# Validation for scientific computations Stochastic arithmetic 

Cours de recherche master informatique
Nathalie Revol
Nathalie.Revol@ens-lyon.fr

26 octobre 2006

## References for today's lecture

- J.-M. Chesneaux : Estimation statistique des erreurs d'arrondi, in Outils d'analyse numérique pour l'automatique, A. Barraud et al., Hermes, 2002
- D. Stott Parker: Monte Carlo arithmetic, several papers available from http://www.cs.ucla.edu/~stott/mca/
- W. Kahan: The improbability of probabilistic error analyses for numerical computations, 1998, http://http.cs.berkeley.edu/ $\sim_{\text {wkahan/improber.ps }}$


## Agenda

- Introduction to stochastic arithmetic (CESTAC method, CADNA implementation)
- very brief introduction to Monte Carlo arithmetic
- comments by W. Kahan


## Monte Carlo arithmetic

Exact value: a real number that can be exactly represented in a given floating-point format.

Inexact value: either a real number that cannot be exactly represented in a given floating-point format and thus must be rounded, or a real value that is not completely known.

## Monte Carlo arithmetic

Essence: model any inexact value with a random variable.

Randomization of $x$ to $s$ digits:

$$
\tilde{x}=x+2^{e+1-s} \zeta
$$

where $e$ is the exponent of $x$ in base 2 , $s$ is a real value (typically a positive integer) $\zeta$ is a random variable (typically uniform over $\left[-\frac{1}{2}, \frac{1}{2}\right]$ ).

## Monte Carlo arithmetic

$$
\operatorname{randomize}(x)= \begin{cases}x & \text { if } x \text { is exact within } t \text { digits } \\ x+2^{e+1-t} \zeta & \text { otherwise. }\end{cases}
$$

If $x$ is not exact within $t$ digits, this superimposes a random perturbation so that the resulting significance is bounded by $t$ digits.

## Monte Carlo arithmetic

## random rounding:

random_round $(x)=$ round (randomize $(x)$ ).

## random unrounding:

$x \odot y=$ round (randomize $(x) \bullet$ randomize $(y)$ ).

## Monte Carlo arithmetic

# Monte Carlo arithmetic operations: <br> $x \odot y=$ round ( randomize( randomize $(x) \bullet$ randomize $(y))$ ). <br> Implementation??? 

## W. Kahan's analysis Definition of error analysis

## Definition of error analysis:

it is a process and a product; it is an estimate of the error in a computation, and a proof of the estimate's validity.

## W. Kahan's analysis <br> Error analyses

Error analyses start from models of errors, like $\beta$ and $\mu$ in

$$
w=((x \cdot y) \cdot(1+\beta)+z) \cdot(1+\mu),
$$

taking more or less their properties into account, to infer estimates of their subsequent effects. Some analyses obscure their domains of validity by ignoring nonlinear terms like $\beta^{2}, \beta \cdot \mu$ and $\mu^{2}$. Anyway, inferences entail tedious manipulations of numerous inequalities, only partly mechanizable.

Probabilistic error analyses estimate errors' means and standard deviations instead of upper bounds for errors.

## W. Kahan's analysis

## Two statistical strategies: Theoretical and Experimental

## Theoretical: Probabilistic Error-Analyses

... are based upon attempts to approximate each rounding error by a random variate of tiny amplitude, and then estimates how lots of them will propagate and accumulate in the final computed results.

## W. Kahan's analysis

## Two statistical strategies: Theoretical and Experimental

## Experimental: Randomized Error-Sampling

. . . attempts to assay the impact of roundoff upon any computation by treating that computation as one sample drawn from a population of similar randomized computations differing only

- either in the data, which are randomly perturbed slightly from the given data (F. Chatelin and V. Frayssé)
- or in arithmetic operations, which are randomly perturbed slightly (J. Vignes et al.).


## W. Kahan's analysis why are they unsatisfactory?

They tend to provide unsatisfactory answers for two crucial questions:

1. insurance premiums: how much should a prudent corporation put into reserve to cover the expected cost of extraordinarily big numerical errors detexted too late?
2. unreliability: how likely is an extraordinarily big numerical error, if one occurs, to be detected too late despite probabilistic analysis and/or randomized error sampling?

## W. Kahan's analysis problem



Three reasons, all of which call into question the application of the Central Limit Theorem.

## W. Kahan's analysis

1st problem with the application of the Central Limit Theorem

The Central Limit Theorem is generally cited to justify approximating probability via a normal or $\xi^{2}$ distribution. But such approximations converge very slowly along the tails of the distribution. Therefore, where probability is tiny, the approximation can be extremely tiny and yet wrong by orders of magnitude.

## W. Kahan's analysis

2nd problem with the application of the Central Limit Theorem
To justify invoking this theorem, rounding errors are presumed to be

- random
- weakly correlated
- distributed continuously over a tiny interval.

Actually, they are

- not random
- often correlated (perhaps intentionally)
- often behave more like discrete than continuous variables.


## W. Kahan's analysis

2nd problem with the application of the Central Limit Theorem

Illustration: cf. the example with the rational fraction from his talk "Improber".

Illustration: cf. lecture 2: Sterbenz lemma (no rounding error, please do not introduce one), or $\frac{x}{\sqrt{x^{2}+y^{2}}}$

## W. Kahan's analysis

3rd problem with the application of the Central Limit Theorem

Only a few (as few as two or three) rounding errors are the dominant contributors to the final error, especially when it is extraordinarily big because some nearby singularity amplified them.

Examples:
cf. $3 * \tan (\operatorname{atan}(10000000.0)) / 10000000.0)$ and the "singularity" of atan cf. the rational fraction: the first subtractions performed in the numerator and denominator of $r p(x)$ contribute two rounding errors that dominate all the rest.

## W. Kahan's analysis example of failures

Solve
$\left(\begin{array}{cccccc}4194304 & 4194303 & & & & \\ 4194303 & 4194302 & & & & \\ & & 4194304 & 4194303 & & \\ & 4194303 & 4194302 & & 4194304 & 4194303 \\ & & & 4194303 & 4194302\end{array}\right) \cdot\left(\begin{array}{c}x_{1} \\ y_{1} \\ x_{2} \\ y_{2} \\ x_{3} \\ y_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 3 \\ 0 \\ 3 \\ 0 \\ 3\end{array}\right)$

Solutions to each block system:
$(1.3 E+7-1.3 E+7)^{t}$ for the first block
$(1.2 E+7-1.2 E+7)^{t}$ for the second block
$(1.2509611 E+7-1.2509613 E+7)^{t}$ for the third block.

## Further readings

- F. Chatelin and V. Frayssé: Lecture on Finite Precision Arithmetic, SIAM, 1996
- M. Daumas and D. Lester: Formal Methods for Rare Failure Events due to the Accumulation of Errors, Oct. 2006, http://arXiv.org/ abs/cs/0610110.

