CHAPTER 8

Channel coding: capacity, random coding exponents

8.1. Channel coding problem

In the channel coding problem, we are interested in transmitting an element of
set of messages {1,..., M}, over a possibly unfaithful medium called a channel.
Concrete examples of channels may be provided by Hertzian channels that convey
mobile phones conversations, optic fibers carrying cableTV, cooper lines carrying
telephone conversations or IP traffic through ADSL techniques. As far as we are
concerned, channels will be modelled as transition probabilities.

A channel is defined by an input alphabet X and an output alphabet ), and
a conditional distribution Qy|x, where Qy|x{y | =} denotes the probability of
receiving y € )V when x € X has been transmitted. In this lecture, Qy x will
denote a channel. We will assume that input and output alphabets are finite.

Channels are not used in a single shot way. A sequence of input symbols 27 is
transmitted and a sequence of output symbols y" is received (one output symbol
is received for each input symbol). For the sake of simplicity, we will exclusively
deal with memoryless channels. The probability of receiving y" when 27 has been
transmitted is given by

[T Qvix{w: | @}
=1

Examples: The Binary Symmetric Channel (BSC) and Binary Erasure Channel
(BEC) provide two simple and useful examples of channels. The BSC with pa-
rameter p € [0, 1] has input and output alphabets equal to {0, 1}. The transition
probability is defined by:

Qy‘x{Y:SL’|I}:1—p
When facing a BSC, the receiver does not know with certainty which symbol was

sent.

The binary erasure channel has output alphabet {0, 1, e} and transition proba-
bility defined by

Qyx{Y=2|2}=1-p and Qyx{Y =c|z}=p forzec {01}
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When facing a BEC, if the receiver receives either 0 or 1, he knows for certain
that this was the transmitted symbol.

The channel coding problem consists in enabling reliable transmission of messages
over unreliable channels. In order to enable reliable information transmission,
we will use forward-error-correcting codes (FEC). FEC add redundancy to the
message so as to help the receiver

DEFINITION 8.1.1. [CHANNEL CODE| A channel code with block-length n is a
pair of mappings (f, ¢) where the coder f maps the set of messages {1,..., M}
toward X" and the decoder ¢ maps V" toward {1,...,M}. The rate R of the
code is defined as

1
n
The set of sequences f({1,...,M}) is often called the codebook or even the code.

The rate R of a FEC code is smaller than 1, it may be considered as the fraction
of information carrying symbols among transmitted symbols.

8.2. Channel codes and Errors

In order to assess the transmission capabilities of channels, we will deal with two
criteria that capture the error-correcting capabilities of FEC codes. The first one
will prove useful when proving positive results.

DEFINITION 8.2.1. [AVERAGE ERROR OF A CHANNEL CODE]| Let (f, ¢) denote
a forward error correcting code with block-length n, the average of (f, ) over
channel Qy|x is equal to

Zwe{l,...,M}% Qi1 @Y|X {w#o(Y") | 27 = f(w)} .

But communication engineers cannot be happy with a FEC code that has only
low average error. The communication engineer has no control on the messages
that are actually transmitted through the channel. From a realistic viewpoint,
what matters is the following criterion.

DEFINITION 8.2.2. [MAXIMAL ERROR OF A CHANNEL CODE]| Let (f, ¢) denote
a forward error correcting code with block-length n, the maximal error of (f, ¢)
over channel Qy x is equal to

max @, Qypx {w # 6(V7") | 27 = (@)} -

we{l,...,M}

The main goal of channel coding is to design codes with high rates and small
maximal error for given channels.
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DEFINITION 8.2.3. [ACHIEVABLE RATE OVER A CHANNEL| Rate R is achievable
over channel Qy xif and only if there exists a sequence (f,,#,) of FEC codes,
each with block-length n, limiting rate R and vanishing maximal error. The
supremum over all achievable rates defines the limiting reliable transmission ratio
of the channel.

The limiting reliable transmission ratio over a channel is defined in an operational
way. As usual in Information Theory, we will first attempt to characterize this
operationally defined quantity as the solution of an optimization problem. The
quantity that will arise from this endeavor is the capacity of the channel. The rest
of this Lecture is dedicated to the proof of the Noisy Channel Coding Theorem.

