, . . . , xn))

with the provision that all terms in PX are headed with f .
Then the procedure which solves definite set constraints is essentially the

same as the one we sketched for the proof of Theorem 56, except that we have
to add unit negative clauses which may yield failure rules

Example 64. Consider the definite set constraint

f(X, Y) ∩X ⊆ f(Y, X), f(a, Y) ⊆ X, a ⊆ Y, f(f(Y, Y), Y) ⊆ X

Starting from this constraint, we get the clauses of Example 62, with the addi-
tional restriction

26. ¬P4(a)

since every term accepted in P4 has to be headed with f .
If we saturate this constraint as in Example 63, we get the same clauses, of

course, but also negative clauses resulting from the new negative clause:

From 26 + 18 27. ¬P3(a)

And that is all: the constraint is satisfiable, with a minimal solution described
by the automaton resulting from the computation of Example 63.

7.6.5 Two Way Automata and Pushdown Automata

Two-way automata, though related to pushdown automata, are quite differ-
ent. In fact, for every pushdown automaton, it is easy to construct a two-way
automaton which accepts the possible contents of the stack (see Exercise 86).
However, two-way tree (resp. word) automata have the same expressive power
as standard tree (resp. word) automata: they only accept regular languages,
while pushdown automata accept context-free languages, which strictly contain
regular languages.

Note still that, as a corollary of Theorem 56, the language of possible stack
contents in a pushdown automaton is regular.

7.7 An (other) example of application

Two-way automata naturally arise in the analysis of cryptographic protocols.
In this context, terms are constructed using the function symbols { } (binary
encryption symbols), < , > (pairing) and constants (and other symbols which
are irrelevant here). The so-called Dolev-Yao model consists in the deduction
rules of Figure 7.3, which express the capabilities of an intruder. For simplicity,
we only consider here symmetric encryption keys, but there are similar rules for
public key cryptosystems. The rules basically state that an intruder can encrypt

TATA — September 6, 2005 —

204 Alternating Tree Automata

Pairing
u v

< u, v >

Encryption
u v

{u}v

Unpairing L
< u, v >

u

Unpairing R
< u, v >

v

Decryption
{u}v v

u

Figure 7.3: The Dolev-Yao intruder capabilities

a known message with a known key, can decrypt a known message encrypted
with k, provided he knows k and can form and decompose pairs.

It is easy to construct a two-way automaton which, given a regular set of
terms R, accepts the set of terms that can be derived by an intruder using the
rules of Figure 7.3 (see Exercise 87).

7.8 Exercises

Exercise 82. Show that, for every alternating tree automaton, it is possible to com-
pute in polynomial time an alternating tree automaton which accepts the same lan-
guage and whose transitions are in disjunctive normal form, i.e.each transition has the
form

δ(q, f) =
m
_

i=1

kî

j=1

(qj , lj)

Exercise 83. Show that the membership problem for alternating tree automata can

be decided in polynomial time.

Exercise 84. An alternating automaton is weak if there is an ordering on the set of
states such that, for every state q and every function symbol f , every state q′ occurring
in δ(q, f) satisfies q′ ≤ q.

Prove that the emptiness of weak alternating tree automata is in PTIME.

Exercise 85. Given a definite set constraint whose all right hand sides are variables,

show how to construct (in polynomial time) k alternating tree automata which accept

respectively X1σ, . . . , Xkσ where σ is the least solution of the constraint.

Exercise 86. A pushdown automaton on words is a tuple (Q,Qf , A, Γ, δ) where Q is
a finite set of states, Qf ⊆ Q, A is a finite alphabet of input symbols, Γ is a finite
alphabet of stack symbols and δ is a transition relation defined by rules: qa

w
−→ q′

and qa
w−1

−−−→ q′ where q, q′ ∈ Q, a ∈ A and w, w′ ∈ Γ∗.

A configuration is a pair of a state and a word γ ∈ Γ∗. The automaton may move
when reading a, from (q, γ) to (q′, γ′) if either there is a transition qa

w
−→ q′ and

γ′ = w · γ or there is a transition qa
w−1

−−−→ q′ and γ = w · γ′.

TATA — September 6, 2005 —

7.9 Bibliographic Notes 205

1. Show how to compute (in polynomial time) a two-way automaton which accepts
w in state q iff the configuration (q, w) is reachable.

2. This can be slightly generalized considering alternating pushdown automata:

now assume that the transitions are of the form: qa
w
−→ φ and qa

w−1

−−−→ φ

where φ ∈ B+(Q). Give a definition of a run and of an accepted word, which is
consistent with both the definition of a pushdown automaton and the definition
of an alternating automaton.

