CHAPTER 2

Universal coding I: parametric setting

2.1. Introduction

In the preceding chapter, we realized that provided the source statistics are known
(and computable), the best compression ratio, is well-defined and there exists
effective methods that can approach arbitrarily well this best compression ratio.
Note that this does not solve the practical problem faced by system engineers
and digital library managers. Even if they may assume that texts are produced
by some (stochastic stationary ergodic) source, they cannot assume that they
do know the source statistics. Actually they should not assume that they deal
with a single stationary source: a digital library may contain texts in English
and Italian. At the very best, there are two sources corresponding to the two
languages. Nevertheless, text compression algorithms like compress, gzip or
bzip2 deal with those sources and their performances do not seem to degrade
when applied to languages that were completely unknown to their designers.

Those text compression algorithms are actually universal in the following sense:
for a large class of sources, which have a well-defined entropy rate, those algo-
rithms eventually almost surely achieve the best possible compression ratio (i.e.
the entropy rate).

The Chapter is organized as follows. In Section 2.4, we present most straightfor-
ward approach to coding with unknown statistics: postulate a parametric model
O, estimate the parameters using the data that have to be compressed, code the
estimate and the data using the estimated probability as a coding probability.
The redundancy of the plug-in methodology is easily related with the hardness
of estimating parameters in ©. Despite its simplicity, the plug-in methodology
calls for improvements. In the next Section, we point out that parametric data
compression problems may be analyzed in both Bayesian and minimax perspec-
tives, as a matter of fact solutions to both problems coincide. In Section 2.9, we
describe Krichevsky-Trofimov mixtures for memoryless sources, provide bounds
on their pointwise regret. In Section ??, compression problems are investigated
in a non-parametric context: the compressor now just knows the source belongs
to (or is well approximated by) one model among many.
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The compression problem is now closely related to model selection issues in non-
parametric statistics. Ideas stemming from data compression like the Minimum
Description Length principle (Rissanen) and the Context-Tree-Weighting method
(Tjalkens, Willems and Shtarkov) have deeply influenced non-parametric statis-
tics.

2.2. Motivations : the price of misspecified probability

From a statistical viewpoint, one of the charms of arithmetic coding, or rather
of using nearly ideal codeword lengths pertains to the fact that it makes easy
the determination of the redundancy of codes tailored towards some source ©Q
(a consistent family of probability distributions (Q)"),) while the true source
distribution is P (defined by the consistent family (P"), ).

The probability distribution @ is called a (the) coding probability associated with
(f, ®), if the code (f, ) has nearly ideal codelength against @, that is:

((f(w)) < —log Q(w) + ¢

for some constant c,

DEFINITION 2.2.1. [REDUNDANCY OF A CODE WITH RESPECT TO A SOURCE]
The difference between the entropy of P" and the mean (f, ¢)codeword length
under P" is called the nth order redundancy of (f, ¢) with respect to P"(PP).

If if the code (f, ¢) has nearly ideal codelength against Q" for inputs of length n,
then the redundancy with respect to P™ satisfies:

Epn [-log Q"{XT'} + ¢ +log P"{X]'}] = D(P" || Q") +c.

What we have just noted is a simple and tight relationship between the redun-
dancy and relative entropy. This will prove useful when trying to assess the
performances of adaptive coding techniques .

2.3. Prefix codes for integers

It is often useful to have a good (uniquely-decodable) code for the integers (that is
for N). It is tempting to code an integer n by its binary expansion n = ;"% n; 2"
where n; equals either 0 or 1, and imaz satisfies imax < log,n < imax + 1, for
n > 1 and imax = 0 for n = 0 (that is imax = |logy(n V 1)]). The length of the
binary expansion bin(n) = ngns . . . Ninae 18 just imaz + 1. Unfortunately, binary
expansions do not constitute a uniquely decodable code: for example 101 may be
parsed either as the binary expansion of 5, or as the concatenation of the binary

expansions of 2 and 1. Not too surprinsingly if we denote by ¢(n) the length of
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the binary expansion of n, the sequence ¢(n) = 1+ [log,(n V 1) ]| does not satisfy
the Kraft-McMillan condition.

A simple device allows to get around this difficulty. Encode n as
noneniny - .. nimaxnimax(]l

that is by repeating twice every bit in the binary expansion and terminating by
a sequence of distinct bits. Such a code is prefix, and the codeword lengths do
satisfy the Kraft-McMillan inequality. However the coderword length is 2(1 +
[logy(n VvV 1)]) +2 = 26(n) + 2.

