
CHAPTER 6

Lossy source coding: rate-distortion theory

6.1. The lossy source coding problem. Distortions

Once a continuous-time signal has been sampled, the resulting discrete-time signal
is not yet a digital entity, it is a sequence of values from some abstract alphabet
(i.e. those values usually belong to some complete metric space, real numbers
for example constitute an abstract alphabet). In order to store the signal on a
digital computer, to send it through a digital transmission line, or to perform
some transformations on the signal using a computer, it is necessary to build
a discrete-valued approximation of the signal values. Such a process is called
quantization. It consists in replacing X1, . . .Xn by X̂1 . . . X̂n where X̂i belongs
to some finite set Y. The original sequence is usually not recoverable from the
quantized sequence, therefore that kind of coding is called lossy. Although we
accept quantization to be lossy, we would like it to be faithful, i.e. we would
like the quantized sequence X̂1 . . . X̂n to look like X1, . . .Xn. Looking like is
certainly a very sloppy notion. It may be defined by empirical psycho-physical
tests ( nowadays no audio/video lossy coding technique can reach the status of
standard without passing such tests). But those questions are outside the scope
of a mathematically oriented course. In this chapter, we will continuously assume
that there exists a single-letter distortion function ρ that maps X × Y to

� +.
Our fidelity criterion will be:

ρ(xn
1 , x̂

n
1 )

∆
=

n
∑

i=1

ρ(xi, x̂i) .

A rate-distortion code with blocklength n is defined by a triplet (f, ψ, φ) where f
maps X n towards Yn, and (ψ, φ) defines a binary prefix code on Yn. The average
rate of the code is defined by

1

n

�
[`(ψ(f(Xn

1 )))],

while the average distortion is defined by

1

n

�
[ρ(Xn

1 , f(Xn
1 ))].
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Lossy source coding may be considered from different perspectives: one may fix
the rate and optimize the distortion, or one may fix the allowed distortion and
optimize the rate.

For example, rate R is achievable under distortion D if there exists a sequence of
codes 〈fn, ψn, φn) with blocklength n (n tending towards ∞) with limiting rate
less than R and limiting average distortion less than D.

Remark. In this chapter, the base of all logarithms is the size of the reconstruc-
tion alphabet Y. Entropies, relative entropies, mutual informations, as well as
code rates and rate-distortion functions are defined with respect to log|Y| .

6.2. The rate-distortion function of a source

The concept of entropy rate of a stationary source proved to be the cornerstone
of the theory of lossless compression. The rate-distortion function of a source
plays a similar role in the theory of lossy compression.

Let � denote the joint probability of two random variables X and Y and � X , � Y

denote the corresponding marginals. Recall that the mutual information between
X and Y is:

I (X;Y ) = H(X) +H(Y ) −H(X, Y ) = H(X) −H(X | Y ).

Definition 6.2.1. [Distortion compliant couplings] Let (Xn) denote an
X -valued process. Let � denote the law of (Xn). Let Un(D) denote the family
of laws � of X × Y-valued processes (Xi, Yi)i∈ � , which first marginal (Xi)i∈ � is
distributed according to � , and such that

1

n

���
[ρ(Xn

1 , Y
n
1 ] ≤ D.

Let us furthermore denote by Rn(D) the nth order rate-distortion-function:

Rn(D)
∆
= inf�

∈Un(D)

1

n
I (Xn

1 ;Y n
1 ) .

Remark. 1) Joint processes whose marginals satisfy some conditions are some-
times called joinings or couplings.

2) If X and Y are finite, the infimum in the definition of Rn(D) is achieved.

Definition 6.2.2. [Rate-distortion function] The rate-distortion function
of (Xn) at distortion D is denoted by R(D) and defined by:

R(D)
∆
= lim sup

n

Rn(D).

The limsup in the definition is actually a limit. This can be checked using a
subadditivity argument and resorting to the Fekete Lemma.
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6.3. Properties of the rate-distortion function

When considering couplings, it is useful to consider mutual information between
X and Y as a functional of two arguments: this first one is the first marginal
law QX , the second argument is the conditional distribution of X given Y : QY |X .
Overloading notations, we will denote the mutual information under the coupling
defined by QXand QY |Xby I(QX ; QY |X).