3. Generalize the result of the first question to alternating pushdown automata.

4. Generalize previous questions to tree automata.

Exercise 87. Given a finite tree automaton A over the alphabet {a, { } , < , >},
construct a two-way tree automaton which accepts the set of terms t which can be
deduced by the rule of Figure 7.3 and the rule

t

If t is accepted by A

7.9 Bibliographic Notes

Alternation has been considered for a long time as a computation model, e.g. for
Turing machines. The seminal work in this area is [CKS81], in which the rela-
tionship between complexity classes defined using (non)-deterministic machines
and alternating machines is studied.

Concerning tree automata, alternation has been mainly considered in the
case of infinite trees. This is especially useful to keep small representations
of automata associated with temporal logic formulas, yielding optimal model-
checking algorithms [KVW00].

Two-way automata and their relationship with clauses have been first consid-
ered in [FSVY91] for the analysis of logic programs. They also occur naturally
in the context of definite set constraints, as we have seen (the completion mecha-
nisms are presented in, e.g., [HJ90a, CP97]), and in the analysis of cryptographic
protocols [Gou00].

There several other definitions of two-way tree automata. We can distinguish
between two-way automata which have the same expressive power as regular
languages and what we refer here to pushdown automata, whose expressive
power is beyond regularity.

Decision procedures based on ordered resolution strategies could be found
in [Jr.76].

Alternating automata with contraints between brothers define a class of
languages expressible in Löwenheim’s class with equality, also called sometimes
the monadic class. See for instance [BGG97].

TATA — September 6, 2005 —

Bibliography

[AD82] A. Arnold and M. Dauchet. Morphismes et bimorphismes d’arbres.
Theorical Computer Science, 20:33–93, 1982.

[AG68] M. A. Arbib and Y. Give’on. Algebra automata I: Parallel program-
ming as a prolegomena to the categorical approach. Information

and Control, 12(4):331–345, April 1968.

[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complex-
ity of set constraints. In E. Börger, Y. Gurevich, and K. Meinke,
editors, Proceedings of Computer Science Logic, volume 832 of Lec-

ture Notes in Computer Science, pages 1–17, 1993. Techn. Report
93-1352, Cornell University.

[AKW95] A. Aiken, D. Kozen, and E.L. Wimmers. Decidability of systems
of set constraints with negative constraints. Information and Com-

putation, 122(1):30–44, October 1995.

[AM78] M.A. Arbib and E.G. Manes. Tree transformations and semantics
of loop-free programs. Acta Cybernetica, 4:11–17, 1978.

[AM91] A. Aiken and B. R. Murphy. Implementing regular tree expressions.
In Proceedings of the ACM conf. on Functional Programming Lan-

guages and Computer Architecture, pages 427–447, 1991.

[AU71] A. V. Aho and J. D. Ullmann. Translations on a context-free gram-
mar. Information and Control, 19:439–475, 1971.

[AW92] A. Aiken and E.L. Wimmers. Solving Systems of Set Constraints.
In Proceedings, Seventh Annual IEEE Symposium on Logic in Com-

puter Science [IEE92], pages 329–340.

[Bak78] B.S. Baker. Generalized syntax directed translation, tree transduc-
ers, and linear space. Journal of Comput. and Syst. Sci., 7:876–891,
1978.

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision

Problem. Perspectives of Mathematical Logic. Springer Verlag,
1997.

[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are
the monadic class. In Proceedings, Eighth Annual IEEE Sympo-

sium on Logic in Computer Science, pages 75–83. IEEE Computer
Society Press, 19–23 June 1993.

TATA — September 6, 2005 —

208 BIBLIOGRAPHY

[BJ97] A. Bouhoula and J.-P. Jouannaud. Automata-driven automated
induction. In Proceedings, 12th Annual IEEE Symposium on Logic

in Computer Science [IEE97].

[BKMW01] A. Brüggemann-Klein, M.Murata, and D. Wood. Regular tree and
regular hedge languages over unranked alphabets. Technical Report
HKTUST-TCSC-2001-05, HKUST Theoretical Computer Science
Center Research, 2001.

[Boz99] S. Bozapalidis. Equational elements in additive algebras. Theory

of Computing Systems, 32(1):1–33, 1999.

[Boz01] S. Bozapalidis. Context-free series on trees. ICOMP, 169(2):186–
229, 2001.

