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Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can
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10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as
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Introduction 11

a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.
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Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F , Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(, ) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X ) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X ) and
- X ⊆ T (F ,X ) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f(t1, . . . , tp) ∈ T (F ,X ).
If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X ) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(, ), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X ) may be viewed as a finite
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14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X ) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X ) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t � t′ if t′ is a subterm
of t. We denote t � t′ if t � t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t � t′ ⇒ t′ ∈ F ).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑
i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, , ), g(, ), h(), a, b} and X = {x, y}. Consider the
terms
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Preliminaries 15

t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X ) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X ), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X ) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X ) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X ). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, , ), g(, ), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).
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Chapter 7

Alternating Tree Automata

7.1 Introduction

Complementation of non-deterministic tree (or word) automata requires a deter-
minization step. This is due to an asymmetry in the definition. Two transition
rules with the same left hand side can be seen as a single rule with a disjunctive
right side. A run of the automaton on a given tree has to choose some member
of the disjunction. Basically, determinization gathers the disjuncts in a single
state.

Alternating automata restore some symmetry, allowing both disjunctions
and conjunctions in the right hand sides. Then complementation is much easier:
it is sufficient to exchange the conjunctions and the disjunction signs, as well as
final and non-final states. In particular, nothing similar to determinization is
needed.

This nice formalism is more concise. The counterpart is that decision prob-
lems are more complex, as we will see in Section 7.5.

There are other nice features: for instance, if we see a tree automaton as
a finite set of monadic Horn clauses, then moving from non-deterministic to
alternating tree automata consists in removing a very simple assumption on the
clauses. This is explained in Section 7.6. In the same vein, removing another
simple assumption yields two-way alternating tree automata, a more powerful
device (yet not more expressive), as described in Section 7.6.3.

Finally, we also show in Section 7.2.3 that, as far as emptiness is concerned,
tree automata correspond to alternating word automata on a single-letter al-
phabet, which shows the relationship between computations (runs) of a word
alternating automaton and computations of a tree automaton.

7.2 Definitions and Examples

7.2.1 Alternating Word Automata

Let us start first with alternating word automata.
If Q is a finite set of states, B+(Q) is the set of positive propositional formulas

over the set of propositional variables Q. For instance, q1∧ (q2∨q3)∧ (q2∨q4) ∈
B+({q1, q2, q3, q4}).
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Alternating word automata are defined as deterministic word automata, ex-
cept that the transition function is a mapping from Q×A to B+(Q) instead of
being a mapping from Q×A to Q. We assume a subset Q0 of Q of initial states

and a subset Qf of Q of final states.

Example 59. Assume that the alphabet is {0, 1} and the set of states is
{q0, q1, q2, q3, q4, q

′
1, q

′
2}, Q0 = {q0}, Qf = {q0, q1, q2, q3, q4} and the transitions

are:
q00 → (q0 ∧ q1) ∨ q′1 q01 → q0

q10 → q2 q11 → true
q20 → q3 q21 → q3

q30 → q4 q31 → q4

q40 → true q41 → true
q′10 → q′1 q′11 → q′2
q′20 → q′2 q′21 → q′1

A run of an alternating word automaton A on a word w is a finite tree ρ

labeled with Q× N such that:

• The root of ρ is labeled by some pair (q, 0).

• If ρ(p) = (q, i) and i is strictly smaller than the length of w, w(i + 1) = a,
δ(q, a) = φ, then there is a set S = {q1, . . . , qn} of states such that S |= φ,
positions p1, . . . , pn are the successor positions of p in ρ and ρ(pj) =
(qj , i + 1) for every j = 1, ...n.

The notion of satisfaction used here is the usual one in propositional calculus:
the set S is the set of propositions assigned to true, while the propositions not
belonging to S are assumed to be assigned to false. Therefore, we have the
following:

• there is no run on w such that w(i + 1) = a for some i, ρ(p) = (q, i) and
δ(q, i) = false

• if δ(q, w(i + 1)) = true and ρ(p) = (q, i), then p can be a leaf node, in
which case it is called a success node.

