CHAPTER 1

Entropy and lossless source coding

1.1. Introduction and motivations

When trying to compress files on a computer system, the following question natu-
rally arises: if we had the best possible compression program, how large would be
our compressed file system? What is the ultimate achievable compression ratio
for our file system? As a matter of fact, we are not really interested in the file
system residing on a peculiar computer, but in any reasonable collection of files
that could appear on private computer, or on a company network. In that form,
this is not a mathematical question, since we do not have any definition of what
could be a reasonable collection of files. It is hard to define an optimal solution
to a problem that has not even be stated.

It is just possible to observe that gzip usually outperforms compress, and that
in turn bzip2 usually outperforms gzip. This is illustrated in the following table:

| Method File | bzip2 -1 | bzip2 -9 |gzip -1 gzip -9 | compress | originalsize |
lecture.lyx 30705 28747 41203 33629 135114
gzip.man 5131 5131 6063 5411 7033 13923

As the original question concerning the performance of data compression systems
is an empirical one, many efforts have been dedicated to build relevant collections
of benchmarks or corpus to compare the performance of compression systems on
realistic situations. Those corpus are available through the Web (see [?]).

In order to develop a theory of data compression, C.E. Shannon suggested to
model text production as a random phenomenon. This bet has been surprisingly
efficient and fertile.

Information Theory | Notations

1.2. Notations

In the sequel, X’ denotes a set called the alphabet. In chapters dedicated to lossless
(text) coding the alphabet is assumed to be finite. The elements of X" are called
letters or symbols. The AscCII alphabet, the Greek alphhabet provide examples of
alphabets. Sequence of 80 ASCII characters (lines of FORTRAN programs) provide
another example of alphabet. The binary alphabet is {0, 1}, its symbols are called
bits. The notation z],, is a shorthand for z,,, ..., z,.

X* denotes the set of finite words (finite sequences of letters). The length of a
word x is just the number of letters that constitute it. It is denoted by ¢(z). A
word z is a prefir of a word y if there exists another word (possibly empty) =
such that y = xz.

DEFINITION 1.2.1. [CODES & CODEBOOKS| Let) denote another alphabet. A
(lossless) code is a (one-to-one) mapping from X* on Y*. If the mapping is
denoted by f, the range of A* under f is called the codebook. The decoding
function is denoted by ¢. ¢ o f = Id.

The encoding alphabet) will usually be the binary alphabet {0, 1}.

DEFINITION 1.2.2. [COMPRESSION RATE| The compression rate of f on x is
(f(z))/l(x). f(x) is the codeword associated with x.

Whatever the alphabetX is, for each integern, X" is an obvious measurable space,
and there is no difficulty in defining probability distributions on this finite set.
A probability distribution or law on A" is completely defined by a mapping P"
from X" on [0, 1] such that

> PMw)=1.

wWEX™

The probability of A C AX™is
P"{A} =) P"(w) .
weA

DEFINITION 1.2.3. [CONSISTENT FAMILY OF PROBABILITY DISTRIBUTIONS| A

sequence of probability distributions (P"), _ over X" is said to be consistent if
for all n,m € Nffor all A C A"

P LA x XY = Pr{AY}

Great deal of works can be done by just considering consistent sequences of
probability distributions. It is nevertheless useful and sometimes mandatory
to observe that by the Kolmogorov consistency theorem, there exists a unique
non-negative function P on the o-algebra F of subsets of XN generated by of

Class notes S. Boucheron 2 January 12, 2005

Information Theory | Operational definition of entropy

countably many unions, intersections and complementations of sets of the form
A x XN where A C X™for some n € N (those sets are called cylinders, and F is
called the cylindrical o-algebra) such that

(1) if Ay,... A, ... are disjoint sets from F,
P{UX, A} => P{A},
i=1

2) P{aN} =1,
(3) Forall AC X" P{Ax XN} =P{A} = P" {4} .