Rather than applying this doubling device to the binary expansion of n, it is wise
to apply it to the length of the binary expansion ¢(n), and to concatenate the
prefix encoding of /(n) with the binary expansion of n. This provides us with a
prefix encoding of integers and the length of the encoding of n is now

ln)+20(f(n))+2=1+[logy(nV1)] +2(1+ |logy({(n)+1)]).
The codeword length of n is thus around log, n + 2log, log, n.

Indeed this device can be iterated until we meet a number with binary encoding
reduced to 1 symbol. Let (") (n) = ¢ ((*)(n)) and £ (n) = n. Let r(n) denote
the smallest integer k such that /*)(n) < 2 (note that for n > 2, /(n) < n). The
iterated procedure would assign the following codeword length to n:

bin (4@ (n)) bin(¢W (n)) ... bin(¢"=Y(n)) 4 01 + repeated bin(£"™)(n)).

'

For n = 100, the binary expansion is 1100100, £()(n) = 7, the binary expansion
of ¢M(n) is 111, hence ¢ (n) = 3 has binary expansion 11, £©)(n) = 2, hence
r(n) = 3. The encoding is

110010011111 01 1100.

For such a value of n, the overhead is quite significant...

Henceforth we will code integers using the sub-optima prefixed code of length
{(n) + 2+ 2@ (n).

2.4. Plug-in codes codes

Consider the following problem:
Class notes S. Boucheron 3 January 12, 2005



Information Theory Il Plug-in codes codes

Design a code (f, ¢) that takes as input words generated by a mem-
oryless source Py in such a way that for any choice of # among the
probability laws on X, the expected length of f(X}") under Py is
within O(logn) from nH (Py), i.e. such that (f, ¢) has redundancy

O(logn),with respect to all memoryless sources.

The plug-in approach proceeds by first estimating [Py using the empirical distri-
bution Py , i.e.
1
Pé{a} = ﬁ Z :[]'mi:a )
i<n
encode a representation of IP; (using a prefix code) and then code X7 using ]PZ?"

as the coding distribution. Note that we take advantage of the fact that Huffman
coding and arithmetic coding take source distributions as parameters.

Assume that in the last step we use arithmetic coding. Then according to the pre-
vious remarks, the redundancy of the code with respect to Py is upper-bounded
by

D(Py || P7)
(here we consider the image of Py on the first n symbols) plus the length of the
representation of P.

Note that the latter may be represented by |X| — 1 numbers from {0,...n}.
Hence, IP; may be represented by

(1X] = 1)([logy(n)] + 2log,(1 + log,(n)) + 1) bits,

using a simple prefix code for the integers (see Exercise).

To check whether our goal is achieved, we just have to notice that as P; is a
Maximum-Likelihood estimator: for each z7,

P L
ki <
Py{a7}
Hence, for memoryless sources over alphabets of size d 4+ 1, the redundancy of
plug-in compressors is less than

(12¢] = 1)( 1oy (n)] 42 1o, (1 +1og, (1)) + 1) = (|X] — 1)([log,(n)]) +o(log n) bits.

— log

This redundancy should be compared with the optimal average codelength for
words of length n. By Shannon noiseless coding theorem, the latter belongs to the
interval [nH (Fp),nH(Py) + 1]. Hence the redundancy of our two-steps would-be
universal coder is much smaller than the average optimal codelength.

We may naturally wonder whether such a result could be extended to more so-
phisticated models (for example Markov chains of order k). We should also check
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whether such a redundancy can be achieved without resorting to Maximum-
Likelihood-Estimators. Finally, we would like to avoid a two-pass method, and
perform coding in one pass.

EXERCISE 2.5. Check that the maximum likelihood estimator coincides with the
empirical distribution (this can be viewed as a consequence of the positivity of
relative entropy).

2.6. Redundancies

Let us introduce some criteria that could be used to assess the performance of
universal coding schemes. In this section © denotes a (compact) subset of R* that
parametrizes a class of sources (Py)gco. f denotes a lossless uniquely decodable
coding function.

2.6.1. Who plays first? The n-th order redundancy of f with respect to 6

is defined as: )
A n

The minimax viewpoint may be described as game between a compressor and an
inflator. The compressor first chooses a coding function f and then the inflator
chooses a source 6 so as to maximize the average redundancy of f. The compressor
could be a digital library manager and the inflator a vicious writer that possesses a
collection of automatic randomized typewriters representing the possible sources
and always chooses the worst typewriter.