• All leaf nodes are either success nodes as above or labeled with some (q, n)
such that n is the length of w.

A run of an alternating automaton is successful on w if and only if

• all leaf nodes are either success nodes or labeled with some (q, n), where
n is the length of w, such that q ∈ Qf .

• the root node ρ(ǫ) = (q0, 0) with q0 ∈ Q0.

Example 60. Let us come back to Example 59. We show on Figure 7.1 two
runs on the word 00101, one of which is successful.
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q0, 0 q0, 0

Figure 7.1: Two runs on the word 00101 of the automaton defined in Exam-
ple 59. The right one is successful.

Note that non-deterministic automata are the particular case of alternating
automata in which only disjunctions (no conjunctions) occur in the transition
relation. In such a case, if there is a succesful run on w, then there is also a
successful run, which is a string.

Note also that, in the definition of a run, we can always choose the set S to
be a minimal satisfaction set: if there is a successful run of the automaton, then
there is a successful one in which we always choose a minimal set S of states.

7.2.2 Alternating Tree Automata

Now, let us switch to alternating tree automata: the definitions are simple
adaptations of the previous ones.

Definition 14. An alternating tree automaton over F is a tuple A = (Q,F , I, ∆)
where Q is a set of states, I ⊆ Q is a set of initial states and ∆ is a mapping

from Q×F to B+(Q×N) such that ∆(q, f) ∈ B+(Q×{1, . . . , Arity(f)}) where

Arity(f) is the arity of f .

Note that this definition corresponds to a top-down automaton, which is
more convenient in the alternating case.

Definition 15. Given a term t ∈ T (F) and an alternating tree automaton A
on F , a run of A on t is a tree ρ on Q × N

∗ such that ρ(ε) = (q, ε) for some

state q and

if ρ(π) = (q, p), t(p) = f and δ(q, f) = φ, then there is a subset S =
{(q1, i1), . . . , (qn, in)} of Q× {1, . . . , Arity(f)} such that S |= φ, the

successor positions of π in ρ are {π1, . . . , πn} and ρ(π ·j) = (qj , p·ij)
for every j = 1..n.

A run ρ is successful if ρ(ε) = (q, ε) for some initial state q ∈ I.
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Note that (completely specified) non-deterministic top-down tree automata
are the particular case of alternating tree automata. For a set of non-deterministic
rules q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)), Delta(q, f) is defined by:

∆(q, f) =
∨

(q1,...,qn)∈S

Arity(f)∧

i=1

(qi, i)

Example 61. Consider the automaton on the alphabet {f(, ), a, b} whose
transition relation is defined by:

∆ f a b

q2 [((q1, 1) ∧ (q2, 2)) ∨ ((q1, 2) ∧ (q2, 1))] ∧ (q4, 1) true false
q1 ((q2, 1) ∧ (q2, 2)) ∨ ((q1, 2) ∧ (q1, 1)) false true
q4 ((q3, 1) ∧ (q3, 2)) ∨ ((q4, 1) ∧ (q4, 2)) true true
q3 ((q3, 1) ∧ (q2, 2)) ∨ ((q4, 1) ∧ (q1, 2)) ∧ (q5, 1)) false true
q5 false true false

Assume I = {q2}. A run of the automaton on the term t = f(f(b, f(a, b)), b).
is depicted on Figure 7.2.

In the case of a non-deterministic top-down tree automaton, the different
notions of a run coincide as, in such a case, the run obtained from Definition 15
on a tree t is a tree whose set of positions is the set of positions of t, possibly
changing the ordering of sons.

Words over an alphabet A can be seen as trees over the set of unary function
symbols A and an additional constant #. For convenience, we read the words
from right to left. For instance, aaba is translate into the tree a(b(a(a(#)))).
Then an alternating word automaton A can be seen as an alternating tree
automaton whose initial states are the final states of A, the transitions are the
same and there is additional rules δ(q0, #) = true for the initial state q0 of A
and δ(q, #) = false for other states.

