Validation for scientific computations Error analysis

Cours de recherche master informatique
Nathalie Revol
Nathalie.Revol@ens-lyon.fr

20 octobre 2006

References for today's lecture

Condition number:

- Ph. Langlois: HDR (LIP, 2001) and chapter in A. Barraud et al.: Outils d'analyse numérique pour l'automatique, Hermes, 2002
- N.H. Higham: Accuracy and stability of numerical algorithms, SIAM, 1996 (1st edition)
- P. Lascaux and R. Théodor: Analyse numérique matricielle appliquée à l'art de l'ingénieur, Masson, 1993 (2nd edition)

Forward and backward analyses:

- Ph. Langlois: HDR (LIP, 2001) and chapter in A. Barraud et al.: Outils d'analyse numérique pour l'automatique, Hermes, 2002
- N.H. Higham: Accuracy and stability of numerical algorithms, SIAM, 1996 (1st edition)
- A. Neumaier: Introduction to numerical analysis, Cambridge University Press, 2001

Definition of well-posed problem and ill-posed problem

Problem \mathcal{P} :

compute

$$
y=f(x)
$$

where x : input, y : output or result.
It can also be given implicitely:

$$
F(x, y)=0 \text { or } x=F(y) .
$$

Definition of well-posed problem and ill-posed problem

Well-posed problem \mathcal{P} :

$y=f(x)$ exists, is unique and depends continuously of x.
If the problem is given as $x=F(y)$, this means that $F^{-1}(x)$ exists, is unique and F^{-1} is continuous.

If the problem is not well-posed, then it is ill-posed.

In what follows, we assume that every problem is well-posed.

Relative error, absolute error

If $\in \mathbb{R}, \hat{x}$ is an approximation of x and $\Delta x=\hat{x}-x$
absolute error on $x:|\Delta x|=|\hat{x}-x|$
relative error on x, if $x \neq 0:\left|\frac{\Delta x}{x}\right|=\left|\frac{\hat{x}-x}{x}\right|$

If $x \in \mathbb{R}^{n}$,
absolute error on $x:\|\Delta x\|_{a}=\|\hat{x}-x\|$ relative error on x, if $x \neq 0$:

- normwise: $\|\Delta x\|_{r}=\frac{\|\Delta x\|}{\|x\|}=\frac{\|\hat{x}-x\|}{\|x\|}$
- componentwise: $\left.\left|\Delta x \|_{r}=\max _{1 \leq i \leq n}\right| \frac{\Delta x_{i}}{x_{i}} \right\rvert\,$

Definition of condition number

In french: conditionnement ou nombre de condition.
Problem \mathcal{P} : compute $y=f(x)$ with

$$
\begin{array}{llll}
f: & D & \rightarrow & R \\
& \|\cdot\|_{D} & & \|\cdot\|_{R}
\end{array}
$$

If x and y do not vanish,

$$
\kappa(\mathcal{P}, x)=\lim _{\delta \rightarrow 0} \sup _{\frac{\|\Delta x\|_{D}}{\|x\|_{D} \leq \delta}} \frac{\|\Delta y\|_{R} /\|y\|_{R}}{\|\Delta x\|_{D} /\|x\|_{D}}
$$

Definition of condition number

Problem \mathcal{P} : compute $y=f(x)$ with

$$
\begin{array}{llll}
f: & D & \rightarrow & R \\
& \|\cdot\|_{D} & & \|\cdot\|_{R}
\end{array}
$$

If x or y vanish, one uses absolute errors instead of relative errors and one gets an absolute condition number:

$$
\kappa(\mathcal{P}, x)=\lim _{\delta \rightarrow 0} \sup _{\|\Delta x\|_{D} \leq \delta} \frac{\|\Delta y\|_{R}}{\|\Delta x\|_{D}}
$$

Interpretation of condition number

The condition number is the factor of amplification (or reduction) of the error:

Well-conditioned, ill-conditioned problem

A problem is well-conditioned if its condition number is small, i.e., close to 1 ,
it is ill-conditioned if its condition number is large, i.e., $\gg 1$.
It is a qualitative notion. . .