DEFINITION 2.6.1. [MINIMAX REDUNDANCY]| Define the n-th order minimax re-
dundancy over the class O as:

1
R(n,© 2 infsup By |L(F(XT) — log ————

= infsupR(n,0, f) .
I oeo

But inflator and compressor may play a different game, where the inflator plays
first by picking at random one randomized typewriter in his collection according
to a distribution p, the compressor may optimize f with repect to u.

Assume that © may be provided with a o-algebra and a probability measure p
such that Py{z7} is measurable.
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REMARK. Tthis is obvious if © is finite, and requires a little bit care if © is
bounded subset of R?. For example if we consider memoryless sources over the
binary alphabet {0, 1}, the set of probabilities over {0,1} is parameterized by
vectors § € R? such that 6[1] > 0,0[2] > 0 and 0[1]+6[2] = 1, or even by elements
of [0,1]. In that case putting a probability on ©, amounts to put a probability
on on [0,1]. The most obvious choice (but not the most interesting) consists
of providing [0, 1] with the uniform probability distribution (Lebesgue measure),
but any positive integrable function f on [0, 1] such that f[o,1] f(z)dx = 1, defines

a probability p on [0, 1] through
pla) = [ flaydo= [ 1a(a) fo)do.
A [0,1]

In the latter situation, f is called the density of the probability distribution pu.
This construction does not exhaust the set of probability distributions over [0, 1],
for example, it does not describe the discrete probability distributions which
support set is included in [0, 1].

In the sequel p denotes a probability distribution over ©. It will be called a prior
distribution over ©, or a prior. Assuming that Py{z}} = PJ'{z}} is measurable
“with respect to p” (the latter expression is not technically correct), implies that
1 defines a probability distribution say Q" over X" :

Q"{x1} = By [Fy {a7}] .

If ¥ ={0,1} andy is defined by a density on [0, 1], if n; denotes the number of
occurrences of 1 in x7:

= (H Pe{xi}> s [ oo

One can check that (Q™),, defines a consistent family of probability distributions
over the set of words over alphabet X'. Hence (Q)"),, defines a source over X, but
this mixture of memoryless sources is not memoryless...

DEFINITION 2.6.2. [AVERAGE REDUNDANCY WITH RESPECT TO PRIOR| The
average redundancy with respect to p is:

1
R(n,0, 1) 2infE, |Ey [£(F(X") —log ——— || .
R(n0.1) £ i B, B [£(£(X7) ~log |

And the n-th order maximin average redundancy rate is:

R(n,0) = supR(n, O, ).
I

Clearly for all u, R(n, 0, 1) < R(n, ), and thus:
R(n,0) < R(n,O)
Those definitions allow us to formulate a list of questions:
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1 How are R(n, ©) and R(n, ©) related with the rate of convergence of
estimators for © ?

2 Are the maximin and minimax average redundancy asymptotically
equivalent 7

3 Is it possible to approach the maximin and minimax average redun-

dancy rates using feasible coding strategies?

THEOREM 2.6.3. [OPTIMALITY OF MIXTURES WITH RESPECT TO AVERAGE
REDUNDANCY| The average redundancy with respect to prior pn over the set ©,
R(n,O, 1) is achieved by the mizture probability Q™ over X" defined by

Q"{a7} = B, [Fy' {«7}]
for all 27 € X",

The proof is a simple consequence of the non-negativity of relative entropy.

PROOF. Let (), denote the probability on X™ defined by:
Quiat} = EulPy {3} =By [Bo [11,y]]

@, is called the mixture generated by u. Let edenote a non-negative real, then
there exists some coding probability Q™ on X" such that :

R(n,0,p) = E, :Ee ;log %H -
= B gt e |
= Bl oeguen ]| 5 = [ gren] |
- B8 e gt |+ D@uan -
> E, _Eg _log%" —€.
The last term is the average redundancy of (), with respect to f. O

Hence we already know that the maximin redundancy of order n has the following
form:

Py {X7}1]]
sup E [E {log —= -
v T Qu{XTH
It can be checked that

p—E, [EG [log % }

Class notes S. Boucheron 7 January 12, 2005



Information Theory Il Redundancies

is concave with respect to u(as should be any infimum over linear functionals).

Moreover for any p':

o o 2] o 2

Qu (X7} QuiXi}
:—D@mww+Ewﬁb@%gﬁ§%H_E“Fﬁlciggﬂ]

which entails that for any probability u’ over ©:

ocn fu [ B o [ 2]

Little computations reveal that for any6:

Dwmmm@ﬁﬁ@m.