Lemma 6.3.1. [Convexity of mutual information] If � denotes the joint
law of X and Y , while � X (resp. � Y ) denotes the marginal with respect to X
(resp. Y ) and � Y |X denotes the (a.s. defined) conditional distribution of Y with
respect to X. If � Y |X is fixed, I(X;Y ) = I(QX ; QY |X) is concave with respect to
� X while if � X remains fixed I(QX ; QY |X) is convex with respect to � Y |X .

Proof. Let us assume that QX is fixed and consider two conditional distribu-
tion Q1

Y |X and Q2
Y |X , let Q1 and Q2 denote the corresponding joint distributions.

If λ ∈ [0, 1], then λQ1 + (1 − λ)Q2 is the joint distribution associated with the
conditional distribution λQ1

Y |X + (1 − λ)Q2
Y |X .To check that

I
(

QX ;λQ1
Y |X + (1 − λ)Q2

Y |X

)

≤ λI
(

QX ; Q1
Y |X

)

+ (1 − λ)I
(

QX ; (1 − λ)Q2
Y |X

)

,

mutual information may be rewritten as:

I
(

QX ; QY |X

)

= D( � ‖ � X ⊗ � Y )

=
���

X

[

D( � Y |X ‖EQX

[

QY |X

]

)
]

.

Now the convexity of relative entropy with respect to its two arguments (which
is a straightforward consequence of the variational representation of entropy, or
in the simplest settings of the log-sum inequality) entails that conditionally on
X:

D(λQ1
Y |X + (1 − λ)Q2

Y |X ‖EQX

[

λQ1
Y |X + (1 − λ)Q2

Y |X

]

)

≤ λD(Q1
Y |X ‖EQX

[

Q1
Y |X

]

) + (1 − λ)D(Q2
Y |X ‖EQX

[

Q2
Y |X

]

) .

Now taking expectations with respect to QX completes the proof of convexity.

The concavity property of mutual information with respect to QX is a straight-
forward consequence of the concavity of entropy and of the decomposition

I
(

QX ; QY |X

)

= H
(

EQX

[

QY |X

])

− EQX

[

H
(

QY |X

)]

.

�

Lemma 6.3.2. [Sub-additivity] For any stationary source, for all distortion
levels D, for all positive integers m and n:

0 ≤ (n +m)Rm+n(D) ≤ mRm(D) + nRn(D) .
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Proof. Let δ denote a small positive real. Let � ∈ Un(D) and � ′ ∈ Um(D′)
satisfy: ���

X

[

D( � Y n

1
|Xn

1
‖ � Y n

1
)
]

≤ Rn(D) + δ,
� �

′
X

[

D( � ′
Y n

1
|Xn

1
‖ � ′

Y n

1
)
]

≤ Rm(D) + δ.

Let � ′′ be defined in the following way: the first marginal of � ′′ is � ; and
conditionally on Xn+m

1 = xn+m
1 ,

� ′′
Y |Xn+m

1

{

Y n+m
1 = yn+m

1 | xn+m
1

}

∆
= � Y |X {Y n

1 = yn
1 | xn

1} × � ′
Y |X

{

Y m
1 = yn+m

n+1 | xn+m
n+1

}

.

Using the stationarity of � and the additivity of the distortion measure ρ :

���
′′

[

ρ(Xn+m
1 , Y n+m

1

]

=
���

[ρ(Xn
1 , Y

n
1 )] +

���
′′[ρ(Xn+m

n+1 , Y
n+m
n+1 )]

= nD +
���

′[ρ(Xm
1 , Y

m
1 )]

= (n +m)D.

Thus � ′′ ∈ Un+m(D).

Now let us upper-bound the mutual information between Xn+m
1 and Y n+m

1 under
� ′′.

I
(

Xn+m
1 ;Y n+m

1

)

= I (Xn
1 ;Y n

1 )

+
���

′′

[ �
Xn+m

n+1
[D( � Y n+m

n+1
|Xn+m

n+1
‖ � ′′

Y n+m

n+1
|Xn

1

) | Xn
1 ]
]

.