Little more works ensures that the set X>°_ = X of doubly infinite sequences
of letters is also a measurable space. It will be equipped with the cylindrical
o-algebra: i.e. the o-algebra defined by conditions on finitely many coordinates.

DEFINITION 1.2.4. [SOURCE| Any consistent family of probability distributions

(P’jm)on X", or equivalently any probability on X'*_ defines a source on alpha-
bet X.

1.3. Operational definition of entropy

Here, we will adopt the information theoretical approach. Texts are the output of
sources. A source is nothing but a probability distribution defined on X'>°_ (with
respect to the cylindrical o-algebra). A source defines an X-valued process. It is
completely determined by its finite-dimensional projections, i.e. by the definition
of

P{X" ¢ A} forallm,n, ACX" ™!

A source is memoryless if the distribution of X,,;; does not depend on X”_. A
source is stationary if and only if for all m € Z, (X) and (X 1,,) have the same
distribution.

DEFINITION 1.3.1. [COMPRESSION RATE OVER WORDS OF LENGTH n| If (f, ¢)
denotes a pair of encoding/decoding functions, the compression rate of f on words

of length n is:
g [0
n
The compression rate R is said to be achievable iff there exists a code (f, ¢) such
that e
limsup E [M} <R
n

n

Class notes S. Boucheron 3 January 12, 2005

Information Theory | Uniquely-decodable codes

The ultimate compression rate we are looking for is the infimum of all achievable
compression rates.

Note that the ultimate compression rate is defined operationally by asymptoti-
cal conditions. This is a trademark of information theoretical approaches: First
define an asymptotical quantity that reflects the engineering limits under con-
sideration; then investigate the speed at which the asymptote is approached.
Information Theory sets theoretical limits to the performance of coding tech-
niques. But it usually does not propose efficient techniques that can approach
those theoretical limits, it sometimes gives hints.

1.4. Uniquely-decodable codes

For practical purposes, and for many theoretical purposes as well, it is not enough
to ask a lossless code to be one-to-one. We also would like it to be uniquely
decodable.

DEFINITION 1.4.1. [UNIQUELY DECODABLE CODES| A code (f, ¢) is uniquely de-
codable, iff for any collection wy, ws . . . w,, of words, there is no collection w . .. w!,
of words such that:

fQwy) f(wa) o f(wn) = flwi) f(wh) ... fwy,)

with (wy, we, ... w,) # (wy,...w)).

If a code is uniquely-decodable, then from the concatenation of codewords, it is
still possible to recover the original collection of words.

CLAIM 1.4.2. A uniquely decodable code defines a one-to-one mapping from (X™*)*
on V*.

If no codeword is a prefix of another codeword, then the code is uniquely decod-
able.

DEFINITION 1.4.3. [PREFIX CODES|A set of words A C X™* is prefiz if no word
in A is a prefix of another word in A.

A very desirable property of a code: instantaneously decodability. A code is

instantaneous, if end of codewords can be detected without looking to the future.

CLAIM 1.4.4. A code is instantaneously decodable if the codebook f(X'*) is prefix.
Class notes S. Boucheron 4 January 12, 2005

Information Theory | Kraft-McMillan inequalities

1.5. Kraft-McMillan inequalities

Kraft-Mac-Millan inequalities relate length of codewords and probabilities, they
constitute the bridge between source coding and statistics.

THEOREM 1.5.1. [KRAFT MCMILLAN INEQUALITY| Let (f, ¢) denote a uniquely-
decodable code from X* on YV*, then:

Z V|~V <1

weEX*

The core of the argument boils down to the following observation: if s > 1 then
s"™ grows faster than any polynomial with respect to n.

PRrROOF. Note that it is enough to check that for all m:
Z ||~ D < .

weX* f(w)<m

Fix m € N, let p 2 maXyex* o(w)<m O(flw]).