Qu{XT7}
Thus
R(n.©) < sup D(F} Q) < R(n.6).
S
which entails

R(n,0) = R(n,O)

2.6.2. Another look at maximin versus minimax. Note that choosing
f and thus £(f(-)) amounts to define a positive vector in R/*I" and that choosing
i amounts to choose an element in a convex compact space (probabilities over
probabilities over a finite space equipped with weak convergence topologies). Now
recall Sion Minimax Theorem:

THEOREM 2.6.4. Let g denote a function from topological vector spaces E X F
to R such that g is convex and continuous with respect to its first argument and
concave and continuous with respect to its second argument, assume A C E is
compact, then

inf sup g(x,y) = sup inf g(x Y).
€A yeE yeE €A

Note that
1 oo 0]

is concave with respect to p and convex with respect to QQ", Q"takes its values
in a compact set. Hence we may now conclude:

THEOREM 2.6.5. The maximin and the minimax redundancy are equal
R(n,0) = R(n. ).
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From this Theorem and the optimality of mixtures with respect to the maximin
redundancy, we get that if y, solves the nth maximin redundancy problem:

. Py {X7}

the optimal mixture (), equalizes the redundancy.

Ey {10 ] =R(n,0) =R(n,0),

This general reasoning does not tell us what R(n, ©) is.

2.7. Regrets

Finally another notion has recently acquired extreme importance. It provides a
bridge between the stochastic modeling attitude of Information Theory and the
Individual Sequences perspective.

DEFINITION 2.7.1. [POINTWISE REGRET| The maximum pointwise regret of a
code (f,¢) with respect to a model © is:

. 1
maxmax | £(f(z1)) —log 5 |

A coding probability achieves minimax pointwise regret over words of length n its
maximum pointwise regret is minimal. The following exercise shows that coding
probabilities achieving minimax pointwise regret have a simple definition. Note
that the minimax pointwise regret is at least as large as the minimax redundancy

R(n,O). Any upper bound on the pointwise regret provides an upper-bound on
the minimax redundancy.

DEFINITION 2.7.2. [NORMALIZED MAXIMUM LIKELIHOOD| Let Q™ be defined

as
maxpn P"{z}}

n
Zx?eé’(" maxpn P{x7}
where maximization is performed over all memoryless sources over alphabet

X .The distribution Q" is called the nth Normalized Maximum Likelihood (NML)
coding probability.

Q" {a1} =

THEOREM 2.7.3. The NML coding probability achieves the minimazx pointwise
regret, moreover Q" equalizes the regret over the possible words.

PROOF. Let Odenote a model such that

max P {27
£~ prco {a1}
zPeXx
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is finite, then for any z7, the pointwise regret of Q" on z} equals

log Z max P*{x]}

TzrexX™

On the other hand, let R"denote another probability on X", for some input
PR {a]} < Q™ {z}}, hence the regret of R"on 7 is larger than

log Z max P {z"}

rPex™

t

EXERCISE 2.8. Provide an expression for the minimax pointwise regret for mem-
oryless sources on the binary alphabet.

When dealing with memoryless sources over alphabet X = {0, 1}, we may eval-
uate the minimax pointwise regret. For any z] € {0,1}", such that there are n;
occurrences of 1 in z7, the maximum likelihood is equal to

(o) (1o
n n '

There are exactly (:1) words with exactly n; occurrences of 1 over n. The mini-
max pointwise regret is thus equal to:

(S @ (527

In order to get a user-friendly upper-bound on this expression, it is useful to use
the Robbins-Stirling approximations to the factorial. This leads to:

(”) (ﬂ)"l (n - nl)nm < 1 n /()
ny n n V2r | ni(n—ny)
Now

SO () e £
=0 s n n =0 n—n1

ol/(12n+41)
ST V" Z n \/ T T
1/(12n+1) n 1 1
NV LD D \/ )T = ()
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Hence

o (£ () G (55 - e

el/(12n+1) =~ 1 1
< log (W) + log (Z n \/(nl/n)(l - (nl/”>)> .

n1=0

The sum in the right-hand-side is an approximation to the (Riemann) integral

.

/Olﬁdx:

Hence the minimax pointwise regret (and the minimax redundancy) satisfy the
following relations

log (éo <:1) <%)nl (n —nnl)"_m> < %log (%) +o(1).