Now in the second summand, the conditional probability of Y n+m
n+1 given Xn+m

n+1

is fixed and defined by � ′, while the distribution of Xn+m
n+1 is � {Xn+m

n+1 | xn
1},

it is random with expectation equal to the distribution of Xm
1 under � (by the

stationarity assumption). We are now in a position to use the concavity property
of the mutual information (Lemma 6.3.1) and Jensen inequality to conclude that
the second summand is less than mRm(D) + δ. Thus under � ′′

I
(

Xn+m
1 ;Y n+m

1

)

≤ nRn(D) +mRm(D) + 2δ.

As δ may be chosen arbitrarily small, the Lemma is proved. �

Lemma 6.3.3. [Convexity of rate-distortion function]For a given source,
the rate/distortion function R(D) is non-increasing, convex and continuous with
respect to D.

We will actually prove a stronger result:
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Lemma 6.3.4. [Convexity of rate-distortion function at rank n]For
a given source, for all n, the nth order rate-distortion function, Rn(·) is convex
and non-increasing.

Lemma 6.3.3 follows from Lemmas 6.3.4 and the fact that the pointwise limit of
convex functions is convex.

Proof. [Proof of Lemma 6.3.4.] The only point to check is the convexity.
As the pointwise limit of convex functions on

�
is convex. It is enough to prove

that for any n, Rn(D) is convex with respect to D.

Let ε be > 0. Let D1 and D2 denote two distortion levels. Assume that the pair
of random variables (Xn

1 , U
n
1 ) is such that

I (Xn
1 ;Un

1 ) ≤ Rn(D1) + ε,�
[ρ(Xn

1 , U
n
1 )] ≤ nD1.

And assume that the pair (Xn
1 , V

n
1 ) satisfies:

I (Xn
1 ;V n

1 ) ≤ Rn(D2) + ε,�
[ρ(Xn

1 , V
n
1 )] ≤ nD2.

Now take λ ∈ [0, 1], assume there is probabilistic space where Xn
1 , U

n
1 , V

n
1 live

together with an independent Bernoulli random variable Z that equals 1 with
probability λ, and let W n

1 = Un
1 when Z = 1 and V n

1 otherwise. Then:�
[ρ(Xn

1 ,W
n
1 )] = λ

�
[ρ(Xn

1 , U
n
1 )] + (1 − λ)

�
[ρ(Xn

1 , V
n
1 )]

≤ λD1 + (1 − λ)D2.

Note that the conditional distribution of W n
1 given Xn

1 is a convex combination
of the conditional distribution of Un

1 given Xn
1 and of the conditional distribution

of V n
1 given Xn

1 . Now one can check that I (X;Y ) is concave with respect the
distribution of X when the conditional distribution of Y given X is fixed, while
I (X;Y ) is convex with respect to the conditional distribution of Y given X when
the distribution of X is fixed. This allows us to conclude:

I (Xn
1 ;W n

1 ) ≤ λI(Xn
1 ;Un

1 ) + (1 − λ)I(Xn
1 ;V n

1 )

≤ λR(D1) + (1 − λ)R(D2) + ε.

Hence as ε may be chosen arbitrarily small:

R(λD1 + (1 − λ)D2) ≤ λR(D1) + (1 − λ)R(D2).

�

The rate distortion-function of memoryless sources turns out to have a single-
letter characterization. This is checked using Lemma 6.3.4.
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Lemma 6.3.5. [Single letter characterization] If (Xn)n∈ � denotes a mem-
oryless source, then for all distortion levels:

R(D) = R1(D).

Proof. It is enough to prove that for any ε > 0, for any n, R(D) ≤ Rn(D)+ε.
Let � denote a joint distribution on X n×Yn that belongs to Un(D) and satisfies:

I (Xn
1 ;Y n

1 ) ≤ n(Rn(D) + ε).