(Z |y|—z(f[w])) @ Z |y|—zi§n€(f[wi})

L(w)<m w1 ... wn,L(w;) <m

2 > w

1<np w1,wnizi £(flws])=l

S Y

I<np

INZ

INE

np .,

where (a) follows from power expansion, (b) follows from reordering the finite
sum, (c) follows from the unique decodability of the code, any word of length I
on Y can be parsed into at most one collection of codewords, and there are |y\l
words of length [. This establishes that

Z ||~V < 1.

L(w)<m

[
Class notes S. Boucheron 5 January 12, 2005

Information Theory | Relative entropy

REMARK. The Kraft-MacMillan inequality points out the following correspon-
dence between uniquely decodable codes and probabilities on X*. Let () be de-
fined on X*U {1} by

Q(w) £ |y
for w € X*, and Q(L) 29— Y werr @w).

The relative entropy between two probability distributions will be a cornerstone
of Information Theory (an of many other areas of probability and statistics). The
Kraft-McMillan inequality will be useful in connection with the notion of relative
entropy.

1.6. Relative entropy

DEFINITION 1.6.1. |RELATIVE ENTROPY| The relative entropy between proba-
bility distributions P and () on the countable set E is defined by:

Ep [log %] if P(w) > 0= Q(w) >0,

00 otherwise.

D<P|1Q>é{

Recall that a function f on a vector space F' is convex if and only if for all
z,y € F, for all A € [0,1] :

M@)+ Q=N fy) > fQz+(1-Ny).

By induction on the number of summands, it follows:

THEOREM 1.6.2. [JENSEN INEQUALITY| If fis a convez function on R,and P
denote a probability distribution on a discrete subset of R, then

Ep [f(X)] = f(E[X]) .

The theorem actually holds for all probability distributions on Rand convez func-
tions.

The following proposition is a direct consequence of the strict concavity of loga-
rithms and Jensen inequality:

PROPOSITION 1.6.3. D(P || Q) > 0, and equality is only possible when P = Q).
Class notes S. Boucheron 6 January 12, 2005

Information Theory | A lower bound on compression rate

PROOF. There is nothing to prove if there exists some x such that P(x) =0
and Q(z) > 0. Let P and Qdenote two probability distributions such that P(x) >

0= Q(x)>0

DIPIQ) = 3 P)hr i
Q(z)
= P(z) | —log
2 o)
Q(z)
> —log P(z)
200
= —log| > Q(SC))
z:P(x)>0
> —log(1)

EXERCISE 1.7. [LOG-SUM INEQUALITY| Check the following inequality :

gazlog— > (Zaz> log iz 1bz

EXERCISE 1.8. [CONVEXITY OF RELATIVE ENTROPY| Derive from the preceding
inequality that relative entropy is convex with respect to its two arguments.

The Kraft-McMillan inequality and the positivity of the relative entropy enable
to deduce a lower bound on the compression rate.

1.9. A lower bound on compression rate

THEOREM 1.9.1. [CONVERSE LOSLESS CODING THEOREM| Let P, denote the
probability distribution on X" defined by a source, then for any uniquely decodable
code (f,)with coding alphabet Y :

(1.9.1) Ep, ((f[w])] = —=;Ep, [~ log Pp(w)]

~ log|Y|
Class notes S. Boucheron 7 January 12, 2005

Information Theory | Huffman coding and entropy

PRrROOF. From the Kraft-McMillan inequality it is immediate that
Z V|~V < 1.

weX*

Hence it is possible to define a probability @, on X™ U {L} with Q,(z}) 2
| V|~ Moreover

(a) n n

D(P,|Qn) = Ep, log P.(X])] — Ep, [log Qn(XT)]

() n n

= Ep, [log P,(X7)] + Ep, [log [V £(f[XT])]
Now the positivity of relative entropy implies the theorem. O

1.10. Huffman coding and entropy

1.10.1. Building an optimal prefix code. Soon after Shannon established
the noiseless source coding theorem (1948), Huffman proposed a technique to de-
sign instantaneously decodable (prefix) codes for finite sources, i.e. probabilities
on finite subsets of X'*. This method is interesting for several reasons: it is sim-
ple, it raises interesting algorithmic issues, and moreover it is useful since it is
still used in data compression standards such as JPEG or MPEG.

