Nicolas Sendrier

Majeure d'informatique

Introduction la théorie de l'information

Cours n°6

Capacité d'un canal – Second Théorème de Shannon

Canal discret sans mémoire

Définition Un canal discret est défini par la donnée de

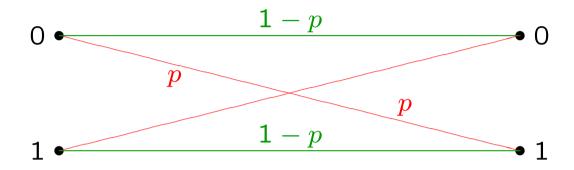
- un alphabet d'entrée $X = \{a_1, \dots, a_K\}$
- un alphabet de sortie $Y = \{b_1, \dots, b_J\}$
- une loi de transition ${\cal P}_{Y|X}$, i.e. une matrice stochastique

$$\Pi = \begin{pmatrix} P(b_1 \mid a_1) & \dots & P(b_J \mid a_1) \\ \vdots & \ddots & \vdots \\ P(b_1 \mid a_K) & \dots & P(b_J \mid a_K) \end{pmatrix}$$

Nous parlerons du canal $\mathcal{T} = (X, Y, \Pi)$.

Le canal est sans mémoire si la loi de transition est constante au cours du temps. Nous étudierons principalement les canaux sans mémoire.

Exemple – Canal binaire symétrique

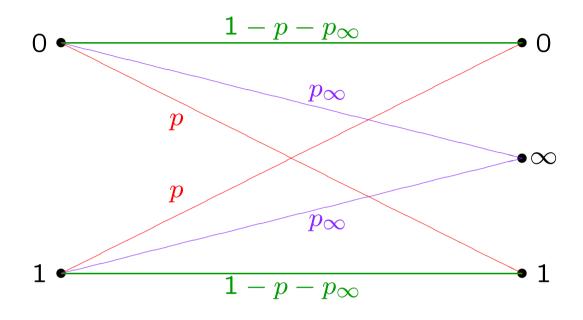


La matrice stochastique est

$$\left(\begin{array}{cc} 1-p & p \\ p & 1-p \end{array} \right).$$

p est appelé probabilité de transition ou probabilité d'erreur du canal.

Exemple – Canal binaire symétrique à effacement



$$\Pi = \left(\begin{array}{ccc} 1 - p - p_{\infty} & p_{\infty} & p \\ p & p_{\infty} & 1 - p - p_{\infty} \end{array}\right).$$

Capacité

La capacité d'un canal est la quantité maximale d'information pouvant transiter à travers le canal par unité de temps. Autrement dit :

Quelle quantité d'information puis-je obtenir au maximum sur X en observant Y?

Cette quantité est l'information mutuelle moyenne de X et Y, et le maximum est pris par rapport à la seule chose susceptible de changer : la loi d'émission.

$$C = \max_{x \mapsto P(x)} I(X; Y)$$

On remarquera que I(X;Y) peut s'écrire en fonction des seules lois de transition et d'émission :

$$I(X;Y) = \sum_{x,y} P(y \mid x) P(x) \log_2 \frac{P(y \mid x)}{P(y)}$$
 et $P(y) = \sum_x P(y \mid x) P(x)$.

Canaux symétriques

Définition Un canal discret est dit *fortement symétrique* si les lignes et les colonnes de sa matrice stochastique sont égales à une permutation près.

Définition (Décomposition d'un canal) Nous dirons que le canal $\mathcal{T}=(X,Y,\Pi)$ se décompose en une combinaison des canaux $\mathcal{T}_i=(X,Y_i,\Pi_i)_{1\leq i\leq L}$, si les Y_i sont disjoints et s'il existe des nombres réels positifs $q_1+q_2+\ldots+q_L=1$ tels que $\Pi=\left(\begin{array}{c|c}q_1\Pi_1&\cdots&q_L\Pi_L\end{array}\right)$. Nous noterons formellement

$$\mathcal{T} = \sum_{i=1}^{L} q_i \mathcal{T}_i$$

Définition Un canal discret est dit *symétrique* s'il se décompose en une combinaison de canaux fortement symétriques.