Now:

I (Xn
1 ;Y n

1 )
(a)
=

∑

i

[H(Xi) −H(Xi | X
i−1
1 , Y n

1 )]

(b)

≥
∑

i

[H(Xi) −H(Xi | Yi)]

(c)

≥
∑

i

I (Xi;Yi) ,

where (a) comes from the independence of the Xi’s, and (b) from the fact that

conditioning may only decrease entropy. Now let Di
∆
=
�

[ρ(Xi, Yi)]. From the
definition of R1(·), we have for all i ≤ n:

R1(Di) ≤ I (Xi;Yi) ,

while
∑

i≤n Di ≤ nD. Combining with the previous inequality and the convexity
of R1(·):

R1(D) ≤ R1(
∑ 1

n
Di) ≤

∑

i

1

n
R1(Di) ≤ Rn(D) + ε.

�

The preceding lemma should not be misinterpreted. It might seem that for quan-
tizing memoryless sources, considering long blocks of symbols does not help,
i.e. that quantizing symbols independently is optimal. This is not true. Even
when the source statistics are known, the rate-distortion function characterizes
the achievable compression ratios under some fidelity criterion in a asymptoti-
cal way. That is, the rate-redundancy per symbol is no more O(1/n) as it was
for lossless coding. Proving such a result is beyond the scope of those notes.
Nevertheless, in the next section, it should be clear from the proof of the direct
part of the lossy source coding theorem (Theorem 6.6.1), that the rate-distortion
function is used in an asymptotic manner.
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6.4. The rate distortion function of Bernoulli source

Let us consider the memoryless Bernoulli source with success probability p :P {Xn = 1} =
p for each n. The input and output alphabets are both {0, 1} .We will use the
following distortion measure:

ρ (x, y) = � x6=y.

The rate-distortion function can be computed analytically on this simple example.
The tricks used to simplify this computation are of independent interest.

Note first that if D ≥ min(p, 1− p), R(D) = 0,it is enough to take Y equal to the
most frequent value of X. Henceforth we assume D < min(ρ, 1 − ρ).

Let us first lower-bound the rate-distortion function. Assume that X and Y are
jointly distributed according to a joining with distortion D :

E [ρ(X, Y )] ≤ D .

Let us denote by h2(p) the binary Shannon entropy of a Bernoulli Random vari-
able. The mutual information between X and Y is equal to

H(X) −H(X | Y ) = H(X) −H(X ⊕ Y | Y )

≥ H(X) −H(X ⊕ Y )

≥ h2(p) − h2(D) .

Now let us consider the joining defined by

Q {X = Y } = 1 − D

and

Q {Y = 0} = (1 − p− D)/(1 − 2D) .

It satisfies the distortion constraint. And as the entropy of X ⊕ Y given Y does
not depend on the value of Y, the inequality in the above stated derivation is
actually an equality.

Remark 6.4.1. The reasoning relies on the fact that X can be recovered from
the value of Y and from the distortion measure. If we were dealing with two
dimensional random variables and with squared error distortion, this would not
be feasible anymore.
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6.5. The converse to the rate-distortion teorem

Theorem 6.5.1. [converse to the rate-distortion teorem] Let (Xn)n∈ �
be a stationary process over some complete metric space , Y a reconstruction
alphabet, ρ a positive bounded distortion function. Let R(D) denote the associated
rate-distortion function, then for all distortion levels D,
rate R is achievable under distortion D only if

R > R(D).

Proof. [Proof of converse rate-distortion teorem] Assume that rate R is
achievable at distortion D on source (Xn) distributed according to � . Then
for each ε > 0, there exists an n, and a rate distortion code 〈f, ψ, φ〉 operating at
rate less R+ ε and average distortion less than D+ ε. Let us consider the random
vector (Xn

1 , fn(Xn
1 )), obviously from the definition of rate-distortion codes:

1

n

�
	
[ρ(Xn

1 , fn(Xn
1 ))] ≤ D + ε.

On the other hand:

I(Xn
1 ; fn(Xn

1 ))
(a)

≤ H(fn(X
n
1 ))

(b)

≤
��	

[`(φ ◦ ψ(Xn
1 ))]

(c)

≤ n(R + ε) .