1.10.1.1. A simple and useful property of some optimal prefix codes. For the
sake of brevity , we assume that) = {0, 1}.

Assume A C X* is finite and provided with probability P. There exists a code
with minimal average length, because of the finiteness of the number of possible
length vectors smaller than |.A|.

PROPOSITION 1.10.1. There exists a prefiz code (f,¢) with minimal average
length such that the following two properties hold:

(1) If wy and wo are the least frequent words in A, then ((f[w:]) = £(f[ws])
and flwi] and f([ws]) differ only in the last symbol.
(2) If P{wi} < P{wy} then £(flun]) = £(f[ws]).

Note that those two properties imply that the two longest codewords have the
same length.

PROOF. The proof starts with an optimal prefix code (f, ¢), and proceeds by
rearrangement: if (f, ¢) satisfies the two properties, we are done.

Assume the second property is violated by w; and ws, then by exchanging the
roles of f[w;] and flws], we get another prefix code with strictly smaller average
length, contradicting the optimality assumption.

Class notes S. Boucheron 8 January 12, 2005

Information Theory | Huffman coding and entropy

Assume the first property is violated, let w; denote the least frequent symbol
and ws the second least frequent symbol. If there exists w3 such that f[w;] and
f(Jws]) differ only in the last symbol, then as ¢(f[w;]) is maximal (property 2),
0(flws]) > €(f[ws]) and we may exchange the roles of f[ws] and f(|ws]) without
destroying either the prefix property or the optimality (hence property 2), and
then property 1 is satisfied. If there is no ws such that f[ws] and f[w,] differ
only in the last symbol, then we can get rid of the last symbol in f[w;] and get
an shorter prefix code, contradicting the optimality assumption U

1.10.1.2. Huffman’s construction. To describe Huffman’s construction, it is
profitable to use the correspondence between prefix sets over {0, 1} and labelled
(planar) binary trees.

A priority queue is an abstract data type parametrized by a set F and a priority
function key

such for any (possibly empty)collection of pairs (z;, key(x;)), one may build a
priority queue PQ such that:

(1) each item in PQ is associated with exactly one pair (z;, key(x;),

(2) one may test whether the queue is empty or not,

(3) one may extract the item (x,,, key(z,,)) with minimal key, obtaining on
one hand, (x,,, key(z,,)) and a priority queue containing all other items,

(4) one may update the priority of an item in the priority queue.

Huffmann construction is described as follows:

(1) Build a priority queue PQ associated with all pairs ((w;, €), P{w;})
(2) While PQ contains at least two items do the following steps:

e extract the item with minimal priority (7}, P;) and let (7}, P;) denote
the item it with minimal priority in the resulting priority queue.

e Replace T; by ((73,1), (7},0)) in the item it , and replace priority P; by
P; + P, in this item, update the priority queue.

(1) Output the code defined by the tree T in the information field of the
(unique) remaining item.

THEOREM 1.10.2. [Huffmann code optimality| Huffman’s codes have optimal av-
erage length among prefix codes..

Class notes S. Boucheron 9 January 12, 2005

Information Theory | The converse to the Kraft-McMillan inequality

PrOOF. The proof proceeds by induction on the number of words that have
to be encoded. If there are two words, the construction is trivially optimal. Now
assume that it is optimal when there are less than n words, and that |A| = n+ 1.

Let w,, and w,; denote the two least frequent symbols. f[w,] and and f[w,, 1]
have equal length and they differ only in the last symbol. A’ is defined by
A = A\ {w,, w11} U{w,.2}, and equipped with a probability distribution P’
defined by P'{w;} = P{w,} for j < n and P'{w,+2} = P{w,} + P{w,41}. The
code produced by Huffman’s construction on A’ assigns codeword f[w;] to any
w; with j < n and all but the last symbols of f[w,] to wy,1o. It is a prefix code,
by the induction hypothesis, it has optimal length. Assume now that f’ defines
an optimal prefix code satisfying properties ... and ..., f’ defines a code on A’
in the same way. Let us compare the average length of those two codes:

—~
S
Nl

Ep[((flw])] < Ep(f[w])]
B w])] — Pluwni}
C Ep(fw])] - Pluna)

On the other hand

Ep [0(f[w])] = Ep[t(f[w])] — P{wnwni1},
thus
Ep[t(flw])] = Ep[e(fTw])] .