Capacité d'un canal symétrique (1)

Nous allons utiliser l'identité

$$I(X;Y) = H(Y) - H(Y \mid X).$$

L'entropie conditionnelle $H(Y \mid X)$ ne dépend que du canal.

$$H(Y \mid X) = -\sum_{x,y} P(x,y) \log_2 P(y \mid x)$$
$$= -\sum_{x} P(x) \sum_{y} P(y \mid x) \log_2 P(y \mid x)$$
$$= -\sum_{x} P(x) H(\Pi) = H(\Pi)$$

où $H(\Pi) = \sum_y P(y \mid x) \log_2 P(y \mid x)$ est indépendant de x dans un canal symétrique. Et donc

$$C = \max(H(Y) - H(Y \mid X))$$
$$= \max(H(Y)) - H(\Pi)$$
$$\leq \log_2 |Y| - H(\Pi).$$

Capacité d'un canal symétrique (2)

Proposition La capacité d'un canal fortement symétrique est atteinte pour une loi d'émission uniforme et vaut

$$C = \log_2 |Y| - H(\Pi)$$

Proposition Soit $\mathcal{T}=q_1\mathcal{T}_1+\ldots+q_L\mathcal{T}_L$ un canal symétrique. Sa capacité est atteinte lorsque la loi d'émission est uniforme et vaut

$$C = \sum_{i=1}^{L} q_i C_i$$

où les C_i sont les capacités des canaux fortement symétriques \mathcal{T}_i .

Exemples

Capacité du canal binaire symétrique :

$$C = 1 + H_2(p)$$

Capacité du canal binaire symétrique à effacement :

$$C = (1 - p_{\infty}) \left(1 + H_2 \left(\frac{p}{1 - p_{\infty}} \right) \right)$$

$$H_2(x) = -x \log_2(x) - (1-x) \log_2(1-x)$$

Codage de canal

Nous considérons un canal discret $T = (X, Y, \Pi)$

Définition Un code en bloc de longueur n et de cardinal M est M séquences de n lettres de X. Nous parlerons de code (M,n). Le taux de transmission d'un code est égal à

$$R = \frac{\log_{|X|} M}{n} \le 1$$

Un code va permettre de « coder » une quantité d'information égale à $\log_2 M$ bits. En pratique un code binaire (|X|=2) de longueur n et de cardinal $M=2^k$ transforme un bloc de k bits d'information en un bloc de n symboles binaires, dans ce cas R=k/n.

Un codeur est une procédure qui associe à toute séquence binaire finie une séquence finie de lettres de X.

Exemples

Code à répétition de longueur 3

$$C = \{000, 111\}$$

Code de parité de longueur 4

$$C = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}$$

Code de Hamming de longueur 7

$$C = \{0000000, 1101000, 0110100, 0011010, 0001101, 1000110, 0100011, 1010001, 1111111, 0010111, 1001011, 1100101, 1110010, 0111100, 0111100, 0101110\}$$

Performance d'un code – Décodage

Soit \mathcal{C} un code en bloc (M,n) utilisé dans un canal discret (X,Y,Π)

Définition Un *algorithme de décodage* de C est une procédure qui a tout bloc de n lettres de Y associe un mot de code de C.

L'événement « mauvais décodage » pour un algorithme de décodage et un canal donné est défini par :

Un mot de code $\mathbf{x} \in \mathcal{C} \subset X^n$ est transmis à travers le canal, le mot $\mathbf{y} \in Y^n$ est reçu et est décodé en $\tilde{\mathbf{x}} \neq \mathbf{x}$.

Définition Le *taux d'erreur* de C (dans le canal considéré) noté $P_e(C)$ est le minimum de la probabilité de mauvais décodage pour tous les algorithmes de décodage.

Second théorème de Shannon

Théorème Soit un canal discret sans mémoire de capacité C. Pour tout R < C, il existe une suite de codes en bloc $(\mathcal{C}_n(M, n))_{n>0}$ de taux de transmission R_n telle que

$$\lim_{n\to\infty} R_n = R \quad \text{et} \quad \lim_{n\to\infty} P_e(\mathcal{C}_n) = 0$$

Théorème (réciproque) Soit un canal discret sans mémoire de capacité C. Tout code \mathcal{C} de taux de transmission R>C vérifie $P_e(\mathcal{C})>K(C,R)$, où K(C,R)>0 dépend du canal et du taux de transmission mais est indépendant de la longueur du code.

AEP conjointe

Définition Ensemble des séquences typiques conjointes

$$A_{\varepsilon}^{(n)} = \left\{ (\vec{x}, \vec{y}) \in \mathcal{X}^n \times \mathcal{Y}^n, \left| \frac{1}{n} \log_2 \frac{1}{P(\vec{x})} - H(X) \right| \le \varepsilon, \right.$$
$$\left| \frac{1}{n} \log_2 \frac{1}{P(\vec{y})} - H(Y) \right| \le \varepsilon, \left| \frac{1}{n} \log_2 \frac{1}{P(\vec{x}, \vec{y})} - H(X, Y) \right| \le \varepsilon \right\}$$

Le processus $X \times Y$ vérifie l'AEP conjointe si

$$\forall \varepsilon > 0, \lim_{n \to \infty} \Pr(A_{\varepsilon}^{(n)}) = 1.$$