Thus Rn(D + ε) ≤ R + ε. As ε may be chosen arbitrarily small, we can conclude
that, R(D) ≤ R. �

6.6. The direct source coding theorem (memoryless sources)

The direct source coding theorem asserts the existence of good rate-distortion
codes provided the bounds prescribed by the rate-distortion function are met.
The argument leading to this theorem matured between 1948 and 1959.The toy
version given here is concerned with memoryless sources on finite alphabets with
bounded distortion function. Such restrictions allow to use easily the weak law
of large numbers. Despite this very limited ambition, the proof of the toy direct
source coding theorem outlines two fruitful ideas:

(1) Random selection procedures which prove the existence of objects satis-
fying a given property by checking that the property has non-null prob-
ability in some probability space. Since the inception of Information
Theory in 1948, this device became a standard tool in Combinatorics
under the influence of Erdös and Rényi.
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(2) Change of measure arguments. Such arguments are at the core of Large
Deviations lower bounds.

Theorem 6.6.1. [Direct source coding theorem for memoryless sources]
Let P denote a memoryless source on the finite alphabet X . Let Y denote a finite
reconstruction alphabet, and ρa bounded distortion function on X ×Y. Let R(D)
denote the rate-distortion function o f P. for any D and R such that

R(D) < R,

for any ε > 0, there exists some n(ε) and a rate-distortion code with block-length
n(ε), rate R and average distortion less than D + ε for P.

6.6.1. Proof of the direct source coding theorem. Let D∗denote an
upper-bound on ρ(·, ·).

Let Q denote a joining such that EQ [ρ(X, Y )] ≤ D and

D(Q ‖QX ⊗ QY ) ≤ R (D) ≤ R − α.

During the proof of the source coding Theorem, we will rely on the following
Lemma which combines laws of large numbers in different ways.

Lemma 6.6.2. [Typicality lemma] For every ε > 0, there exists some n(ε)
such that for all n > n(ε):

QXn

1

{

1

n

∣

∣

∣

∣

∣

n
∑

i=1

(

D
(

QY |xi
‖QY

)

−D (Q‖QX ⊗ QY )
)

∣

∣

∣

∣

∣

> ε

}

≤ ε

⊗n
i=1QY |xi

{

1

n

∣

∣

∣

∣

∣

n
∑

i=1

(

log
QY |xi

{Yi}

QY {Yi}
−D

(

QY |xi
‖QY

)

)

∣

∣

∣

∣

∣

> ε

}

≤ ε

QXn

1

{

⊗n
i=1QY |xi

{

1

n
ρ (Xn

1 , Y
n
1 ) > D + ε

}

> ε

}

≤ ε .

Proof. [Proof of Lemma] The first inequality is just a consequence of the
weak law of large numbers. The mapping:

x 7→ D
(

QY |x‖QY

)

defines a bounded random variable since X is finite, this random variable has
expectation D (Q‖QX ⊗ QY ) .

The second inequality is also a consequence of the weak law of large numbers.

Even though log
QY |xi

{Yi}

QY {Yi}
− D

(

QY |xi
‖QY

)

are not identically distributed, they
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are independent and centered. The variance of the summands is upper-bounded
by

v = max
x∈X

Var

[

log
QY |x {Y }

QY {Y }
−D

(

QY |x‖QY

)

]

where Y is distributed according to QY |x.Bienaymé-Chebyshev inequality implies

⊗n
i=1QY |xi

{

1

n

∣

∣

∣

∣

∣

n
∑

i=1

(

log
QY |xi

{Yi}

QY {Yi}
−D

(

QY |xi
‖QY

)

)

∣

∣

∣

∣

∣

> ε

}

≤
v

nε2

it is enough to take n(ε) ≥ vε−3.

The third inequality is proved using arguments ejusdem farinae. First note that

n
∑

i=1

EQY |Xi

[ρ(Xi, Yi)]

is a sum of independent random variables with variances less than D∗2 and mean
less than D. Hence by Bienaymé-Chebyshev inequality:

QXn

1

{

1

n

n
∑

i=1

EQY |Xi

[ρ(Xi, Yi)] ≥ D +
ε

2

}

≤
4D∗2

nε2
.

