CHAPTER 3

Universal coding II: pattern matching

3.1. Motivations

Until recently, arithmetic coding and its spin-offs (like CTW) have had little
impact on practical text compression programs. This is due to the fact that by
the time arithmetic and mixture coding emerged, a computationally simple and
asymptotically efficient text compression algorithm was proposed by J. Ziv and
A. Lempel (1977, 1978). This algorithm, or rather this family of algorithms was
able to compress optimally a very large class of sources in a way that might seem
strange at first sight: pattern-matching, i.e. by looking for repeated patterns in
the string to be coded.

From a computational viewpoint, this is a very appealing technique: it does
not require any sophisticated arithmetic, it relies on simple and well-understood
data structures called tries, it does not involve any explicit statistical modeling.
Moreover LZ-compressed may be searched and processed efficiently.

Hence LZ compression is The main motivation for using the Lempel-Ziv schemes
may seem computational but LZ are also fascinating theoretical objects: the
proof of first-order optimality and the anlaysis of the redundancy of Lempel-Ziv
schemes have been one of the hottest topics in Information Theory. Moreover LZ
compression schemes have been an incentive to investigate a large class of text
compression methods based on Gammar Transforms.

3.2. The entropy rate of stationary source

Till now, we have considered either very general sources or very specific sources
(memoryless sources, Markov sources). This was not a matter of concern, since
we were considering encoding of words with fixed length, say n,in this Chapter,
we will have to abandon this fixed horizon setting. It will make sense to focus on
large, yet restrictde class of sources. The largest class of sources we will consider
is the class of stationary sources.
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DEFINITION 3.2.1. [STATIONARY SOURCE]|

Let P denote the probability distribution of the E-valued random variable X
where E is a countable set. The (Shannon) entropy of P is denoted by H(P) and
defined by:

Hy(P) = Ep[—log, P(X)] ,

where log, denotes the base b logarithm.

It is convenient to take b to be cardinality of the encoding alphabet ).

For the sake of concision, we will often denote by H(X) the entropy of the
distribution of X. Then we have the following corollary of Theorem ?7:

COROLLARY 3.2.2. If R is an achievable compression ratio for source (X,)nen
then:

R > limsup

n

Hjy|(X7)
I

Note that
H(XT)

lim sup

is well-defined and finite: @ is positive and smaller than log |X|. The subad-
ditivity of the entropy actually implies that @ has a limit when the source is

stationary. This follows from the following Proposition 3.2.3 and Lemma 3.2.4.

PROPOSITION 3.2.3. [SUBADDITIVITY OF ENTROPY|Let X,Y be two discrete
random variables,
H(X,Y) < H(X)+ H(Y) ,

equality s only possible when X and Y are independent.

The following simple Lemma proves to be frequently useful.

LEMMA 3.2.4. [FEKETE, CIRCA 1923] Let f be a function from N to R assume:f(m-+
n) < f(m)+ f(n) for allm,n € N, if inf,, f(n)/n > —oo then lim,, f(n)/n ezists

and:
lim@ :inf@ < 0.
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PROOF. Assume b = inf @ < 00, fix € > 0 then there exists some ng such
that \%00) — b| < e. Let n be larger than ng, then n = kng + r with r < ng,

(a)
fn) < kf(no)+ f(r)
g knob + knge + f(r)
(é) nb + ne — rb + max f(u),

u<ng

where (a) comes from the subadditivity property of f, (b) from the definition of
no, and (c) is elementary. This entails that limsup,, @ < b+ e As e may be
chosen arbitrarily small, lim sup @ = lim inf @

The case lim inf @ = oo is impossible since we have f(n) < nf(1) by subaddi-
tivity. O

The lower bound on f(n)/n is actually not necessary. Subaddtivity became
part probabilistic consciousness in the sixties with Kingman’s subadditive ergodic
theorem.

THEOREM 3.2.5. [ENTROPY RATE OF A STATIONARY SOURCE| Let P define a
stationary source. Then the limit H..(P) £ lim, 251 egists and is called the

n
entropy rate of the source.

3.3. The Lempel-Ziv compression schemes (outline)

3.3.1. History. There exists actually two main variants of the Lempel-Ziv
schemes. The first one LZ77 ultimately gave birth to gzip while the second one
Lz78 and its variant LZW rapidly gave birth to compress, is used in modems
for telephone lines (V42.bis and beyond) and in other compression standards like
GIF. Both variants rely on the concept of parsing.