DEFINITION 8.2.4. [CAPACITY OF A MEMORYLESS CHANNEL| Let a memory-
less channel with input alphabet X and output alphabet ) be defined by the
transition probability Qy|x, then the capacity of the channel is defined as

C 2 sup [ (@X;QY\X) = sup EQX [D (@Y|X”EQX [QY\XD] :

QxeM(X) QxeMy (X)

Recall that, as a function on the convex and compact set9t;(X'), the functional
1 (';Qy‘ X) is concave and continuous. Hence the supremum in the definition
of C is achieved by some distribution (sometimes called the capacity-achieving
distribution, see Lemma 8.2.6 for a characterization).

In order to enable full comparison with the rate/distortion function of a source,
we may define the capacity under input constraints. Let p denote a function that
maps X on the reals.

DEFINITION 8.2.5. [CAPACITY UNDER INPUT CONSTRAINTS| Let a memoryless
channel with input alphabet X and output alphabet ) be defined by the transi-
tion probability Qyx, then the capacity of the channel under p-constraint B is
defined as

C(B) 2 sSup I(QX§@Y|X)
Qx €M (X),Eq [p(X)]<B
= Sup Eox [D (QY|XHEQX [QY\XD} :

Qx €M (X),Eq [p(X)]<B

The following Lemma characterizes the capacity achieving input distribution.

LEMMA 8.2.6. [CAPACITY ACHIEVING INPUT DISTRIBUTIONS| The distribution
Qx achieves capacity C over the channel Qy|xif and only if:

=C if Qx{z} >0
<C ifQx{z}=0.
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This Lemma asserts that under the capacity achieving input distributions, all
conditional output distributions are at the same “Information distance” of the
marginal output distributions. This is why the capacity is sometimes called the
information radius of the channel.

The proof of the Lemma relies on some of the arguments that led to the algorithm
for computing the rate-distortion function of a memoryless source. As a matter
of fact, the channel capacity can also be characterized as a saddlepoint.

PROOF. As

I(Qx;Qyx) = inf Eg, [D(Qyx | Qy)]

Qy eM (V)
we get (for example from Sion Minmax Theorem) the following saddlepoint char-
acterization
C= su inf [Eq, |D = inf max [Eq. |D .
Oncom) Qrem ) X D (Qvix | @v)] Qvem (V) QxeMh(x) X D Qx| Qr)]
Moreover, as the sets 21, (X’) and 91;()) are compact (for all usual topologies)
the infimum is attained for some probability @)} € 9t,()). Then

Egx [D (Qvix | Q3)]
is maximized by choosing Qy in such a way that Qy puts all its weight on those
x € X that maximize D (Qyx(- | X =) | Q}). The latter (random) quantity
is constant (and equal to C') on the support set of the optimal input distribution
Q- 0

8.3. Channel coding theorem: Weak converse

As usual, the channel coding theorem is made of two parts: a direct part that
asserts that provided the code rate does not exceed the channel capacity and
block-length is sufficient, arbitrarily low decoding error can be achieved; and a
converse part asserting that, if the code rate exceeds the channel capacity, what-
ever the block-length, arbitrarily low decoding probability cannot be achieved. As
a matter of fact, there are two kinds of converses, a weak converse which we have
just mentioned, and a strong converse which is much more subtle. The strong
converse asserts that if code rate exceeds channel capacity, then as block-length
increases, decoding error probability converges to 1.

We will first establish the weak converse. The latter is interesting per se even
though it is weak, moreover its proof relies on a technical Lemma known as Fano’s
inequality. This Lemma has proved to be a very simple and valuable tool when
dealing with multiple hypothesis problems and more generally when trying to
prove negative results in statistical inference. For example, it can be used to
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prove lower bounds on redundancy in universal source coding. Here follows a
simple version of this Lemma.