Now assume that 1
n

∑n
i=1 EQY |xi

[ρ(xi, Yi)] < D + ε
2
, then ρ(xn

1 , Y
n
1 ) is a sum of

independent random variables with mean less than n(D + ε/2) and variance less
than nD∗2, resorting again to the Bienaymé-Chebyshev inequality

⊗n
i=1QY |xi

{

1

n
ρ (Xn

1 , Y
n
1 ) > D + ε

}

≤
4D∗2

nε2
.

Combining those two bounds, we get

QXn

1

{

⊗n
i=1QY |xi

{

1

n
ρ (Xn

1 , Y
n
1 ) > D + ε

}

>
4D∗2

nε2

}

≤
4D∗2

nε2
.

Taking n ≥ 42ε−3, we get the third part of the Lemma. �

Lemma 6.6.3. [Change of measure Lemma] If xn
1 ∈ X n is ε-typical, then

Qn
Y {ρ (xn

1 , Y
n
1 ) ≤ n(D + ε)} ≥ (1 − 2ε) × |Y|(−n(R(D)+ε)) .

In the proof of this lemma, we will use the following device. Assume that P and
Q are two probability distributions over the same space, and furthermore that
P{E} > 0 entails Q{E} > 0 for any event E. Let dP

dQ
and dQ

dP
denote respectively

the densities of P (resp. Q) with respect to Q (resp. P) (when dealing with
finite probability spaces, these are simply ratios of probabilities of elementary
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events, in more general contexts the existence of those densities follow from the
Radon-Nykodim Theorem). Let A denote any event,

P{A} = EP [ � A]

= EQ

[

dP

dQ
� A

]

≥ EQ

[

exp

(

− log
dQ

dP

)

� A

]

.

Proof. [Proof of Change of Measure Lemma] Let xn
1 be ε-typical. Then we

have:

Qn
Y {ρ (xn

1 , Y
n
1 ) ≤ n(D + ε)}

= EQn

Y

[

�
ρ(xn

1
,Y n

1 )≤n(D+ε)

]

= E⊗n

i=1
QY |xi

[

exp

(

−n
n
∑

i=1

1

n
log

QY |xi
{Yi}

QY {Yi}

)

�
ρ(xn

1
,Y n

1 )≤n(D+ε)

]

≥ (1 − 2ε) × |Y||(−
P

n

i=1
D(QY |xi

‖QY )−nε)

≥ (1 − 2ε) × |Y|(−nD(Q‖QX⊗QY )−nε)

≥ (1 − 2ε) × |Y|(−n(R(D)+ε)) ,

where we have used the second inequality in the Typicality Lemma which asserts
that with ⊗n

i=1QY |xi
-probability larger than 1 − ε,

−n

n
∑

i=1

1

n
log

QY |xi
{Yi}

QY {Yi}
≥ −

n
∑

i=1

D
(

QY |xi
‖QY

)

− nε.

�

Equippped with those two lemmata, we may now prove the Theorem.

Proof. [Proof of Direct Source Coding Theorem] Let Cndenote an arbitrary
collection of 2nRwords from Yn. The set Cn is often called a codebook. We asso-
ciate with Cn the following quantization procedure:

f(Xn
1 ) = arg min

Y n

1
∈Cn

ρ (Xn
1 , Y

n
1 ) ,

we are interested in upper-bounding the average distortion of this quantization
procedure:

EXn

1
[ρ (Xn

1 , f(Xn
1 ))] .