7.2.3 Tree Automata versus Alternating Word Automata

It is interesting to remark that, guessing the input tree, it is possible to reduce
the emptiness problem for (non-deterministic, bottom-up) tree automata to
the emptiness problem for an alternating word automaton on a single letter
alphabet: assume thatA = (Q,F , Qf , ∆) is a non-deterministic tree automaton,
then construct the alternating word automaton on a one letter alphabet {a} as
follows: the states are Q × F , the initial states are Qf × F and the transition
rules:

δ((q, f), a) =
∨

f(q1,...,qn)→q∈∆

n∧

i=1

∨

fj∈F

((qi, fj), i)

Conversely, it is also possible to reduce the emptiness problem for an alter-
nating word automaton over a one letter alphabet {a} to the emptiness prob-
lem of non-deterministic tree automata, introducing a new function symbol for
each conjunction; assume the formulas in disjunctive normal form (this can
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f

f b

b f

a b
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q2,1 q4,1 q1,2

q1,11 q2,12 q4,11 q3,11 q3,12

q4,121 q2,121 q1,122 q5,121 q4,121 q1,122

Figure 7.2: A run of an alternating tree automaton
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be assumed w.l.o.g, see Exercise 82), then replace each transition δ(q, a) =∨n

i=1

∧ki

j=1(qi,j , i) with fi(qi,1, . . . , qi,ki
)→ q.

7.3 Closure Properties

One nice feature of alternating automata is that it is very easy to perform the
Boolean operations (for short, we confuse here the automaton and the language
recognized by the automaton). First, we show that we can consider automata
with only one initial state, without loss of generality.

Lemma 10. Given an alternating tree automaton A, we can compute in linear

time an automaton A′ with only one initial state and which accepts the same

language as A.

Proof. Add one state q0 to A, which will become the only initial state, and the
transitions:

δ(q0, f) =
∨

q∈I

δ(q, f)

Proposition 47. Union, intersection and complement of alternating tree au-

tomata can be performed in linear time.

Proof. We consider w.l.o.g. automata with only one initial state. Given A1 and
A2, with a disjoint set of states, we compute an automaton A whose states are
those of A1 and A2 and one additional state q0. Transitions are those of A1

and A2 plus the additional transitions for the union:

δ(q0, f) = δ1(q
0
1 , f) ∨ δ2(q

0
2 , f)

where q0
1 , q0

2 are the initial states of A1 and A2 respectively. For the intersection,
we add instead the transitions:

δ(q0, f) = δ1(q
0
1 , f) ∧ δ2(q

0
2 , f)

Concerning the complement, we simply exchange ∧ and ∨ (resp. true and

false) in the transitions. The resulting automaton Ã will be called the dual

automaton in what follows.
The proof that these constructions are correct for union and intersection are

left to the reader. Let us only consider here the complement.
We prove, by induction on the size of t that, for every state q, t is accepted

either by A or Ã in state q and not by both automata.
If t is a constant a, then δ(q, a) is either true or false. If δ(q, a) = true,

then δ̃(q, a) = false and t is accepted by A and not by Ã. The other case is
symmetric.

Assume now that t = f(t1, . . . , tn) and δ(q, f) = φ. Let S be the set of
pairs (qj , ij) such that tij

is accepted from state qj by A. t is accepted by A, iff

S |= φ. Let S̃ be the complement of S in Q× [1..n]. By induction hypothesis,

(qj , i) ∈ S̃ iff ti is accepted in state qj by Ã.

We show that S̃ |= φ̃ iff S 6|= φ. (φ̃ is the dual formula, obtained by ex-
changing ∧ and ∨ on one hand and true and false on the other hand in φ). We

TATA — September 6, 2005 —



7.4 From Alternating to Deterministic Automata 197

show this by induction on the size of φ: if φ is true (resp. false), then S |= φ

and S̃ 6|= φ̃ (resp. S̃ = ∅) and the result is proved. Now, let, φ be, e.g., φ1 ∧ φ2.
S 6|= φ iff either S 6|= φ1 or S 6|= φ2, which, by induction hypothesis, is equivalent

to S̃ |= φ̃1 or S̃ |= φ̃2. By construction, this is equivalent to S̃ |= φ̃. The case
φ = φ1 ∨ φ2 is similar.