This provides with an improvement over the naive bound derived from the plug-in
technique (an improvement by a factor of 2). A close inspection of the computa-
tions shows that the upper-bound is tight for pointwise regret. It can be checked
that this upper-bound is also tight for minimax redundancy. Moreover there is
nothing special with the two-symbols alphabet. The reasoning could have been
carried out for larger alphabets, it would have led to upper-bounds of the form
(d—1) r(1/2)?
5 log(n) + log Td/2) +o(1).

The first thing to notice is the (d — 1)/2log(n) term. It should be compared
with the dlogn term derived for the plug-in code. This discrepancy can be
interpreted in the following way: when building the plug-in codes, we coded the
rational numbers defining the maximum likelihood estimator with high accuracy,
we could have set-up a sieve for numbers 0,1/n,2/n,...,1 with mesh 1/y/n and
approximated the coefficients of the maximum likelihood estimation by the closest
element in the sieve. Coding a point in the sieve requires roughly %logn bits,

and we do not loose to much by replacing gby its approximation.

The maximum pointwise regret of NML coding probabilities provides bench-
marks. But NML probabilities are mostly of theoretical interest: they do not
define a consistent family of probabilty distributions. This is one of the reasons
why mixture coders have attracted such much attention.
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2.9. Mixture coding

Let us now examine good universal coding probabilities for interesting models.
The first model © to be considered is the class of memoryless sources over the
finite alphabet X. In the language of the previous section this is a |X| — 1-
dimensional parametric model. We will be satisfied if we can find a coding prob-
ability @ such that R(n, 6, ®Q)/log, n tends toward (|X'|—1)/2 as n tends toward
infinity.

In order to make this mixture coding something useful, we would also like Q" {z}
to be easily computable from Q"{z}}. We have two goals: a computational and
an information-theoretical one.

The following prior distribution on probability distributions over the finite alpha-
bet X = {1,...k} plays a distinguished role in universal data compression.

The d-dimensional simplex is the subset of vectors u from R¢ defined by u[i] > 0
for all i, 1 < i < d, and Zle u; = 1. Each element of the simplex defines a
probability on X when |X| = d.

Recall that the I' function is defined by:
I'(z+1) é/ et dt,
0

and that I'(z + 1) = zI'(x). The Gamma function interpolates the factorial
numbers. It can also be approximated thanks to the Robbins-Stirling bounds.
Forall z > 0:

(2.9.1) 2" 2e 2 < T(x) < 2 2e V2mer
Recall also that I'(1/2) = /7.

The beta function B(a, () is defined by
I'(a)l(3)
T(a+3)

The following relationship plays a fundamental role in subsequent analysis:
1
Bla, B) = / 11— 0)P1 dg.
0

LEMMA 2.9.1. If X and Y are independent random variables distributed according
to Gamma distributions with parameters a and (3, then X +Y and X/(X +Y)
are independent random variables distributed according to a Gamma distribution
with parameter o + [ and to a Beta distribution with parameters o, (3.
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PROOF. Under the notations of the Lemma, the jont density of X and Y over
R, x R, is
xa—lyﬁ—le—xe—y
[(a)I'(5)
The inverse of the one-to-one transformation (z,y) — (z + y,z/(z + y)) is
(«',y") — (2'y',2' — 2'y'). Its Jacobian has determinant :—z’. Hence the joint
density of X +Y, and X/(X +Y) at (u,v) is

(uv)a_1<u - uv)ﬁ_l —uv  —u+uv ua—l—ﬁ—l —u F(Oé + 6) a—1
ue e = e v
[(a)l(5) Ma+5)  D(@I'(p)
The fact that the joint density can be factorized proves the independence of X +Y

and X/(X +Y). Furthermore if we integrate out with respect to u, we realize
that Y/(X 4+ Y) has a Beta(«, ) density. O

(1—0)

DEFINITION 2.9.2. |Dirichlet distribution over the d-dimensional simplex| Let
a € Ri, the Dirichlet distribution over the d-dimensional simplex with parameter
« has density

I, a)) v o

% Hu?ﬂ "for every uin the simplex.
Hj:1F<O‘j) j=1

For the 2-dimensional case (that is for the binary alphabet), the density equals

9a1—1<1 _ 6)0:2—1
B(Oél,Oég)

F(Oél -+ 062)
I'(an)l(a2)

As a special case we can recover the uniform prior (or Laplace prior) by taking
a1 = ap = 1. But calculation would reveal that it does not perform essentially
better than the naive plug-in code. Indeed Dirichlet priors provide an handy
way to solve our computational problem (whatever the choice of «), this is a
consequence of classical results in Bayesian statistics. But, our information-
theoretical problem will be solved by choosing a; = 1/2 for all 7 < d.