Rather than trying to construct explicitly a codebook Cn, we use a random-
ized selection procedure: Cn is built by picking independently 2nR words from
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Ynaccording to Qn
Y . In order to prove that there exists a codebook with average

distortion less than D + 2ε,it is enough to prove that when averaging with re-
spect to the codebook selection procedure, the average distortion is less than 2ε.
As codebooks and codewords are picked independently, using the Tonelli-Fubini
Theorem (if X and Y are not countable) or first principles (when X and Y are
countable) we have:

ECn

[

EXn

1

[

min
Y n

1
∈Cn

ρ (Xn
1 , Y

n
1 )

]]

= EXn

1

[

ECn

[

min
Y n

1
∈Cn

ρ (Xn
1 , Y

n
1 )

]]

We may now focus on a fixed xn
1 , and consider the average distortion between xn

1

and its reconstruction when the codebook Cn is picked at random. We have:

ECn

[

min
Y n

1
∈Cn

ρ (xn
1 , Y

n
1 )

]

≤ D∗ × PCn

{

min
Y n

1
∈Cn

ρ (xn
1 , Y

n
1 ) > D + ε

}

+ D + ε .

ECn

[

EXn

1

[

min
Y n

1
∈Cn

ρ (Xn
1 , Y

n
1 )

]]

≤ D∗×EXn

1

[

PCn

{

min
Y n

1
∈Cn

ρ (Xn
1 , Y

n
1 ) > D + ε

}]

+D+ε

In order to complete our program, we need to prove that for most words xn
1

PCn

{

min
Y n

1
∈Cn

ρ (xn
1 , Y

n
1 ) > D + ε

}

is small. Note that

PCn

{

min
Y n

1
∈Cn

ρ (xn
1 , Y

n
1 ) > D + ε

}

= (Qn
Y {ρ (xn

1 , Y
n
1 ) > D + ε})|Y|nR

= (1 − Qn
Y {ρ (xn

1 , Y
n
1 ) ≤ D + ε})|Y|nR

≤ exp
(

−|Y|nR Qn
Y {ρ (xn

1 , Y
n
1 ) ≤ D + ε}

)

.

Hence,

(6.6.1) ECn

[

EXn

1

[

min
Y n

1
∈Cn

ρ (Xn
1 , Y

n
1 )

]]

≤ D∗ × EXn

1

[

exp
(

−|Y|nR Qn
Y {ρ (Xn

1 , Y
n
1 ) ≤ D + ε}

)]

+ D + ε

and if with high probability with respect to the distribution of Xn
1 ,

|Y|nR Qn
Y {ρ (xn

1 , Y
n
1 ) ≤ D + ε}

is large, we will be in a good shape.

But,

|Y|nR Qn
Y {ρ (xn

1 , Y
n
1 ) ≤ D + ε} = |Y|(n(R+ 1

n
log Qn

Y {ρ(xn

1
,Y n

1 )≤D+ε})) .

We will now use the Typicality Lemma and the Change of Measure Lemma. If
xn

1 is ε-typical, then

Qn
Y {ρ (xn

1 , Y
n
1 ) ≤ D + ε} ≥ (1 − 2ε) × |Y|(−n(R(D)+ε)) ,
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And by the Typicality Lemma, this happens with probability larger than 1− 2ε.

We can use those two points to get

EXn

1

[

exp
(

−|Y|nR Qn
Y {ρ (Xn

1 , Y
n
1 ) ≤ D + ε}

)]

≤ 2ε+ |Y|(−(1−2ε)n(R−R(D)+2ε)) .

Plugging this last bound into Inequality (6.6.1), we get

EXn

1
[ρ (Xn

1 , f(Xn
1 ))] ≤ D∗ × (2ε+ exp (−(1 − 2ε)n (R − R(D) + 2ε))) + D + ε .

Taking ε so that ε(1 + 3D∗) < η and n sufficiently large so that such that
exp (−(1 − 2ε)n (R − R(D) + 2ε)) < ε,we get that the average distortion of the
random codebook with block-length n and binary rate R is less than D + η. �

The proof of the Direct Source Coding Theorem should be compared with the
proof of the direct part of the Lossless Source Coding Theorem. In the lossless
setting, we did not only prove the existence of entropy-achieving prefix codes, we
also provided computationally efficient encoding and decoding methods. More-
over, once the source statistics are known, computing the entropy was easy.

We will see later thate there are quite efficient algorithms that enable to compute
the rate-distortion function of a memoryless source. On the other hand we will
not be able to exhibit efficient general quantization procedures.
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