Condition number: subtraction $y=x_{1}-x_{2}$

Let us consider $\hat{x_{1}}=x_{1}\left(1+\delta_{1}\right) \hat{x_{2}}=x_{2}\left(1+\delta_{2}\right)$, and $\hat{y}=y+\Delta y=$ $x_{1}\left(1+\delta_{1}\right)-x_{2}\left(1+\delta_{2}\right)$, thus

$$
\|\Delta y\|_{r}=\frac{|\Delta y|}{|y|}=\frac{\left|x_{1} \delta_{1}-x_{2} \delta_{2}\right|}{\left|x_{1}-x_{2}\right|} \leq \frac{\left|x_{1}\right|+\left|x_{2}\right|}{\left|x_{1}-x_{2}\right|} \max \left(\left|\delta_{1}\right|,\left|\delta_{2}\right|\right) .
$$

If we use the componentwise relative error,

$$
\kappa\left(-,\left(x_{1}, x_{2}\right)\right)=\lim _{\delta \rightarrow 0} \sup _{x:\|\Delta x\|_{r} \leq \delta} \frac{|\Delta y| /|y|}{\|\Delta x\|_{r}} \leq \frac{\left|x_{1}\right|+\left|x_{2}\right|}{\left|x_{1}-x_{2}\right|}
$$

and there is an equality, when $x_{1} \cdot x_{2} \geq 0$ and when $\delta_{1}=-\delta_{2}$.

Condition number: subtraction $y=x_{1}-x_{2}$

$$
\kappa\left(-,\left(x_{1}, x_{2}\right)\right)=\frac{\left|x_{1}\right|+\left|x_{2}\right|}{\left|x_{1}-x_{2}\right|}
$$

This condition number can be arbitrarily large when x_{1} and x_{2} are close, i.e., when $\left|x_{1}-x_{2}\right| \ll\left|x_{1}\right|+\left|x_{2}\right|$.

This means that, if x_{1} and x_{2} are computed results with some uncertainty, this uncertainty is magnified by this subtraction: catastrophic cancellation.

Condition number: subtraction $y=x_{1}-x_{2}$

Cancellation is not always a bad thing:

- no problem when x_{1} and x_{2} are error-free, cf. divided difference schemes;
- cancellation may be a symptom of intrinsic ill-conditioning and may therefore be unavoidable;
- the result may be harmless, for instance in $\left(x_{1}-x_{2}\right)+x_{3}$ when $x_{3} \gg x_{1}-x_{2}$.

Condition number: division $y=x_{1} / x_{2}$

Let us consider $\hat{x_{1}}=x_{1}\left(1+\delta_{1}\right) \hat{x_{2}}=x_{2}\left(1+\delta_{2}\right)$, and $\hat{y}=y+\Delta y=$ $\frac{x_{1}\left(1+\delta_{1}\right)}{x_{2}\left(1+\delta_{2}\right)}$, I.e., $\Delta y=\frac{x_{1}}{x_{2}} \cdot \frac{\delta_{1}-\delta_{2}}{1+\delta_{2}}$, thus

$$
\|\Delta y\|_{r}=\frac{|\Delta y|}{|y|}=\frac{\left|\delta_{1}-\delta_{2}\right|}{\left|1+\delta_{2}\right|} \leq \frac{2 \max \left(\left|\delta_{1}\right|,\left|\delta_{2}\right|\right)}{1-\left|\delta_{2}\right|} .
$$

If we use the componentwise relative error,

$$
\kappa\left(-,\left(x_{1}, x_{2}\right)\right)=\lim _{\delta \rightarrow 0} \sup _{x:\|\Delta x\|_{r} \leq \delta} \frac{|\Delta y| /|y|}{\|\Delta x\|_{r}} \leq 2
$$

i.e., the division is always well-conditioned.

Condition number: evaluation of $p(x)$

Let $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ a polynomial.
Let us evaluate \hat{p} in x, where $\hat{p}(x)=\sum_{i=0}^{n}\left(a_{i}+\Delta a_{i}\right) x^{i}$:

$$
\Delta y=\hat{p}(x)-p(x)=\sum_{i=0}^{n} \Delta a_{i} x^{i}
$$

and thus

$$
\frac{|\Delta y|}{|y|}=\frac{\left|\sum_{i=0}^{n} \Delta a_{i} x^{i}\right|}{\left|\sum_{i=0}^{n} a_{i} x^{i}\right|} \leq \frac{\sum_{i=0}^{n}\left|\Delta a_{i}\right| \cdot|x|^{i}}{\left|\sum_{i=0}^{n} a_{i} x^{i}\right|} \leq\|\Delta a\|_{r} \frac{\sum_{i=0}^{n}\left|a_{i}\right| \cdot|x|^{i}}{\left|\sum_{i=0}^{n} a_{i} x^{i}\right|}
$$

and there is an equality if $\Delta a_{i}=\operatorname{sign}\left(a_{i} x^{i}\right) \cdot\|\Delta a\|_{r}$.