0041—1(1 _ 0)@2—1 —

DEFINITION 2.9.3. [DIRICHLET PRIOR| The k-ary 1/2-Dirichlet prior on the
space of probability distributions on X = {1,...%} has density:

N (/2
O S

with respect to the Lebesgue measure on [0, 1]*~!, with the convention that 6, =
1- Ei<k 0.
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When the alphabet is binary, each probability on X = {0, 1} is completely de-
fined by a single number § = 6, and the Dirichlet prior density (with respect to
Lebesgue measure on [0, 1] turns out to equal:

1 1
T(1/2)2/00—0) 7/0(1—0)

DEFINITION 2.9.4. [KRICHEVSKY-TROFIMOV MIXTURE| The Krichevsky-Trofimov
mixture distribution over strings of length n is defined by

kt(x") £ / do [y(e) f[e;“n{z 6; < 1}} ,

i<k

where n; is the number of occurrences of the ith alphabet symbol in the string
x}, and integration takes place over ZZ <0 < 1 while §; > 0 for i < k and the
convention 0, =1—>"._, ;.
The fact that Dirichlet mixtures solve our computational problem is summarized
by the following proposition.

PROPOSITION 2.9.5. The KT-probability of the sequence X} over alphabet X of
size k satisfies the following formula:

NONEINUES)
rE)T ()

(2.9.2) kt{x]} =

AsT'(z+1) = «I'(z), the KT-conditional probability of observing X,,.; = a given
X7 is

ne+1+3

n+1+ %

where n, denotes the number of occurrences of symbol a in x7.

(2.9.3) kt{Xo1=a| X =x]} =

PrOOF. We sketch thet proof for the binary alphabet. Under the Dirichlet
mixtures, thanks to the fundamental connection between the Beta function and
the Gamma function, the probability of a word with njoccurrences of 1 and n—n;
occurrences of 0:

/1 P(al + a2) 0n1+a1_1(1 _ Q)n—nl—i—ag—l d6 = B(nl +tap,n—n + a2) .
o [(an)I(az) B(ay, as)

But

" h—i+a«
B(ni +an,n—ni+az) = — .HZ_I( e ) : B(ay, ay).
Hi:l(nl — i+ a) H@'=1 (n—ny—i+a)
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g

THEOREM 2.9.6. The worst-case pointwise regret of the KT-mizture with respect
to the class © of memoryless coding distributions is upper-bounded by:
D(n+5P() _ k-1 D(k/2)

< logn — lo +o(l/n) .
T(nt+ Hrk) = 2 % *T(1/2) )

2 2

ﬁ(n, X, @) < log

PROOF. The maximum-likelihood is achieved for a tuple 91, e ék that matches
the empirical distribution of the sequence x7, let n; denote the number of occur-
rences of symbol ¢ € X in x}. The maximum likelihood among memoryless

n

i=1
The regret of the KT-mixture is thus
log T (n+5) e ()"
C () ol O+ 5)

It is enough to check that:

Note that right-hand-side can be rewritten as

[T [0 = ) = 3) . 5]

(n=3n—3 3

N [

k
[ [(2n:)(2n; — 1) ... (ni + 1)]
(2n)(2n —1)...(n+1)
There are n factors at the denominator and n terms at the numerator. There are
also n factors in Hi?:l (n/n;)"". The desired result will be obtained by matching
factors on both sides in an appropriate way. Note that

PR +J
n - n+/t
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is satisfied for all j such that n;//n < j < n;. Note that there are at least
n;(1—2¢/n) of them. Hence for a given choice of ¢, the number of pairs (i, j) such
that Inequality (2.9.4) holds is larger than

k
l
Zni (1——) =n—/.
, n
i=1

This motivates the following greedy allocation method. For all ¢ starting from
¢ = n downto ¢ = 1, choose any (i, j) such that inequality (2.9.4) is satisfied call
that pair (is, jo). Note that at each step there is at least on such pair which is
available.

By construction, we have:

n

-1

This terminates the proof of the first part of the Theorem.

The proof of the remaining part of Theorem 2.9.6 boils down to applying classical
bounds on the I' function O

REMARK 2.9.7. The pointwise regret is attained on samples formed by repeating
a single symbol.

Class notes S. Boucheron 16 January 12, 2005