1.11. The converse to the Kraft-McMillan inequality

The optimality of Huffmann codes among prefix codes leaves open the following
questions:

(1) Are prefix codes optimal among uniquely decodable codes ?
(2) How close is the infimum over all achievable compression rates to the
entropy rate ?

THEOREM 1.11.1. [CONVERSE KRAFT-MILLAN INEQUALITY| If A\ : A C X* —
N satisfies
d e <,

weA
then there ezists a prefiz code (f,) on alphabet Y, such that ((flw]) = M w).

Class notes S. Boucheron 10 January 12, 2005

Information Theory | Arithmetic coding

PROOF. To alleviate notations, let us assume that) = {0, 1}. Without loss
of generality, assume A = {wy,...w,}, and that A(w;) < AMw;) = i < j. Let
the encoding of w; be denoted by f(w;) and be defined as the A(w;) first bits of
the binary expansion of

Z 2 Aws) | 9= Alwi)—1
Jj<i

which also coincides with the binary expansion of:

Z 9—Mw;)

j<i

It is enough to check that this defines a prefix-free code. Assume on the contrary
that f(w;) is a prefix of f(w;) while i # ¢’. This entails i < ¢’. Then we have:

Z 9-Awj) ~ 2—>\(wi)’

i<j<i’
which is impossible. O

COROLLARY 1.11.2. [DIRECT LOSLESS CODING THEOREM| For any A C X*,

provided with a probability distribution P, there exists a prefix code (f,), such
that ((fw]) = [—log P{w}], moreover:

El((flw)] < H(P)+1 .

How effective is the converse to the Kraft-MacMillan Theorem ? Provide an
efficient coding-decoding procedeure.

1.12. Arithmetic coding

1.12.1. Shannon-Fano-Elias codes. If handling long blocks is not an is-
sue, Huffman coding is quite satisfactory: the redundancy of Huffman codes is
upper bounded by 1/n, coding consists in table lookup and decoding in travers-
ing a tree. But the size of coding table grows exponentially with n. Hence an
algebraic improvement of redundancy costs an exponential amount of space. This
is one reason to look at other lossless coding techniques. This first technique to
be exposed has not been the most useful in practical implementations till now,
but it has a tight connection with statistical modeling and has had an important
impact in non-parametric statistics, it is called arithmetic coding. Arithmetic
coding stems from an ancient idea developed by Shannon and Fano at the very
beginning of Information Theory.

Class notes S. Boucheron 11 January 12, 2005

Information Theory | Arithmetic coding

1.12.2. Coding a single symbol. Let A = X". Let P{w} denote P{X; =
w} in this paragraph. Remember that from the converse of the Kraft-McMillan
inequality, as Y, oy 271718 P{wlI=1 <1 there exists a prefix code f, ¢ that assign
to each symbol z a code-length equal to [—log P{z}]| + 1.

Such a code can be designed in the following way. Choose an ordering on A = X.
Define low and up from as:

low(z) =) P{a'}
up(z) = Y P}

Define f(x) as the
1+ [—log P{z}]
bits of the binary expansion of

%[low (2) + up(x)] = low(z) + - {;}.

Let us check that this defines a proper prefix code. Assume that f(z) is a prefix
of f(z')and (z < 2’), this implies that the binary expansions of low (z) + 3 P{z}
and low(z') + 2 P{2’} do not differ in their first 1 + [—log P{z}] positions. i.e.
they differ by less than
P {x}

2

o-1-[~log Pla}] <

but
P {w}

low(x) + %P{x'} ~low(z) — _p{ b

The case x > 2’ is treated in a similar way (or we may 1mp0se that the letters
are ordered in a non-increasing manner according to their probabilities).