Now t is accepted in state q by A iff S |= φ iff S̃ 6|= φ̃ iff t not accepted in

state q by Ã.

7.4 From Alternating to Deterministic Automata

The expressive power of alternating automata is exactly the same as finite
(bottom-up) tree automata.

Theorem 54. If A is an alternating tree automaton, then there is a finite

deterministic bottom-up tree automaton A′ which accepts the same language.

A′ can be computed from A in deterministic exponential time.

Proof. Assume A = (Q,F , I, ∆), then A′ = (2Q,F , Qf , δ) where Qf = {S ∈
2Q | S ∩ I 6= ∅} and δ is defined as follows:

f(S1, . . . , Sn)→ {q ∈ Q | S1 × {1} ∪ . . . ∪ Sn × {n} |= ∆(q, f)}

A term t is accepted by A′ in state S iff t is accepted by A in all states q ∈ S.
This is proved by induction on the size of t: if t is a constant, then t is accepted in
all states q such that ∆(q, t) = true. Now, if t = f(t1, . . . , tn) we let S1, . . . , Sn

are the set of states in which t1, . . . , tn are respectively accepted by A. t is
accepted by A in a state q iff there is S0 ⊆ Q×{1, . . . , n} such that S0 |= ∆(q, f)
and, for every pair (qi, j) ∈ S0, tj is accepted in qi. In other words, t is accepted
byA in state q iff there is an S0 ⊆ S1×{1}∪. . .∪Sn×{n} such that S0 |= ∆(q, f),
which is in turn equivalent to S1×{1}∪ . . .∪Sn×{n} |= ∆(q, f). We conclude
by an application of the induction hypothesis.

Unfortunately the exponential blow-up is unavoidable, as a consequence of
Proposition 47 and Theorems 14 and 11.

7.5 Decision Problems and Complexity Issues

Theorem 55. The emptiness problem and the universality problem for alter-

nating tree automata are DEXPTIME-complete.

Proof. The DEXPTIME membership is a consequence of Theorems 11 and 54.

The DEXPTIME-hardness is a consequence of Proposition 47 and Theo-
rem 14.

The membership problem (given t and A, is t accepted by A ?) can be
decided in polynomial time. This is left as an exercise.
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7.6 Horn Logic, Set Constraints and Alternat-
ing Automata

7.6.1 The Clausal Formalism

Viewing every state q as a unary predicate symbol Pq, tree automata can be
translated into Horn clauses in such a way that the language recognized in state
q is exactly the interpretation of Pq in the least Herbrand model of the set of
clauses.

There are several advantages of this point of view:

• Since the logical setting is declarative, we don’t have to distinguish be-
tween top-down and bottom-up automata. In particular, we have a defi-
nition of bottom-up alternating automata for free.

• Alternation can be expressed in a simple way, as well as push and pop
operations, as described in the next section.

• There is no need to define a run (which would correspond to a proof in
the logical setting)

• Several decision properties can be translated into decidability problems for
such clauses. Typically, since all clauses belong to the monadic fragment,
there are decision procedures e.g. relying on ordered resolution strategies.

There are also weaknesses: complexity issues are harder to study in this
setting. Many constructive proofs, and complexity results have been obtained
with tree automata techniques.

Tree automata can be translated into Horn clauses. With a tree automaton
A = (Q,F , Qf , ∆) is associated the following set of Horn clauses:

Pq(f(x1, . . . , xn))← Pq1
(x1), . . . , Pqn

(xn)

if f(q1, . . . , qn)→ q ∈ ∆. The language accepted by the automaton is the union
of interpretations of Pq, for q ∈ Qf , in the least Herbrand model of clauses.

