Validation for scientific computations properties that can be established in floating-point arithmetic

Cours de recherche master informatique
Nathalie Revol
Nathalie.Revol@ens-lyon.fr

13 octobre 2006

IEEE-754 Floating-Point Arithmetic : Sterbenz lemma

Let a and b be two positive floating-point numbers. If

$$
\frac{a}{2} \leq b \leq 2 a
$$

then $a-b=a \ominus b$.
In other words, $a-b$ is exactly representable in floating-point arithmetic.

IEEE-754 Floating-Point Arithmetic : another provable property

With rounding to nearest.
If we compute using FP arithmetic

$$
z:=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

can we prove that $-1 \leq z \leq 1$?
Can we compute $t=\sqrt{1-z^{2}}$ without getting a NaN ?

IEEE-754 Floating-Point Arithmetic : another provable property

With rounding to nearest.

If we compute using FP arithmetic

$$
z:=\frac{x}{\sqrt{x^{2}+y^{2}}},
$$

can we prove that $-1 \leq z \leq 1$?
Can we compute $t=\sqrt{1-z^{2}}$ without getting a NaN ?

The answer is yes.

Computing the roundoff error using FP operations addition and subtraction

Theorem :

for any pair (x, y) of FP numbers and for rounding to nearest, there exists FP numbers r_{+}and r_{-}such that

$$
\begin{aligned}
& r_{+}=(x+y)-(x \oplus y) \\
& r_{-}=(x-y)-(x \ominus y)
\end{aligned}
$$

Furthermore, r_{+}and r_{-}can be computed using FP operations.

Computing the roundoff error : + and -

Why with "rounding to nearest" only?
Counterexample for directed rounding with basis 2 and at least $p>4$ bits of mantissa, let's take

$$
\begin{aligned}
& x=-\left(2^{2 p}+2^{p+1}\right) \\
& y=2^{p}-3
\end{aligned}
$$

then we have

$$
\begin{array}{lll}
x+y & =-2^{2 p}-2^{p}-3 & \\
x \oplus y & =-2^{2 p} & \\
(x+y)-(x \oplus y) & =-2^{p}-3 & \text { not representable. }
\end{array}
$$

Computing roundoff errors using FP operations : +

Let x and y be two normal FP numbers such that $|x| \geq|y|$ and the rounding mode be to nearest. Let also assume that $x \oplus y$ does not overflow.

$$
\begin{aligned}
\text { Algo Fast2Sum : } & s=x \oplus y \\
z & =s \ominus x \\
r & =y \ominus z
\end{aligned}
$$

The mathematical equality holds :

$$
s+r=x+y
$$

i.e. r is the roundoff error on the addition of x and y. Beware of the optimizations done by your compiler. . .

Proof of Fast2Sum

$$
\text { Algo Fast2Sum : } \quad \begin{aligned}
s & =x \oplus y \\
z & =s \ominus x \\
r & =y \ominus z
\end{aligned}
$$

- if x and y have the same sign : then $x \leq x+y \leq 2 x$ thus $x \leq s \leq 2 x$ s since $2 x$ is representable and since the rounding mode is monotonic. By Sterbenz lemma, z exactly equals $s-x$.
Since $(x+y)-s$ is exactly representable, then $r=(x \oplus y) \ominus s=(x+y)-s$ and since $y-z=r$, then $b \ominus z=r$ exactly.

Proof of Fast2Sum

- if x and y have opposite signs :
- either $|y| \geq \frac{1}{2}|x|$ and Sterbenz lemma applies : $x \oplus y$ is exact, i.e. $s=x+y, z=b$ and $r=0$;
- or $|y|<\frac{1}{2}|x|$ and thus $|x+y|>\frac{1}{2}|x|$.

This implies that $|s| \geq \frac{1}{2}|x|$, since $\frac{1}{2}|x|$ is representable and rounding is monotonic, then Sterbenz implies that $z=s \ominus x=s-x$ exactly. Since $(x+y)-s$ is exactly representable, then $r=(x \oplus y) \ominus s=$ $(x+y)-s$ and since $y-z=r$, then $b \ominus z=r$ exactly.

This algo is also correct under the weaker assumption that the exponent of $x \geq$ the exponent of y.

Computing roundoff errors using FP operations : +

To avoid comparing x and y (a comparison can be costly), let us use

$$
\begin{array}{ll}
\text { Algo TwoSum : } \quad \begin{array}{l}
s=x \oplus y \\
y^{\prime}
\end{array}=s-x \\
x^{\prime}=s-y^{\prime} \\
\delta_{y}=y-y^{\prime} \\
& \delta_{x}=x-x^{\prime} \\
r & =\delta_{x}+\delta_{y}
\end{array}
$$

The mathematical equality holds : $s+r=x+y$
i.e. r is the roundoff error on the addition of x and y.

Computing roundoff errors using FP operations : \times

x, y two normal FP nbs, rounding to nearest, $x \otimes y$ does not overflow.
Theorem : $r=(x \times y)-(x \otimes y)$ is representable.
Denote by $s=\left\lceil\frac{p}{2}\right\rceil$.
Algo TwoMult : $\quad x^{\prime}=x \otimes\left(2^{s} \oplus 1\right)$
(aka Dekker) $\quad x_{h}=\left(x \ominus x^{\prime}\right) \oplus x^{\prime}$
$x_{l}=x \ominus x_{h}$
ibid. for y
$r_{h}=x \otimes y$
$r_{l}=\left(\left(\left(x_{h} \otimes y_{h} \ominus r_{h}\right)\right.\right.$
$\left.\left.\oplus x_{h} \otimes y_{l}\right) \oplus x_{l} \otimes y_{h}\right)$
$\oplus x_{l} \otimes y_{l}$

The mathematical equality holds:

$$
r_{h}+r_{l}=x \times y
$$

i.e. r_{l} is the roundoff error on the multiplication of x and y.

17 operations : $7 \otimes$ and $10 \pm$.

Computing roundoff errors using FP operations : \times

Let x and y be two normal FP numbers and the rounding mode be to nearest. Let also assume that $x \oplus y$ does not overflow.
If a fma is available : fused multiply-add, it computes the rounding of $(a \times b+c)$.

$$
\begin{aligned}
\text { Algo TwoMultFMA : } & r_{h}=x \otimes y \\
& r_{l}=\operatorname{fma}(x, y,-r)
\end{aligned}
$$

The mathematical equality holds :

$$
r_{h}+r_{l}=x \times y
$$

i.e. r_{l} is the roundoff error on the multiplication of x and y.