3.3.2. Parsings.

DEFINITION 3.3.1. [DISTINCT PARSING| Let w = w} denote a word on some
alphabet X. Then uy, uo,...u,, with u; € X* is a distinct parsing of w if the
concatenation of u; equals w, i.e. w = wjuy...u, and @ # j implies u; # u;. LZ
compression schemes first construct a parsing.

3.3.3. Coding (and decoding) a parsing.
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3.4. The LZ78 parsing scheme

3.4.1. Outline. Let us describe the 1L.Z78 parsing process. Assume w is an
infinite string. The parsing of the empty string is reduced to the empty string.
Assume we have already parsed the first n symbols of w, then we should search
the longest prefix of w;% , that occurs in the parsing of wf, assume it is u;, and

n+1+h

let h 2 {(u;) then the next word in the parsing is w;, |

ExXAMPLE 3.4.1. Let the data be constituted by the following 20 binary symbols
01010011010000110010.
The LZ78 parsing of that string is:
e 01 01 00 11 010 000 110 O10.

To encode w it is enough to encode the sequence of blocks that constitute the
parsing. Note that the i*" block is the concatenation of a previously occurring
block and a single symbol. In the example the 7% block 010 is the concatenation
of the the 4" block 01 and the single symbol 0. If u; = u;a where u; is a previously
occurring block in the parsing, and a a symbol from X', u; is uniquely defined by
(j, a), it may thus be encoded using |log, j + 1] + log, | X'| bits. Note that we do
not try to optimize the encoding of single letters. The L.Z78 encoding replaces a
substring with a pointer to where it occurred previously.

e (1,0) (1,1) (2,1) (2,00 (3,1) (4,0) (5,0) (6,0) O010.

THEOREM 3.4.2. The length of the LZ78 encoding of a string is thus uniquely
determined by the number of substrings constituting the LZ parsing. Let c(w)
denote this number, then:
c(n)
((lz(w)) < Y [logy(i + 1)] + c(n)[log, | X|]
i=1

(3.4.1) < e(n)logy[e(n) + 1] + ¢(n)[log, | X|].

3.4.2. Implementation issues (tries). Before proceeding to the proof of
the optimality of the Lempel-Ziv scheme, let us look at the way encoding and
decoding could be implemented efficiently. Assume that the first m symbols in
w have been parsed, to encode wy, ., ;, we need to determine the longest prefix of
wy, 1 which occurs in the parsing of wi". Ideally, we should spend a constant
amount of time per symbol, in order to achieve Lz compression in time propor-
tional to the length of the string that has to be encoded. This is feasible using
digital search trees (also known as tries). A digital search tree represents a collec-
tion of strings on a given alphabet. A tree reduced to a root represents the empty
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string. The tree is assumed to be oriented, edges pointing towards the leaves.
Each edge is labelled by an alphabet symbol. All edges outgoing from a node
should have distinct labels. Each node is associated with the word defined by
the labels on the (unique simple) path starting from the root and reaching that
node. Note that any prefix of a string occurring in a LZ78 parsing also occurs in
the parsing, hence the digital search tree has one node per block in the parsing.
If furthermore each node is labelled by the index of the corresponding block, the
digital search tree is a concise representation of the parsing. Let us call it a parse
tree.

When starting to parse wy, ;, keep a pointer to the root of the parse tree, if
no edge outgoing from the pointed node is labelled by w,,,; then w,,,; is a new
symbol, and the corresponding block is (€, w,,11), add a new successor to the root
in the parse tree and label the corresponding edge by w,,, 1, iterate the procedure
on wy, ,,. If there is an edge outgoing from the pointed node that is labelled by
Wmyi1 , move the pointer to the extremity of that edge and iterate the procedure
on wy, .

This procedure uses linear time and space. Moreover all operations are elemen-
tary, they do not involve any multiplication and division. This is one of the
reasons that makes Ziv-Lempel so popular: simplicity.

3.4.3. Decoding.

3.5. The LZ77 parsing scheme

3.5.1. Outline. In the LZ 77 parsing scheme, assuming that text xy,...,z,
has been parsed up to position m, then the next block of the parsing is constructed

in the following way: let 11, ..., Zn; denote the longest prefix of z,,41,...,2,
that occurs somewhere (not necessarily as a block) in z1, ..., x,,. Then the next
block in the parsing is @, 11, ..., Zmt;41 (the text is assumed to be terminated

by a sentinel character).