LEMMA 8.3.1. |[FANO INEQUALITY| Let X and Y denote two random variables
with finite support set X, then we have

H(X | Y) S P{X #Y}log(|X] = 1)| +h (P{X £V}

where h(z) = —zlogz — (1 — z)log(l — z).

PROOF. Let Z denote the boolean random variable defined by Z = 1x.y. As
Z is a function from X and Y:
HX|Y) = HX,Z|Y)
= HZ|Y)+HX|Y,Z)
HZ)+P{Z=0} xHX |Y,Z=0)+P{Z =1} xHX|Y,Z
H(Z)+P{X # Y} x log(|X] - 1),

IA A

where the second equation comes from the chain rule for entropy, the first in-
equality from the fact that conditioning may only decrease entropy, the second
inequality comes from the fact that conditionally on Z = 1, the conditional en-
tropy of X with respect to Y is less than log(|X| — 1) O

LEMMA 8.3.2. [Data-processing Lemmal| If XY, andZ are three random vari-
ables with joint distribution P such that Pz xy = Pzyy then

I(X;2) < I(X:Y).

PrOOF. Let X,Y, and Z be three random variables satisfying the conditions
of the Lemma. We will first prove that

Pxyy,z = Pxyy .

For any tuple z,y, z, such that P{x,y,z} = P{X =2,Y =y, Z =z} > 0, we
have
P{z,y, =}

Ply,z}
Pxy{z,y} Prixy{z | =y}

Py{y} Pzy{z | y}

Pxy{z, y}

Py{y}

= Pxy{z|y}.
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The proof of the data-processing Lemma is now straightforward.

I(X;Y) =

Ep, [D(Pxpy | Px)]
Ep, [D(Pxv,z | Px)]
Ep, ,[D(Pxyv,z | Px)]

(X)—H(X|Y,Z)
(X)—H(X | Z2)
I(X; 7).

H
H

v

U

THEOREM 8.3.3. [WEAK CONVERSE TO THE CHANNEL CODING THEOREM]| Let
Qy|x denote a memoryless channel with capacity Cthen for any e > 0, for any
family (f,, &n) of channel codes with rate R > C, and block-length n, this family
of codes cannot achieve arbitrarily low average decoding error probability.

PROOF. Let us consider the two random variables X7 which is uniformly

distributed over the codebook C, and X7 2 f(o(Y(")), that is the codeword
corresponding to the output of the decoder. The decoding error coincides with

the probability that X' # X{‘. From the Fano Inequality, we have (recall that e
denotes the decoding error probability):

H(X?| X" < H(e)+elog|C,| = H(e) +ne R.
On the other hand

H(X7|X7) = H(XP) - (X7 X7)

— R - I(XTXD)
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while

(X7 X)) < I(X7Y)
= H(Y{")—-H(Y"|X7)
= ZH(Yi | Vi — H(Y; | XYY

< ZH H(Y; | Xryi—t
= ZH H(Y; | X))
= Z[(Xz‘;yi)

nC',

IN

where the first inequality comes from the data-processing Lemma, the first equa-
tion matches the definition of mutual entropy, the second equation comes from
the chain rule, the second inequality comes from the fact that conditioning does
not increase entropy, the third equality from the fact that conditionally on Xj,
Y; is independent from X}, X7, and Y{ .

Combining the three preceding results we get
n(R—C) < H(e) + neR,

that is
R n

If R > C, then the decoding error probability e has to remain bounded away from
0. O

EXERCISE 8.4. [THE RISSANEN LOWER BOUND IN UNIVERSAL CODING| Recall
the universal coding problem from Lecture II. Let © denote a set of probability
distributions on X”. Assume © may be provided with the structure of a proba-
bility space. The maximin prior distribution ji, is the distribution over © which

maximizes
Py { X7
308 [B s x|

Check that i is the distribution on parameter space that maximizes the mutual
information between parameter and sample.
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8.5. Channel coding Theorem: direct part

Just as for the Lossy Source Channel Coding Theorem, the proof of the direct
part is non-constructive, it proceeds by a random selection argument. A dis-
tribution on the input alphabet Qx, a block-length n and a rate R are given
and a codebook C, is built by picking independently M = |X|"™R words from
X" according to Q%", note that the construction does not require that Qx coin-
cides with the capacity achieving distribution. It is just optimized by using the
capacity-achieving distribution.