Also, alternating tree automata can be translated into Horn clauses. Alter-
nation can be expressed by variable sharing in the body of the clause. Con-
sider an alternating tree automaton (Q,F , I, ∆). Assume that the transi-
tions are in disjunctive normal form (see Exercise 82). With a transition

∆(q, f) =
∨m

i=1

∧ki

j=1(qj , ij) is associated the clauses

Pq(f(x1, . . . , xn))←
ki∧

j=1

Pqj
(xij

)

We can also add ǫ-transitions, by allowing clauses

P (x)← Q(x)

In such a setting, automata with equality constraints between brothers,
which are studied in Section 4.3, are simply an extension of the above class
of Horn clauses, in which we allow repeated variables in the head of the clause.
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Allowing variable repetition in an arbitrary way, we get alternating automata
with contraints between brothers, a class of automata for which emptiness is
decidable in deterministic exponential time. (It is expressible in Löwenheim’s
class with equality, also called sometimes the monadic class).

Still, for tight complexity bounds, for closure properties (typically by com-
plementation) of automata with equality tests between brothers, we refer to
Section 4.3. Note that it is not easy to derive the complexity results obtained
with tree automata techniques in a logical framework.

7.6.2 The Set Constraints Formalism

We introduced and studied general set constraints in Chapter 5. Set constraints
and, more precisely, definite set constraints provide with an alternative descrip-
tion of tree automata.

Definite set constraints are conjunctions of inclusions

e ⊆ t

where e is a set expression built using function application, intersection and
variables and t is a term set expression, constructed using function application
and variables only.

Given an assignment σ of variables to subsets of T (F), we can interpret the
set expressions as follows:

[[f(e1, . . . , en)]]σ
def
= {f(t1, . . . , tn) | ti ∈ [[ei]]σ}

[[e1 ∩ e2]]σ
def
= [[e1]]σ ∩ [[e2]]σ

[[X ]]σ
def
= Xσ

Then σ is a solution of a set constraint if inclusions hold for the corresponding
interpretation of expressions.

When we restrict the left members of inclusions to variables, we get an-
other formalism for alternating tree automata: such set constraints have always
a least solution, which is accepted by an alternating tree automaton. More
precisely, we can use the following translation from the alternating automaton
A = (Q,F , I, ∆): assume again that the transitions are in disjunctive normal
form (see Exercise 82) and construct, the inclusion constraints

f(X1,f,q,d, . . . , Xn,f,q,d) ⊆ Xq

⋂

(q′,j)∈d

Xq′ ⊆ Xj,f,q,d

for every (q, f) ∈ Q × F and d a disjunct of ∆(q, f). (An intersection over an
empty set has to be understood as the set of all trees).

Then, the language recognized by the alternating tree automaton is the
union, for q ∈ I, of Xqσ where σ is the least solution of the constraint.

Actually, we are constructing the constraint in exactly the same way as we
constructed the clauses in the previous section. When there is no alternation, we
get an alternative definition of non-deterministic automata, which corresponds
to the algebraic characterization of Chapter 2.

Conversely, if all right members of the definite set constraint are variables,
it is not difficult to construct an alternating tree automaton which accepts the
least solution of the constraint (see Exercise 85).
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7.6.3 Two Way Alternating Tree Automata

Definite set constraints look more expressive than alternating tree automata,
because inclusions

X ⊆ f(Y, Z)

cannot be directly translated into automata rules.
We define here two-way tree automata which will easily correspond to definite

set constraints on one hand and allow to simulate, e.g., the behavior of standard
pushdown word automata.

It is convenient here to use the clausal formalism in order to define such
automata. A clause

P (u)← P1(x1), . . . , Pn(xn)

where u is a linear, non-variable term and x1, . . . , xn are (not necessarily dis-
tinct) variables occurring in u, is called a push clause. A clause

P (x)← Q(t)

where x is a variable and t is a linear term, is called a pop clause. A clause

P (x)← P1(x), . . . , Pn(x)

is called an alternating clause (or an intersection clause).

Definition 16. An alternating two-way tree automaton is a tuple (Q, Qf ,F , C)
where Q is a finite set of unary function symbols, Qf is a subset of Q and C is a

finite set of clauses each of which is a push clause, a pop clause or an alternating

clause.