[BR82] Jean Berstel and Christophe Reutenauer. Recognizable formal
power series on trees. TCS, 18:115–148, 1982.

[Bra68] W. S. Brainerd. The minimalization of tree automata. Information

and Control, 13(5):484–491, November 1968.

[Bra69] W. S. Brainerd. Tree generating regular systems. Information and

Control, 14(2):217–231, February 1969.

[BT92] B. Bogaert and S. Tison. Equality and disequality constraints on
direct subterms in tree automata. In A. Finkel and M. Jantzen, ed-
itors, 9th Annual Symposium on Theoretical Aspects of Computer

Science, volume 577 of Lecture Notes in Computer Science, pages
161–171, 1992.

[Büc60] J. R. Büchi. On a decision method in a restricted second order
arithmetic. In Stanford Univ. Press., editor, Proc. Internat. Congr.

on Logic, Methodology and Philosophy of Science, pages 1–11, 1960.

[CCC+94] A.-C. Caron, H. Comon, J.-L. Coquidé, M. Dauchet, and F. Jacque-
mard. Pumping, cleaning and symbolic constraints solving. In Pro-

ceedings, International Colloquium Automata Languages and Pro-

gramming, volume 820 of Lecture Notes in Computer Science, pages
436–449, 1994.

[CD94] H. Comon and C. Delor. Equational formulae with membership
constraints. Information and Computation, 112(2):167–216, Au-
gust 1994.

[CDGV94] J.-L. Coquide, M. Dauchet, R. Gilleron, and S. Vagvolgyi. Bottom-
up tree pushdown automata : Classification and connection with
rewrite systems. Theorical Computer Science, 127:69–98, 1994.

[CG90] J.-L. Coquidé and R. Gilleron. Proofs and reachability problem
for ground rewrite systems. In Proc. IMYCS’90, Smolenice Castle,
Czechoslovakia, November 1990.

[Chu62] A. Church. Logic, arithmetic, automata. In Proc. International

Mathematical Congress, 1962.

TATA — September 6, 2005 —

BIBLIOGRAPHY 209

[CJ97a] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-
complete. In Proceedings, 12th Annual IEEE Symposium on Logic

in Computer Science [IEE97], pages 26–34.

[CJ97b] H. Comon and Y. Jurski. Higher-order matching and tree au-
tomata. In M. Nielsen and W. Thomas, editors, Proc. Conf. on

Computer Science Logic, volume 1414 of LNCS, pages 157–176,
Aarhus, August 1997. Springer-Verlag.

[CK96] A. Cheng and D. Kozen. A complete Gentzen-style axiomatization
for set constraints. In Proceedings, International Colloquium Au-

tomata Languages and Programming, volume 1099 of Lecture Notes

in Computer Science, pages 134–145, 1996.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation.
Journal of the ACM, 28:114–133, 1981.

[Com89] H. Comon. Inductive proofs by specification transformations. In
Proceedings, Third International Conference on Rewriting Tech-

niques and Applications, volume 355 of Lecture Notes in Computer

Science, pages 76–91, 1989.

[Com95] H. Comon. Sequentiality, second-order monadic logic and tree au-
tomata. In Proceedings, Tenth Annual IEEE Symposium on Logic

in Computer Science. IEEE Computer Society Press, 26–29 June
1995.

[Com98a] H. Comon. Completion of rewrite systems with membership con-
straints. Part I: deduction rules. Journal of Symbolic Computation,
25:397–419, 1998. This is a first part of a paper whose abstract ap-
peared in Proc. ICALP 92, Vienna.

[Com98b] H. Comon. Completion of rewrite systems with membership con-
straints. Part II: Constraint solving. Journal of Symbolic Compu-

tation, 25:421–453, 1998. This is the second part of a paper whose
abstract appeared in Proc. ICALP 92, Vienna.

[Cou86] B. Courcelle. Equivalences and transformations of regular systems–
applications to recursive program schemes and grammars. Theori-

cal Computer Science, 42, 1986.

[Cou89] B. Courcelle. On Recognizable Sets and Tree Automata, chapter
Resolution of Equations in Algebraic Structures. Academic Press,
m. Nivat and Ait-Kaci edition, 1989.

[Cou92] B. Courcelle. Recognizable sets of unrooted trees. In M. Nivat
and A. Podelski, editors, Tree Automata and Languages. Elsevier
Science, 1992.