Once the codebook is C, is built, the encoding procedure is straightforward:
message m € {1,..., M} is encoded by the mth codeword in the codebook. The
decoding procedure we will consider is called Maximum Likelihood decoding. For
every yi € V", if the codebook is C,, then the decoded codeword is

LA .
m = arg min @, Qyx{y; | mi} .
meCn,

Henceforth, we will use the following notion.

DEFINITION 8.5.1. [RANDOM CODING EXPONENT| The random coding exponent
for coding distribution Qx at rate R is defined as

RC(Qx,R) = max |—log Z[Z@X{x}{@m{y}}ﬁ] — sR

s€[0,1] yeYy LzeXx

LEMMA 8.5.2. For any coding distribution Qx the random coding exponent at
rate R is positive if and only if

I(Qx {=}; Qv {¥}) > R.

PROOF. First note that for s = 0,

—log Z [ZQX {z} { Qv {y}}rls] —sR=0,

yeY LzeXx

hence the random coding exponent is always non-negative. In order to prove that

the random coding exponent is positive, it is enough to check when the derivative
of

—log Z [Z Qx {z} {@ch {?/}}l_}rs]
yeYy LzeXx

with respect tos is larger than R at s = 0.
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Let us now compute this derivative:

[Zx Qx {z} {@ch {?/}}I_}rs] o
yey Eyey [Ezex Qx {z} {@Y\x {y}}ﬁ} i

L1 Y Ox (o} {Qve {5} T log Qi {1}
Lts v ox{a} {Qui {y}} ™

For s = 0, this derivative turns out to be equal to

¥ [z Ox {2} {0 {y}}]

yey T

(1| St (@ | - Z%f{}x{}%i b s 1)

log [Z Qx {2} {Que (13} ™

Qv {y}

ZQX {w}z@wx whlog 5 7 %

=1 (QX§QY|¢) .

Hence, if 1 (QX;QY‘QC) > R, the random coding exponent RC(Qx, R) is positive.
In order to show that the random coding exponent is positive if and only if
I (Qx;Qys) > R, it is enough to check that

1+s

—log Z ZQX{I‘}{QYM{?/}}TIFS

yey LzeX

is concave with respect to 1 + s, or that the second derivative of this function is
negative.

In order to prove the concavity with respect to s, it is enough to resort to Hélder
inequality. Indeed let s = 0s; + (1 — 0)sy with 6 € [0,1] and s1, 52 € [0, 00].Then

S S 51 S S9

and letting 1 = 0s;/s, we have
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Hence for each y € ), by Holder inequality

> @ (o} {Qr {y}}%r

- 2}( Qx {2} {Qvpe {y}}s’“*@”r

< _;@x {2} { Qv {y}}sll_ ) Lze;@x {2} {Qva {y}}él(lu)s
- z)j( Qx o} {0 {1} | [z;{ Qx {2} {Qvis {y}}%] o

Applying Holder inequality again,

Os1 (1-6)s2
> [Z Qx {2} {Qva {y}}‘“] [Z Qx {z} {Qyp {y}}w]

s1\ 0 o (1-0)
< (2 |Sevi @] ) (T[Seceenm?| )

Combining those two inequalities, we get for s = fs; + (1 — 0)so with 0 € [0, 1]
and sy, s2 € [0, 00].

—log (Z [Z Qx {2} { Qv {y}}ﬁ] ”S)

yey LzeX
> —0log (Z [Z Qx {2} {Qvx {y}}i] )
Yy reX
— (1 —0)log (Z [Z Qx {2} {Qva {y}}%] ) :
Yy reX
which is exactly what we were looking for. U

THEOREM 8.5.3. [DIRECT CHANNEL CODING THEOREM]| Let the random code-
book be constructed by using distribution Qx on the input alphabet, block-length
n, and rate R.