ExaMPLE 3.5.1. Let the data be constituted again by the following 20 binary
symbols

01010011010000110010.
The LZ77 parsing of that string is:

e 0 1 010 011 01000 01100 O010.
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3.5.2. Coding (and decoding). In order to code a block z,, 11, . .., Tpmijt1
in an LZ77 parsing, we have to encode three things, the position k of the first
occurrence of Tp,y1,...,Tmqj ID T4, ..., Ty, the length j of this subword and the
character x,,, 41, that is, two integers smaller than the total length of the word
n, and a character from a fixed alphabet X.

Actually the two integers may be bounded in a less conservative way. Hence
coding a block requires at most

2 (logy(n) + 1+ 21log, (logy(n) + 1) + 2) + log, | X|

bits. This is a conservative estimate.

3.5.3. Implementation (suffix trees). In order to compute the LZ77 pars-
ing efficiently we need to represent x1, ..., x,, using a data structure the subwords
of x1,...,x,, that enjoys the following properties:

(1) Searching for the longest prefix of a string w,...,y, that occurs in
x1,...,%, should take time proportional to the length of this longest
prefix.

(2) The data structure representing the subwords of x,...,z,, should be
easy to update. Constructing the data structure associated with xy, ..., x,, 1
from the data structure associated with z1, ..., z,, should take constant
amortized time.

As the collection of subwords of a given word is somewhat more complicated than
the prefix-closed collection of words handled by the LZ78 parser, we will not be
abale to use a trie to fullfill this set of requirements. A collection of related data
structures called compact suffix trees or Patricia trees will prove convenient.

DEFINITION 3.5.2. The compact suffix tree associated with word z1,...,z, is a
rooted tree where

i) each leaf is associated with a suffix of z1, ..., z,;

ii) every internal node has at least two children;

iii) each edge is labelled by a subword of 1, ..., x,;

iv) the concatenation of labels along the branch leading to some leaf gives the
suffix associated with that leaf.

v) the subwords labelling two edges outgoing from one node must start by different
symbols.

DEFINITION 3.5.3. Every suffix z,,, ..., z, of x1, ..., x,, is parsed into two subwords
head and tail. The subword head is the longest prefix of x,,, ..., z, that occurs in
1, ..., Tm_1. And tail is defined by z,,, ..., x,, = head tail.
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NOTE 3.5.4. Note that when constructing the LZ77 parsing of some word x4, ..., z,,,
once we have parsed z1,...,x,,_1, we have to find out what are head and tail in
Ty ooy Ty

LEMMA 3.5.5. In the compact suffix tree associated with x1,...,x, there are at
most 2n — 1 nodes.

This reflects the fact that when building a sequence of partial suffix trees, Mac-
Creight algorithm adds at most two nodes when adding a new suffix: one leaf is
added and at most one internal node is splitted.

Suffix links enable the efficient construction of suffix trees.

3.6. The regret of Lempel-Ziv scheme with respect to Markov models

Despite their simplicity, Lempel-Ziv coding schemes achieve optimal compression
ratio.

THEOREM 3.6.1. [WYNER,Z1V,LEMPEL| If P defines a stationary source (X, )nen
with entropy rate H., then:

lz(XT)]

n n

|-

The proof of Theorem 3.6.1 follows from several technical lemma. Note that it is
enough to check that
lz( X7
HimEpn [M} < H.,.
n n

As we already have a nice upper bound on w thanks to inequality (3.4.1),

the main objective of the technical Lemmas will be to relate the typical value of
log, P(X7") and the number ¢(n) of blocks in the Lz78 (or the LZ77) parsing of
X7

The first Lemma is elementary and upper bounds the number of blocks in a
distinct parsing.

LEMMA 3.6.2. The number c(n) of blocks in a distinct parsing of a word of length
n 1s upper bounded by:

n

4+loglogn
(1 g
ogn

eln) < )logn
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PROOF. Let ¢;(n) denote number of blocks of length ¢ in the parsing. We
have ). c;(n) = c¢(n) and ), ¢;(n) x i = n. ¢(n) is maximized when all possible
small blocks are used, i.e. when there are 2° blocks of size 7 in the parsing for all
small enough ¢. Let J denote the largest integer such that

J
ZiQZ <n,
i=1

i.e. J satisfies:
2+ 27T —1) <n<2+2712]

then any distinct parsing is constituted by at most

. J+1 J+1 n—2 s, 27
2 —2-=2 J=D|/(J+1) <2 -2+ —-2 —_—
; +[n (J=D/(T+1) < T S
blocks, i.e.:
2 n—2
< 2J+1
= 200G T
n—2 2
< 1
- J+1( +J—1)’
as J > log(n — 2) — loglog(n — 2) — 2 for n > 2,
n 4
< 1
cn) = log(n—2)—loglog(n—2)—1< +log(n—2))
n
<
— 2+loglogny -
logn(l—ﬂong)
U

The second Lemma provides an example of a series of very useful statements of the
following form: among the distribution which satisfy certain moment conditions
(i.e. linear constraints) which one do have the largest entropy? Many questions in
Information Theory, Statistics, Probability and Statistical Mechanics have such
a flavor.