[CP94a] W. Charatonik and L. Pacholski. Negative set constraints with
equality. In Proceedings, Ninth Annual IEEE Symposium on Logic

in Computer Science, pages 128–136. IEEE Computer Society
Press, 4–7 July 1994.

TATA — September 6, 2005 —

210 BIBLIOGRAPHY

[CP94b] W. Charatonik and L. Pacholski. Set constraints with projections
are in NEXPTIME. In Proceedings of the 35th Symp. Foundations

of Computer Science, pages 642–653, 1994.

[CP97] W. Charatonik and A. Podelski. Set Constraints with Intersec-
tion. In Proceedings, 12th Annual IEEE Symposium on Logic in

Computer Science [IEE97].

[Dau94] M. Dauchet. Rewriting and tree automata. In H. Comon and J.-P.
Jouannaud, editors, Proc. Spring School on Theoretical Computer

Science: Rewriting, Lecture Notes in Computer Science, Odeillo,
France, 1994. Springer Verlag.

[DCC95] M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Reduction properties
and automata with constraints. Journal of Symbolic Computation,
20:215–233, 1995.

[DGN+98] A. Degtyarev, Y. Gurevich, P. Narendran, M. Veanes, and
A. Voronkov. The decidability of simultaneous rigid e-unification
with one variable. In T. Nipkow, editor, 9th International Con-

ference on Rewriting Techniques and Applications, volume 1379 of
Lecture Notes in Computer Science, 1998.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Com-

puter Science, volume B, chapter Rewrite Systems, pages 243–320.
Elsevier, 1990.

[DM97] I. Durand and A. Middeldorp. Decidable call by need computations
in term rewriting. In W. McCune, editor, Proc. 14th Conference on

Automated Deduction, volume 1249 of Lecture Notes in Artificial

Intelligence, pages 4–18. Springer Verlag, 1997.

[Don65] J. E. Doner. Decidability of the weak second-order theory of two
successors. Notices Amer. Math. Soc., 12:365–468, March 1965.

[Don70] J. E. Doner. Tree acceptors and some of their applications. Journal

of Comput. and Syst. Sci., 4:406–451, 1970.

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems
is decidable. In Proceedings, Fifth Annual IEEE Symposium on

Logic in Computer Science, pages 242–248. IEEE Computer Soci-
ety Press, 4–7 June 1990.

[DT92] M. Dauchet and S. Tison. Structural complexity of classes of tree
languages. In M. Nivat and A. Podelski, editors, Tree Automata

and Languages, pages 327–353. Elsevier Science, 1992.

[DTHL87] M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne. Decidability
of the confluence of ground term rewriting systems. In Proceed-

ings, Symposium on Logic in Computer Science, pages 353–359.
The Computer Society of the IEEE, 22–25 June 1987.

TATA — September 6, 2005 —

BIBLIOGRAPHY 211

[DTT97] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set
constraints with tree automata. In G. Smolka, editor, Proceedings

of the 3th International Conference on Principles and Practice of

Constraint Programming, volume 1330 of Lecture Notes in Com-

puter Science, pages 62–76, oct 1997.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations. a
comparision. Mathematical System Theory, 9:198–231, 1975.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead.
Mathematical System Theory, 10:198–231, 1977.

[Eng78] J. Engelfriet. A hierarchy of tree transducers. In Proceedings of the

third Les Arbres en Algèbre et en Programmation, pages 103–106,
Lille, 1978.

[Eng82] J. Engelfriet. Three hierarchies of transducers. Mathematical Sys-

tem Theory, 15:95–125, 1982.

[ES78] J. Engelfriet and E.M. Schmidt. IO and OI II. Journal of Comput.

and Syst. Sci., 16:67–99, 1978.

[Esi83] Z. Esik. Decidability results concerning tree transducers. Acta

Cybernetica, 5:303–314, 1983.

[EV91] J. Engelfriet and H. Vogler. Modular tree transducers. Theorical

Computer Science, 78:267–303, 1991.

[EW67] S. Eilenberg and J. B. Wright. Automata in general algebras. In-

formation and Control, 11(4):452–470, 1967.

[FSVY91] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic pro-
grams as types for logic programs. In Proc. 6th IEEE Symp. Logic

in Computer Science, Amsterdam, pages 300–309, 1991.

[FV88] Z. Fülöp and S. Vágvölgyi. A characterization of irreducible sets
modulo left-linear term rewiting systems by tree automata. Un
type rr ??, Research Group on Theory of Automata, Hungarian
Academy of Sciences, H-6720 Szeged, Somogyi u. 7. Hungary, 1988.