Condition number: evaluation of $p(x)$

This implies

$$
\kappa(p(x), p)=\frac{\sum_{i=0}^{n}\left|a_{i}\right| \cdot|x|^{i}}{|p(x)|}
$$

In other words, the evaluation of a polynomial p at x can be arbitrarily ill-conditioned when x is close to a root of p.

Condition number: solving the linear system $A x=b$

$$
A=\left(\begin{array}{rrrr}
10 & 7 & 8 & 7 \\
7 & 5 & 6 & 5 \\
8 & 6 & 10 & 9 \\
7 & 5 & 9 & 10
\end{array}\right) \quad b=\left(\begin{array}{l}
32 \\
23 \\
33 \\
31
\end{array}\right)
$$

solution of $A x=b: x=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{t}$.
If the system is perturbed in

$$
A+\Delta A=\left(\begin{array}{rrrr}
10 & 7 & 8.1 & 7.2 \\
7.08 & 5.04 & 6 & 5 \\
8 & 5.98 & 9.89 & 9 \\
6.99 & 4.99 & 9 & 9.98
\end{array}\right)
$$

the solution of $(A+\Delta A) x=b$ is $\left(\begin{array}{lll}-81 & 137 & -34\end{array} 2^{t}\right)^{t}$.

Condition number: solving the linear system $A x=b$

If x is the solution of $A x=b$ and \hat{x} is the solution of $A x=b+\Delta b$,

$$
\begin{aligned}
& A \Delta x=\Delta b \\
& \Rightarrow \Delta x=A^{-1} \Delta b \\
& \Rightarrow\|\Delta x\|=\left\|A^{-1} \Delta b\right\| \leq\left\|A^{-1}\right\| \cdot\|\Delta b\| \\
& \text { We also have } A x=b \\
& \Rightarrow\|A x\|=\|b\| \\
& \Rightarrow\|A\| \cdot\|x\| \geq\|b\| \\
& \Rightarrow \frac{\|A\|}{\|b\|} \quad \geq \frac{1}{\|x\|} \\
& \text { and thus } \frac{\|\Delta x\|}{\|x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \frac{\|\Delta b\|}{\|b\|}
\end{aligned}
$$

Condition number: solving the linear system $A x=b$

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

It also holds that, if $x+\Delta x$ is the solution of $(A+\Delta A) x=b$,

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \cdot \frac{\|\Delta A\|}{\|A\|}
$$

and if $x+\Delta x$ is the solution of $(A+\Delta A) x=b+\Delta b$,

$$
\frac{\|\Delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A) \cdot \frac{\|\Delta A\|}{\|A\|}}\left[\frac{\|\Delta A\|}{\|A\|}+\frac{\|\Delta b\|}{\|b\|}\right] .
$$

Condition number: link with a first-order analysis

Problem \mathcal{P} : compute $y=f(x)$.

$$
y+\Delta y=f(x+\Delta x) \simeq f(x)+f^{\prime}(x) \cdot \Delta x+\mathcal{O}\left(\Delta x^{2}\right)
$$

and thus

$$
\frac{|\Delta y|}{|y|} \simeq \frac{\left|f^{\prime}(x)\right| \cdot|\Delta x|}{|f(x)|}=\frac{\left|f^{\prime}(x)\right| \cdot|x|}{|f(x)|} \cdot \frac{|\Delta x|}{|x|}
$$

i.e.,

$$
\kappa(\mathcal{P}, x) \simeq\left|\frac{f^{\prime}(x) \cdot x}{f(x)}\right| .
$$

Condition number: link with a first-order analysis

When x and y are not scalars, but vectors: the absolute condition number is

$$
\kappa_{a}(\mathcal{P}, x)=\left\|f^{\prime}(x)\right\|
$$

it can also be interpreted as the Lipschitz constant for f^{\prime}, and the relative condition number is

$$
\kappa(\mathcal{P}, x)=\frac{\left\|f^{\prime}(x)\right\| \cdot\|x\|}{\|f(x)\|} .
$$

Condition number: remarks

1. the choice of the norms $\|\cdot\|_{D}$ and $\|.\|_{R}$ modifies the condition number; the choice of the authorized perturbations Δx as well: one may preserve the structure of the problem and restrict Δx (sparsity of a matrix. . .)
2. quite often, the condition number measures the inverse of the distance to the nearest singular problem (or ill-posed problem)
3. the condition number depends only on the problem \mathcal{P} and not on the algorithm that solves it
4. only small perturbations are considered here, for large perturbations consider interval arithmetic.