Under the mazimum likelihood decoding rule the average error of a random code
with rate R is upper-bounded by

exp (—nRC(Qx, R)) .
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PROOF. In this proof all logarithms are defined with respect to base | X|,log b 2
log x| b-

Assume the first message is transmitted, that is the channel is fed with m (1), ..., mi(n),
the maximum likelihood decoding rules errs if there exists a message my(1), ..., me(n)
with ¢ > Isuch that

- QY‘m[ {yz}
Zl QY\ml {yz}

that is, if message my looks more likely than message m, given the channel output

>0

y17 "’7y77/ N

Under the maximum likelihood decoding rule the average error of a random code
is equal to the decoding error probability when the first message is transmitted:

= @Y|mg(z {yl}
e=E g Q5 (i max g lo >0
Cr 1QY| 1) { & Qyimo (Ui} QY|m1 {yz}

yreyn

We will refrain from applying a naive union bound. Now let s denote any number
between 0 and 1, and A denote any positive quantity. Then we have

e = 3 Y Q¥ im} el Qe u} | Y ©2LQF {mi}1

YreEYT meX" Lma,...mas

Yoo QY {mi} @ Quime {n} | D @1LQF {mi} 1

YyPEY™ myEX™ Lm2,...mp

f

IN

-

IN

O 1Qy |, (i) {¥i}
O 1Qy |y (¢) {vi}

IQY\ml(z){yZ}

1@Y‘mg

Yo > OF {mi} ®L Qv {yi} > @y {mg}max{

YyPEY™ m1EX™ Lm2,...mp

< MY QY (i) (B Qvime (wi})

yrEY™ miex™

ma2

where the equation follows by rearranging summations, the first inequality follows
from the fact that = € [0, 1] implies 2° > x as s < 1, the second inequality comes
from Markov inequality and the union bound, the last inequality comes from the
exchangeability of codewords meo, ... my,.

Now taking A\ = 1%8 and using first the fact that m; and m. are identically
distributed, and then the fact that we deal with product distributions:
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1+s
1
e < MY [Z QX" {m} {11 Qvima {yz‘}}”s]
yreyn Lmexn

< M Z [Z Qx {z} { Qv {?/}}I_}rs]
yeY LzeXx

In other terms:

loge < slog M + nlog Z [Z Qx {2z} {Qypz {y}}rls]

yeY LzeXx

Define A(s, Qx) by:

A(s,Qx) = —log Z [Z Qx {2} {Qva {?/}}#]

yeY LzeX
The last inequality translates into

loge < —n sup (—sR+A(s,Qx)) = —nRc(Qx,R).
s€[0,1]

8.6. Channel coding: Strong converse

The following result completes the weak converse that was derived from the Fano
inequality.

THEOREM 8.6.1. [STRONG CONVERSE, WOLFOWITZ| For any memoryless chan-
nel with alphabets X and Y and capacity C, for any family (f., ¢,) of block codes
with block-length n and rate R > C, the block-error probability tends to 1 as as n
goes to infinity.

PROOF. Let € satisfy ¢ > R — C.

Let Qx denote the input probability that achieves capacity. Then for any symbol
x € X we have (from Lemma 8.2.6)

Eqy [Qyix{Y'}]
Class notes S. Boucheron 12 January 11, 2005
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We assume that all M = |X|"™® messages have the same probability. Y"is di-
vided into M = |X|"R decoding regions: F\, ..., Ey (note that those regions are
pairwise disjoint). If y* € E, then ¢(y}) = r. Let A, denote the event:

n.o N~ Ly Qie{yilme )
{y1 : zi:nlog B (Qrxuil] C+e} .

Let us denote by Qy the probability distribution over )’ defined by
Qviy} = Z Qx{z} Qvix{y | 2} = Eq\ [Qvix{y}]-
zeX

Correct decoding occurs in two settings: in A, N E, and in A N E,when the
rthcodeword m,is transmitted.