[FV89] Z. Fülöp and S. Vágvölgyi. Congruential tree languages are the
same as recognizable tree languages–A proof for a theorem of D.
kozen. Bulletin of the European Association of Theoretical Com-

puter Science, 39, 1989.

[FV98] Z. Fülöp and H. Vögler. Formal Models Based on Tree Transduc-

ers. Monographs in Theoretical Computer Science. Springer Verlag,
1998.

[GB85] J. H. Gallier and R. V. Book. Reductions in tree replacement
systems. Theorical Computer Science, 37(2):123–150, 1985.

[Gen97] T. Genet. Decidable approximations of sets of descendants and
sets of normal forms - extended version. Technical Report RR-
3325, Inria, Institut National de Recherche en Informatique et en
Automatique, 1997.

TATA — September 6, 2005 —

212 BIBLIOGRAPHY

[GJV98] H. Ganzinger, F. Jacquemard, and M. Veanes. Rigid reachability.
In Proc. ASIAN’98, volume 1538 of Lecture Notes in Computer

Science, pages 4–??, Berlin, 1998. Springer-Verlag.

[GMW97] H. Ganzinger, C. Meyer, and C. Weidenbach. Soft typing for or-
dered resolution. In W. McCune, editor, Proc. 14th Conference on

Automated Deduction, volume 1249 of Lecture Notes in Artificial

Intelligence. Springer Verlag, 1997.

[Gou00] Jean Goubault-Larrecq. A method for automatic cryptographic
protocol verification. In Proc. 15 IPDPS 2000 Workshops, Can-

cun, Mexico, May 2000, volume 1800 of Lecture Notes in Computer

Science, pages 977–984. Springer Verlag, 2000.

[GRS87] J. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid
E-unification: Equational matings. In Proc. 2nd IEEE Symp. Logic

in Computer Science, Ithaca, NY, June 1987.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, 1984.

[GS96] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 1–68. Springer Verlag, 1996.

[GT95] R. Gilleron and S. Tison. Regular tree languages and rewrite sys-
tems. Fundamenta Informaticae, 24:157–176, 1995.

[GTT93] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set
constraints with negated subset relationships. In Proceedings of

the 34th Symp. on Foundations of Computer Science, pages 372–
380, 1993. Full version in the LIFL Tech. Rep. IT-247.

[GTT99] R. Gilleron, S. Tison, and M. Tommasi. Set constraints and au-
tomata. Information and Control, 149:1 – 41, 1999.

[Gue83] I. Guessarian. Pushdowm tree automata. Mathematical System

Theory, 16:237–264, 1983.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie
Mellon University, 1992.

[HJ90a] N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set
Constraints. In Proceedings, Fifth Annual IEEE Symposium on

Logic in Computer Science, pages 42–51. IEEE Computer Society
Press, 4–7 June 1990.

[HJ90b] N. Heintze and J. Jaffar. A finite presentation theorem for approx-
imating logic programs. In Proceedings of the 17th ACM Symp. on

Principles of Programming Languages, pages 197–209, 1990. Full
version in the IBM tech. rep. RC 16089 (#71415).

[HJ92] N. Heintze and J. Jaffar. An engine for logic program analysis. In
Proceedings, Seventh Annual IEEE Symposium on Logic in Com-

puter Science [IEE92], pages 318–328.

TATA — September 6, 2005 —

BIBLIOGRAPHY 213

[HL91] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting
systems I. In J.-L. Lassez and G. Plotkin, editors, Computational

Logic: Essays in Honor of Alan Robinson, pages 395–414. MIT
Press, 1991. This paper was written in 1979.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison Wesley, 1979.

[IEE92] IEEE Computer Society Press. Proceedings, Seventh Annual IEEE

Symposium on Logic in Computer Science, 22–25 June 1992.

[IEE97] IEEE Computer Society Press. Proceedings, 12th Annual IEEE

Symposium on Logic in Computer Science, 1997.

[Jac96] F. Jacquemard. Decidable approximations of term rewriting sys-
tems. In H. Ganzinger, editor, Proceedings. Seventh International

Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, 1996.

[JM79] N. D. Jones and S. S. Muchnick. Flow Analysis and Optimization
of LISP-like Structures. In Proceedings of the 6th ACM Symposium

on Principles of Programming Languages, pages 244–246, 1979.

[Jon87] N. Jones. Abstract interpretation of declarative languages, chapter
Flow analysis of lazy higher-order functional programs, pages 103–
122. Ellis Horwood Ltd, 1987.