1.12.3. Coding a sequence of symbols. This construction provides with
a prefix code for X where each codeword has nearly ideal code-length :

—log P{z}.
As such it does not seem to provide an improvement with respect to Huffman

codes. The main merit of the Shannon-Fano-Elias coding method is to be gra-
ciously extendible to the coding of sequences of symbols.

Let us consider the encoding of X”. The order on X induces a unique lex-
icographic order on X™. And z} € A™ can be encoded by taking the first
+ [—log P™"{x}}] bits in the binary expansion of

1
PY{X! <2t} + P”{ T}

Class notes S. Boucheron 12 January 12, 2005

Information Theory | Arithmetic coding

The most appealing aspect of this encoding is that any good procedure to compute
PY{X? <27} from P"{X]' < 277!} results in a good procedure to encode 7.
As a matter of fact, define by extension for any z7 € X™:

low (a) = P {X} <af} up(a}) £ PM{X} < a7}
(low(x?), (z?)) is commonly called the tag associated with 7. let us also define
width(x7) 2 (27) —low(27). low(z7) and (27) are computed in the following way:
low(z}) = low(z™') + [width(z}™")] P{X, <z, | X} =a7""}
up(zf) = low(2!™!) + [width(z})] P{X, <z, | X7 =277}
width(z}) = width(z}™")P"{X, =z, | X[=277"'}.

The tag could be equivalently chosen as (low(z), width(z})). Once the tag is
known, encoding is straightforward. Shannon-Fano-Elias coding coding does not
require exponentially large tables and its redundancy per symbol is less than 2/n.
Nevertheless this is not enough to make it practical.

1.12.4. Pure arithmetic coding. Here is list of problems that have to be
fixed in order to make Shannon-Fano-Elias coding a practical idea:

(1) coding has to be performed in an incremental manner. It is desirable to
be able to output the codeword beginning before having totally processed
the input word.

(2) tag computations should be simple. The Shannon-Fano-Elias method
relies on exact arithmetic, and multiplications. It is desirable to used
fixed precision arithmetic and to avoid multiplications.

Those two problems have been (at least partially) fixed in the late seventies.

Pure arithmetic coding deals with the first question and leaves aside the im-
plementational issues raised by exact arithmetic. From the definition of the
Shannon-Fano-Elias procedure, it follows that the sequence of intervals [low(z%), (z#
is decreasing. We will first describe a simple set of rules that will replace this
sequence of intervals by a sequence of intervals which width remains bounded
from below by 1/4.

Assume that & < n and [low(2¥), (z¥)) C [0,1/2) then as [low(z¥!), (ZF+1)) C
[low(z}), (z*)), we already know that the first bit of the codeword associated with
27 will be 0. We could thus replace [low(z¥), (z¥)) by [2 x low(2¥),2 x (z})) and
immediately output 0.

In an analogous Way, if [low(z%),(@*)) C [1/2,1) then it is replaced by [2 *
(low(z¥) — 3),2% ((@}) — 1)) and 1 is immediately output.

Class notes S. Boucheron 13 January 12, 2005

Information Theory | Arithmetic coding

The third rule is more subtle. The first two rules do not prevent [low(z%), (z¥))
to shrink around 1/2 like [1/2 — 1/2% 1/2 + 1/2%). In such a case, we are not
in a position to decide whether the first codeword symbol will be 1 or 0 until
the last input symbol is read. Nevertheless, if [low(z¥), (z})) C [1, 2), we already
know that the first and the second bit of the codeword will be different. This
prompts us to follow the following rule: replace [low(z¥), (z%)) by [2 x (low(2¥) —
1,2 x (o) — 1)), and note that the first and second bits of the codeword will
be different.

Beware that the three rules should be used in an iterative manner. This is
packaged in the following algorithm.

Class notes S. Boucheron 14 January 12, 2005