Such an automaton accepts a tree t if t belongs to the interpretation of some
P ∈ Qf in the least Herbrand model of the clauses.

Example 62. Consider the following alternating two-way automaton on the
alphabet F = {a, f(, )}:

1. P1(f(f(x1, x2), x3)) ← P2(x1), P2(x2), P2(x3)
2. P2(a)
3. P1(f(a, x)) ← P2(x)
4. P3(f(x, y)) ← P1(x), P2(y)
5. P4(x) ← P3(x), P1(x)
6. P2(x) ← P4(f(x, y))
7. P1(y) ← P4(f(x, y))

The clauses 1,2,3,4 are push clauses. Clause 5 is an alternating clause and
clauses 6,7 are pop clauses.

If we compute the least Herbrand model, we successively get for the five first
steps:

step 1 2 3 4 5

P1 f(a, a), f(f(a, a), a) a

P2 a f(a, a)

P3 f(f(a, a), a), f(f(f(a, a), a), a)

P4 f(f(a, a), a)
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These automata are often convenient in expressing some problems (see the
exercises and bibliographic notes). However they do not increase the expressive
power of (alternating) tree automata:

Theorem 56. For every alternating two-way tree automaton, it is possible to

compute in deterministic exponential time a tree automaton which accepts the

same language.

We do not prove the result here (see the bibliographic notes instead). A
simple way to compute the equivalent tree automaton is as follows: first flat-
ten the clauses, introducing new predicate symbols. Then saturate the set of
clauses, using ordered resolution (w.r.t.subterm ordering) and keeping only non-
subsumed clauses. The saturation process terminates in exponential time. The
desired automaton is obtained by simply keeping only the push clauses of this
resulting set of clauses.

Example 63. Let us come back to Example 62 and show how we get an equiv-
alent finite tree automaton.

First flatten the clauses: Clause 1 becomes

1. P1(f(x, y)) ← P5(x), P2(y)
8. P5(f(x, y)) ← P2(x), P2(y)

Now we start applying resolution;

From 4 + 5: 9. P4(f(x, y)) ← P1(x), P2(y), P1(f(x, y))
Form 9 + 6: 10. P2(x) ← P1(x), P2(y)
From 10 + 2: 11. P2(x) ← P1(x)

Clause 11 subsumes 10, which is deleted.

From 9 + 7: 12. P1(y) ← P1(x), P2(y)
From 12 +1: 13. P1(y) ← P2(y), P5(x), P2(z)
From 13 + 8: 14. P1(y) ← P2(y), P2(x1), P2(x2), P2(z)

Clause 14. can be simplified and, by superposition with 2. we get

From 14 + 2: 15. P1(y) ← P2(y)

At this stage, from 11. and 15. we have P1(x) ↔ P2(x), hence, for simplicity,
we will only consider P1, replacing every occurrence of P2 with P1.

From 1 +5: 16. P4(f(x, y)) ← P3(f(x, y)), P5(x), P1(y)
From 1 + 9: 17. P4(f(x, y)) ← P1(x), P1(y), P5(x)
From 2 +5: 18. P4(a) ← P3(a)
From 3 +5: 19. P4(f(a, x)) ← P3(f(a, x)), P1(x)
From 3+ 9: 20. P4(f(a, x)) ← P1(x), P1(a)
From 2 + 20: 21. P4(f(a, x)) ← P1(x)
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Clause 21. subsumes both 20 and 19. These two clauses are deleted.

From 5 + 6: 22. P1(x) ← P3(f(x, y)), P1(f(x, y))
From 5 +7: 23. P1(y) ← P3(f(x, y)), P1(f(x, y))
From 16 + 6: 24. P1(x) ← P3(f(x, y)), P5(x), P1(y)
From 23 +1: 25. P1(y) ← P3(f(x, y)), P5(x), P1(y)

Now every new inference yields a redundant clause and the saturation termi-
nates, yielding the automaton:

1. P1(f(x, y)) ← P5(x), P2(y)
2. P1(a)
3. P1(f(a, x)) ← P1(x)
4. P3(f(x, y)) ← P1(x), P1(y)
8. P5(f(x, y)) ← P1(x), P1(y)
11. P1(x) ← P1(y)
15. P2(x) ← P1(x)
21. P4(f(a, x)) ← P1(x)

Of course, this automaton can be simplified: P1 and P2 accept all terms in
T (F).