[Jr.76] William H. Joyner Jr. Resolution strategies as decision procedures.
Journal of the ACM, 23(3):398–417, 1976.

[KFK97] Y. Kaji, T. Fujiwara, and T. Kasami. Solving a unification problem
under constrained substitutions using tree automata. Journal of

Symbolic Computation, 23(1):79–118, January 1997.

[Koz92] D. Kozen. On the Myhill-Nerode theorem for trees. Bulletin of

the European Association of Theoretical Computer Science, 47:170–
173, June 1992.

[Koz93] D. Kozen. Logical aspects of set constraints. In E. Börger, Y. Gure-
vich, and K. Meinke, editors, Proceedings of Computer Science

Logic, volume 832 of Lecture Notes in Computer Science, pages
175–188, 1993.

[Koz95] D. Kozen. Rational spaces and set constraints. In Proceedings of

the 6th International Joint Conference on Theory and Practice of

Software Development, volume 915 of Lecture Notes in Computer

Science, pages 42–61, 1995.

[Koz98] D. Kozen. Set constraints and logic programming. Information

and Computation, 142(1):2–25, 1998.

[Kuc91] G. A. Kucherov. On relationship between term rewriting systems
and regular tree languages. In R. Book, editor, Proceedings. Fourth

International Conference on Rewriting Techniques and Applica-

tions, volume 488 of Lecture Notes in Computer Science, pages
299–311, April 1991.

TATA — September 6, 2005 —

214 BIBLIOGRAPHY

[Kui99] W. Kuich. Full abstract families of tree series i. In Juhani
Karhumäki, Hermann A. Maurer, and Gheorghe Paun andy Grze-
gorz Rozenberg, editors, Jewels are Forever, pages 145–156. SV,
1999.

[Kui01] W. Kuich. Pushdown tree automata, algebraic tree systems, and
algebraic tree series. Information and Computation, 165(1):69–99,
2001.

[KVW00] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic
approach to branching time model-checking. Journal of the ACM,
47(2):312–360, 2000.

[LD02] Denis Lugiez and Silvano DalZilio. Multitrees automata, pres-
burger’s constraints and tree logics. Technical Report 8, Labo-
ratoire d’Informatique Fondamentale de Marseille, 2002.

[LM87] J.-L. Lassez and K. Marriott. Explicit representation of terms
defined by counter examples. Journal of Automated Reasoning,
3(3):301–318, September 1987.

[LM93] D. Lugiez and J.-L. Moysset. Complement problems and tree au-
tomata in AC-like theories. In P. Enjalbert, A. Finkel, and K. W.
Wagner, editors, 10th Annual Symposium on Theoretical Aspects

of Computer Science, volume 665 of Lecture Notes in Computer

Science, pages 515–524, Würzburg, 25–27 February 1993.

[LM94] Denis Lugiez and Jean-Luc Moysset. Tree automata help one to
solve equational formulae in ac-theories. Journal of Symbolic Com-

putation, 18(4):297–318, 1994.

[Loh01] M. Lohrey. On the parallel complexity of tree automata. In Proceed-

ings of the 12th Conference on Rewriting and Applications, pages
201–216, 2001.

[MGKW96] D. McAllester, R. Givan, D. Kozen, and C. Witty. Tarskian set con-
straints. In Proceedings, 11th Annual IEEE Symposium on Logic in

Computer Science, pages 138–141. IEEE Computer Society Press,
27–30 July 1996.

[Mis84] P. Mishra. Towards a Theory of Types in PROLOG. In Proceedings

of the 1st IEEE Symposium on Logic Programming, pages 456–461,
Atlantic City, 1984.

[MLM01] M. Murata, D. Lee, and M. Mani. Taxonomy of xml schema lan-
guages using formal language theory. In In Extreme Markup Lan-

guages, 2001.

[Mon81] J. Mongy. Transformation de noyaux reconnaissables d’arbres.

Forêts RATEG. PhD thesis, Laboratoire d’Informatique Fonda-
mentale de Lille, Université des Sciences et Technologies de Lille,
Villeneuve d’Ascq, France, 1981.

TATA — September 6, 2005 —

BIBLIOGRAPHY 215

[MS96] A. Mateescu and A. Salomaa. Aspects of classical language theory.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal

Languages, volume 1, pages 175–246. Springer Verlag, 1996.

[Mur00] M. Murata. “Hedge Automata: a Formal Model for XML
Schemata”. Web page, 2000.