Note first that U, A° N E,has probability less than |X'|((C+e=R),

1
S D Gy v | Fa()} Lases,

1yeees Yn

1 n n €
S Z M Z @%’ {ylu-"7yn} |X| (C+)1E’T
T y

1000y Yn

IA

n € 1 n 1
x| (C+)M Z QY {y1, s Yn} [Z M]-Er{yl-..ym}]
YlseensYn T

1
S |X|n(C+E)M Z Q%n {yla"'ayn}
Ylyeey Yn

1
_ |X|n(C+e)_ — ‘X‘n(C+67R) )
M

The probability of A, given that m,is transmitted is upper-bounded by the proba-
bility that a sum of n independent random variables with expectation less than C'
and variance bounded by some constant v is larger than n(C + ¢). By Chebyshev
inequality this is less than

ve % /n.
Hence the probability of correct decoding is upper-bounded by

x| (CHeR)
ne?

This quantity goes to 0 as n goes to infinity. ]

Note that we have just proved that if the rate of a family of codes exceeds the
channel capacity, then for sufficiently large block-length, for at least one half
of the messages the conditional probability a decoding error (conditioning on
the fact that the channel is fed with codeword corresponding to those messages)
exceeds one half.
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8.7. Channel coding: Sphere packing exponents

Once equipped with the strong converse, it is possible to use a version of the
change of measure argument to derive a lower bound on the probability of error
when large blocklengths are considered.

DEFINITION 8.7.1. Given a word x1,...x,0on alphabet X, the type of 1, ..., x, is
the probability P on X defined by

P{a} = % i 1.—a
i=1

for all a € X.

As the type of a word of length n is completely defined by a mapping from X" on
{0, ...,n}, the words of length n on X define at most (n + 1)I*! different types.
Hence if we consider a codebook of size |X|"R there exist at least one type P
such that not less than (n 4 1)~/*1|X|"R codewords have type P.

Given a family of codes (f,,®,), with rate R, it is thus possible to define a
family of codes (f},#n)n such that for each n, there exists a type P, which
is the common type of all codewords of length n, and with rate not less than
R —|X[logy(n +1)/n.

Using the compactness of the set of probabilities over X, it is possible to extract
a sub-family of codes with (asymptotic) rate R, codewords of length n sharing a
common type P, and the sequence P, converging to some probability P.

THEOREM 8.7.2. [SPHERE-PACKING BOUND| Assume that Qy|x defines a mem-
oryless channel with capacity C, let (f,, ¢n)denote a sequence of codes with block-
length n and limiting rate R < C', and limiting codeword type P then the sequence
of maximum decoding error probabilities e, satisfies:

1
lim —loge, = — inf Ep [D (Qyxl|Qvix)]

non Y|X

where Q'Y‘ 18 chosen among channels with capacity less than R.

The proof proceeds by “change of channel” arguments that are closely related to
the change of measure arguments used when proving the lower bound in large
deviations principles (and that already proved useful when deriving the direct
part of the lossy source coding theorem).
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PROOF. Let Q’Y‘ be chosen among memoryless channels with capacity strictly

less than R. For each n, let m, € {1,...[|X|"R |}. Let A, denote the event that
m is not recovered after transmission of f,,(m,,).

n n ®?: @YX
@i Qvix {@n(Y7") # m | fu(mn)} = E@?:l(@’y‘x n 1@/ | ]]‘An]
=1y |x

®?:1@,YX) }
= E n / €X _10 " Oy Il '
@7, Qy x |: p ( & ®?:1QY\X .

Now observe that by the strong converse to the Noisy Channel Coding Theorem,
for n sufficiently large, for at least half of the codewords, under ®?:1Q'Y‘ v An is
realized with probability larger than 1/2.

! ®?:1Q/Y\X
On the other hand under ®;_, Q- , log B Oy ix

necessarily identically distributed) bounded random variables. Its fluctuations
around its expectation can be handled using Bienaymée-Chebychev inequality:
for n sufficiently large, with probability larger than 1 — ¢,

1 R, Q'yix
1Y|X n g ®?:1@Y|X

where V' is a constant that depends only on Qyx, @g/| x and Qy|x.
(1/4) exp (—n (Eqx [D (Qyx [ Qvix)] +¢))

is a sum of independent (but not

%4 1
< —Eqy [D(Qyix | Qvix)] — 6} S35
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