It follows from Theorems 56, 55 and 11 that the emptiness problem (resp.
universality problems) are DEXPTIME-complete for two-way alternating au-
tomata.

7.6.4 Two Way Automata and Definite Set Constraints

There is a simple reduction of two-way automata to definite set constraints:
A push clause P (f(x1, . . . , xn)) ← P1(xi1 ), . . . , Pn(xin

) corresponds to an
inclusion constraint

f(e1, . . . , en) ⊆ XP

where each ej is the intersection, for ik = j of the variables XPk
. A (conditional)

pop clause P (xi)← Q(f(x1, . . . , xn)), P1(x1), . . . Pk(xk) corresponds to

f(e1, . . . , en) ∩XQ ⊆ f(⊤, . . . , XP ,⊤, . . .)

where, again, each ej is the intersection, for ik = j of the variables XPk
and⊤ is a

variable containing all term expressions. Intersection clauses P (x)← Q(x), R(x)
correspond to constraints

XQ ∩XR ⊆ XP

Conversely, we can translate the definite set constraints into two-way au-
tomata, with additional restrictions on some states. We cannot do better since
a definite set constraint could be unsatisfiable.

Introducing auxiliary variables, we only have to consider constraints:

1. f(X1, . . . , Xn) ⊆ X ,

2. X1 ∩ . . . ∩Xn ⊆ X ,

3. X ⊆ f(X1, . . . , Xn).
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The first constraints are translated to push clauses, the second kind of con-
straints is translated to intersection clauses. Consider the last constraints. It
can be translated into the pop clauses:

PXi
(xi)← PX(f(x1, . . . , xn))

with the provision that all terms in PX are headed with f .
Then the procedure which solves definite set constraints is essentially the

same as the one we sketched for the proof of Theorem 56, except that we have
to add unit negative clauses which may yield failure rules

Example 64. Consider the definite set constraint

f(X, Y ) ∩X ⊆ f(Y, X), f(a, Y ) ⊆ X, a ⊆ Y, f(f(Y, Y ), Y ) ⊆ X

Starting from this constraint, we get the clauses of Example 62, with the addi-
tional restriction

26. ¬P4(a)

since every term accepted in P4 has to be headed with f .
If we saturate this constraint as in Example 63, we get the same clauses, of

course, but also negative clauses resulting from the new negative clause:

From 26 + 18 27. ¬P3(a)

And that is all: the constraint is satisfiable, with a minimal solution described
by the automaton resulting from the computation of Example 63.

7.6.5 Two Way Automata and Pushdown Automata

Two-way automata, though related to pushdown automata, are quite differ-
ent. In fact, for every pushdown automaton, it is easy to construct a two-way
automaton which accepts the possible contents of the stack (see Exercise 86).
However, two-way tree (resp. word) automata have the same expressive power
as standard tree (resp. word) automata: they only accept regular languages,
while pushdown automata accept context-free languages, which strictly contain
regular languages.

Note still that, as a corollary of Theorem 56, the language of possible stack
contents in a pushdown automaton is regular.

7.7 An (other) example of application

Two-way automata naturally arise in the analysis of cryptographic protocols.
In this context, terms are constructed using the function symbols { } (binary
encryption symbols), < , > (pairing) and constants (and other symbols which
are irrelevant here). The so-called Dolev-Yao model consists in the deduction
rules of Figure 7.3, which express the capabilities of an intruder. For simplicity,
we only consider here symmetric encryption keys, but there are similar rules for
public key cryptosystems. The rules basically state that an intruder can encrypt
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Pairing
u v

< u, v >

Encryption
u v

{u}v

Unpairing L
< u, v >

u

Unpairing R
< u, v >

v

Decryption
{u}v v

u

Figure 7.3: The Dolev-Yao intruder capabilities

a known message with a known key, can decrypt a known message encrypted
with k, provided he knows k and can form and decompose pairs.