[MW67] J. Mezei and J. B. Wright. Algebraic automata and context-free
sets. Information and Control, 11:3–29, 1967.

[Niv68] M. Nivat. Transductions des langages de Chomsky. Thèse d’etat,
Paris, 1968.

[NP89] M. Nivat and A. Podelski. Resolution of Equations in Algebraic

Structures, volume 1, chapter Tree monoids and recognizable sets
of finite trees, pages 351–367. Academic Press, New York, 1989.

[NP93] J. Niehren and A. Podelski. Feature automata and recognizable
sets of feature trees. In Proceedings TAPSOFT’93, volume 668 of
Lecture Notes in Computer Science, pages 356–375, 1993.

[NP97] M. Nivat and A. Podelski. Minimal ascending and descending tree
automata. SIAM Journal on Computing, 26(1):39–58, February
1997.

[NT99] T. Nagaya and Y. Toyama. Decidability for left-linear growing
term rewriting systems. In M. Rusinowitch F. Narendran, editor,
10th International Conference on Rewriting Techniques and Appli-

cations, volume 1631 of Lecture Notes in Computer Science, pages
256–270, Trento, Italy, 1999. Springer Verlag.

[Ohs01] Hitoshi Ohsaki. Beyond the regularity: Equational tree automata
for associative and commutative theories. In Proceedings of CSL

2001, volume 2142 of Lecture Notes in Computer Science. Springer
Verlag, 2001.

[Oya93] M. Oyamaguchi. NV-sequentiality: a decidable condition for call-
by-need computations in term rewriting systems. SIAM Journal

on Computing, 22(1):114–135, 1993.

[Pel97] N. Peltier. Tree automata and automated model building. Funda-

menta Informaticae, 30(1):59–81, 1997.

[Pla85] D. A. Plaisted. Semantic confluence tests and completion method.
Information and Control, 65:182–215, 1985.

[Pod92] A. Podelski. A monoid approach to tree automata. In Nivat and
Podelski, editors, Tree Automata and Languages, Studies in Com-

puter Science and Artificial Intelligence 10. North-Holland, 1992.

[PQ68] C. Pair and A. Quere. Définition et étude des bilangages réguliers.
Information and Control, 13(6):565–593, 1968.

TATA — September 6, 2005 —

216 BIBLIOGRAPHY

[Rab69] M. O. Rabin. Decidability of Second-Order Theories and Automata
on Infinite Trees. Transactions of the American Mathematical So-

ciety, 141:1–35, 1969.

[Rab77] M. O. Rabin. Handbook of Mathematical Logic, chapter Decidable
theories, pages 595–627. North Holland, 1977.

[Rao92] J.-C. Raoult. A survey of tree transductions. In M. Nivat and
A. Podelski, editors, Tree Automata and Languages, pages 311–
325. Elsevier Science, 1992.

[Rey69] J. C. Reynolds. Automatic Computation of Data Set Definition.
Information Processing, 68:456–461, 1969.

[Sal73] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[Sal88] K. Salomaa. Deterministic tree pushdown automata and monadic
tree rewriting systems. Journal of Comput. and Syst. Sci., 37:367–
394, 1988.

[Sal94] K. Salomaa. Synchronized tree automata. Theorical Computer

Science, 127:25–51, 1994.

[Sei89] H. Seidl. Deciding equivalence of finite tree automata. In Annual

Symposium on Theoretical Aspects of Computer Science, 1989.

[Sei90] H. Seidl. Deciding equivalence of finite tree automata. SIAM Jour-

nal on Computing, 19, 1990.

[Sei92] H. Seidl. Single-valuedness of tree transducers is decidable in poly-
nomial time. Theorical Computer Science, 106:135–181, 1992.

[Sei94a] H. Seidl. Equivalence of finite-valued tree transducers is decidable.
Mathematical System Theory, 27:285–346, 1994.

[Sei94b] H. Seidl. Haskell overloading is DEXPTIME-complete. Information

Processing Letters, 52(2):57–60, 1994.

[Sén97] G. Sénizergues. The equivalence problem for deterministic push-
down automata is decidable. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, Automata, Languages and Pro-

gramming, 24th International Colloquium, volume 1256 of Lec-

ture Notes in Computer Science, pages 671–681, Bologna, Italy,
7–11 July 1997. Springer-Verlag.

[Sey94] F. Seynhaeve. Contraintes ensemblistes. Master’s thesis, LIFL,
1994.