LEMMA 3.6.3. [MAXIMUM ENTROPY|Among the probability measures on NT
which have expectation p, the law which has maximal entropy is the geometric
law with expectation , this entropy is upper bounded by

(1 + 1) log(p + 1) — plog
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Proor. W.l.o.g. we assume that p > 1, otherwise the question is trivial. As-
sume (@ is the geometrical distribution with mean p and P is another distribution
over the integers with mean p. By definition of the geometric law:

1,1
Q{k}=(1- ;) P

and

1, k-1 1
HQ) = —> (1—=)"'——log(l——)+logp
- 1 [t [t
= plogp — (p—1)log(u —1)
< (p+1)log(p+1) —plogp .

Now recall that the relative entropy is positive:

—

DP|Q) © —H(]P)—ZP{%}(k—wlog(l—%ngu

O —H(P) = Y Qk}k— 1)log(1 - 1) + log e
k

N

—~
=

—
o
~

—H(P) + H(Q),

where equality (c) comes from the fact that @ and P have the same expectations.
O

To finish the proof of Theorem 3.6.1, we will resort to the k-Markovization device
that was already used during the proof of the AEP (Theorem ??). Let P*) be
defined by:

n

n A i—
P(k)<x—(k—1)) = P(xo—(k—l)) HP(%‘ | 372;11?)-

=1

For any block u in a distinct parsing of w, let the state of u be defined as the
sequence of k£ symbols that precede block w in w. For any length [ and pattern s
of k symbols, let ¢; ; denote the number of blocks of length [ that occur in state
s in the parsing of w. Obviously Zs,z s = ¢ and Es,l s X l=mn.

LEMMA 3.6.4. [WYNER & Z1v| For any distinct parsing of the string x7, we
have:

—log PW (27 | 2%,,,) > ch,s log ¢ .

s,l
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PROOF. Let uy,usy...u. denote a distinct parsing of 27. Let s;...s. denote
the corresponding states (s; = 2, ), and S the set formed by those states. Let
U(s) denote the set of blocks that occur in state s, and U(s,[) denote the set of
blocks of length [ that occur in state s.

—log P{a}} = —Zlogw fur | 51

2 ST Y logPO{u | s)
s€S wel(s)

® _Z chs Z —loglP(k{u|s}
s€S l ueU(s,l)) bs

2y Y —P¥uls)
seS 1 u€l(s,l) Cls

(d)

> _Z chs lOg—
seS

where (a), (b) come from the definition of U(s) and U(s, (), (¢) comes from Jensen
inequality applied to uniform probability on U(s, ) for each couple s, [, and (d)
from the fact that > P®{y | s} <1 since all u; are distinct. O

The theorem now follows:

PROOF. Given a distinct parsing (ui,...u.) of =7 such that there are ¢,
blocks of length [ in state s in the parsing, it is possible to define two integer-
valued random variables L and S such that P{L = [ A S = s} = ¢ /c.
may take at most 2* values, hence H(S) < k. And the subadditivity of entropy
ensures that H(L,S) < H(L|S)+k < H(L)+ k. As L takes values in N and
has expectation n/c, by Lemma 3.6.3,

n n n n
HL < —-log——(——1)log(— —1).
(£) < "og ™ — (% ~ 1) log(% 1)
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Z aslog s = clogc+cz Cl—c’slog%

C
s,l s,l

= cloge—cH(L,S)

—~
S
Nl

> clogc—ck —cH(L)

®)

> clogc—ck’—nlogﬁ+(n—c)log(ﬁ—1)
c c

(c) n

> cloge—ck —clog(— —1) —2¢In2
c

where (a) comes from subadditivity of entropy and trivial bounds on H(S), (b)
comes Lemma 3.6.3 and (c) from the fact that xlog(l1 —1/z) > —21In2 for x > 2.
The Lemma now follows from bounds on ¢/n (Lemma 3.6.2) O

Note that from the proof, we get the following corollary:

COROLLARY 3.6.5. For any fixed k, the mazimum pointwise regret of the Ziv-
Lempel scheme on strings of length n with respect of Markov chains of order k is
O(nloglogn/logn).

Class notes S. Boucheron 11 January 12, 2005