It is easy to construct a two-way automaton which, given a regular set of
terms R, accepts the set of terms that can be derived by an intruder using the
rules of Figure 7.3 (see Exercise 87).

7.8 Exercises

Exercise 82. Show that, for every alternating tree automaton, it is possible to com-
pute in polynomial time an alternating tree automaton which accepts the same lan-
guage and whose transitions are in disjunctive normal form, i.e.each transition has the
form

δ(q, f) =
m
_

i=1

kî

j=1

(qj , lj)

Exercise 83. Show that the membership problem for alternating tree automata can

be decided in polynomial time.

Exercise 84. An alternating automaton is weak if there is an ordering on the set of
states such that, for every state q and every function symbol f , every state q′ occurring
in δ(q, f) satisfies q′ ≤ q.

Prove that the emptiness of weak alternating tree automata is in PTIME.

Exercise 85. Given a definite set constraint whose all right hand sides are variables,

show how to construct (in polynomial time) k alternating tree automata which accept

respectively X1σ, . . . , Xkσ where σ is the least solution of the constraint.

Exercise 86. A pushdown automaton on words is a tuple (Q,Qf , A, Γ, δ) where Q is
a finite set of states, Qf ⊆ Q, A is a finite alphabet of input symbols, Γ is a finite
alphabet of stack symbols and δ is a transition relation defined by rules: qa

w
−→ q′

and qa
w−1

−−−→ q′ where q, q′ ∈ Q, a ∈ A and w, w′ ∈ Γ∗.

A configuration is a pair of a state and a word γ ∈ Γ∗. The automaton may move
when reading a, from (q, γ) to (q′, γ′) if either there is a transition qa

w
−→ q′ and

γ′ = w · γ or there is a transition qa
w−1

−−−→ q′ and γ = w · γ′.
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1. Show how to compute (in polynomial time) a two-way automaton which accepts
w in state q iff the configuration (q, w) is reachable.

2. This can be slightly generalized considering alternating pushdown automata:

now assume that the transitions are of the form: qa
w
−→ φ and qa

w−1

−−−→ φ

where φ ∈ B+(Q). Give a definition of a run and of an accepted word, which is
consistent with both the definition of a pushdown automaton and the definition
of an alternating automaton.

3. Generalize the result of the first question to alternating pushdown automata.

4. Generalize previous questions to tree automata.

Exercise 87. Given a finite tree automaton A over the alphabet {a, { } , < , >},
construct a two-way tree automaton which accepts the set of terms t which can be
deduced by the rule of Figure 7.3 and the rule

t

If t is accepted by A

7.9 Bibliographic Notes

Alternation has been considered for a long time as a computation model, e.g. for
Turing machines. The seminal work in this area is [CKS81], in which the rela-
tionship between complexity classes defined using (non)-deterministic machines
and alternating machines is studied.

Concerning tree automata, alternation has been mainly considered in the
case of infinite trees. This is especially useful to keep small representations
of automata associated with temporal logic formulas, yielding optimal model-
checking algorithms [KVW00].

Two-way automata and their relationship with clauses have been first consid-
ered in [FSVY91] for the analysis of logic programs. They also occur naturally
in the context of definite set constraints, as we have seen (the completion mecha-
nisms are presented in, e.g., [HJ90a, CP97]), and in the analysis of cryptographic
protocols [Gou00].

There several other definitions of two-way tree automata. We can distinguish
between two-way automata which have the same expressive power as regular
languages and what we refer here to pushdown automata, whose expressive
power is beyond regularity.

Decision procedures based on ordered resolution strategies could be found
in [Jr.76].

Alternating automata with contraints between brothers define a class of
languages expressible in Löwenheim’s class with equality, also called sometimes
the monadic class. See for instance [BGG97].
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