[Slu85] G. Slutzki. Alternating tree automata. Theorical Computer Sci-

ence, 41:305–318, 1985.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring ex-
ponential time. In Proc. 5th ACM Symp. on Theory of Computing,
pages 1–9, 1973.

TATA — September 6, 2005 —

BIBLIOGRAPHY 217

[Ste94] K. Stefansson. Systems of set constraints with negative constraints
are nexptime-complete. In Proceedings, Ninth Annual IEEE Sym-

posium on Logic in Computer Science, pages 137–141. IEEE Com-
puter Society Press, 4–7 July 1994.

[SV95] G. Slutzki and S. Vagvolgyi. Deterministic top-down tree transduc-
ers with iterated look-ahead. Theorical Computer Science, 143:285–
308, 1995.

[Tha70] J. W. Thatcher. Generalized sequential machines. Journal of Com-

put. and Syst. Sci., 4:339–367, 1970.

[Tha73] J. W. Thatcher. Tree automata: an informal survey. In A.V.
Aho, editor, Currents in the theory of computing, pages 143–178.
Prentice Hall, 1973.

[Tho90] W. Thomas. Handbook of Theoretical Computer Science, volume B,
chapter Automata on Infinite Objects, pages 134–191. Elsevier,
1990.

[Tho97] W. Thomas. Languages, automata and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 389–456. Springer Verlag, 1997.

[Tis89] S. Tison. Fair termination is decidable for ground systems. In Pro-

ceedings, Third International Conference on Rewriting Techniques

and Applications, volume 355 of Lecture Notes in Computer Sci-

ence, pages 462–476, 1989.

[Tiu92] J. Tiuryn. Subtype inequalities. In Proceedings, Seventh Annual

IEEE Symposium on Logic in Computer Science [IEE92], pages
308–317.

[Tom92] M. Tommasi. Automates d’arbres avec tests d’égalité entre cousins
germains. Mémoire de DEA, Univ. Lille I, 1992.

[Tom94] M. Tommasi. Automates et contraintes ensemblistes. PhD thesis,
LIFL, 1994.

[Tra95] B. Trakhtenbrot. Origins and metamorphoses of the trinity: Logic,
nets, automata. In Proceedings, Tenth Annual IEEE Symposium on

Logic in Computer Science. IEEE Computer Society Press, 26–29
June 1995.

[Tre96] R. Treinen. The first-order theory of one-step rewriting is undecid-
able. In H. Ganzinger, editor, Proceedings. Seventh International

Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, pages 276–286, 1996.

[TW65] J. W. Thatcher and J. B. Wright. Generalized finite automata.
Notices Amer. Math. Soc., 820, 1965. Abstract No 65T-649.

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata
with an application to a decision problem of second-order logic.
Mathematical System Theory, 2:57–82, 1968.

TATA — September 6, 2005 —

218 BIBLIOGRAPHY

[Uri92] T. E. Uribe. Sorted Unification Using Set Constraints. In D. Ka-
pur, editor, Proceedings of the 11th International Conference on

Automated Deduction, New York, 1992.

[Vea97a] M. Veanes. On computational complexity of basic decision prob-
lems of finite tree automata. Technical report, Uppsala Computing
Science Department, 1997.

[Vea97b] M. Veanes. On simultaneous rigid E-unification. PhD thesis, Com-
puting Science Department, Uppsala University, Uppsala, Sweden,
1997.

[Zac79] Z. Zachar. The solvability of the equivalence problem for determin-
istic frontier-to-root tree transducers. Acta Cybernetica, 4:167–177,
1979.

TATA — September 6, 2005 —

Index

alternating
tree automaton, 13
word automaton, 13

alternating automaton
weak, 26

arity, 9
automaton

pushdown, 26

closed, 10
context, 11
cryptographic protocols, 25

definite set constraints, 21
domain, 11

first order logic
monadic fragment, 20

frontier position, 10

ground substitution, 11
ground terms, 9

height, 10

Löwenheim class, 21, 27
linear, 9

monadic class, 21

pop clause, 22
position, 10
push clause, 22
pushdown automaton, 25

ranked alphabet, 9
root symbol, 10
run

of an alternating tree automa-
ton, 15

of an alternating word automa-
ton, 14

set constraints
definite, 21

size, 10
substitution, 11
subterm, 10
subterm ordering, 10
success node, 14

terms, 9
tree, 9
tree automaton

alternating, 15
tree automaton

alternating, 13
dual, 18
two-way, 22
weak alternating, 26

two-way tree automaton, 22

variable position, 10
variables, 9

TATA — September 6, 2005 —

