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References for today’s lecture

• J.-M. Chesneaux : Estimation statistique des erreurs d’arrondi, in Outils

d’analyse numérique pour l’automatique, A. Barraud et al., Hermes,

2002

• D. Stott Parker: Monte Carlo arithmetic, several papers available from

http://www.cs.ucla.edu/∼stott/mca/

• W. Kahan: The improbability of probabilistic error analyses for

numerical computations, 1998, http://http.cs.berkeley.edu/
∼wkahan/improber.ps
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Agenda

• Introduction to stochastic arithmetic (CESTAC method, CADNA

implementation)

• very brief introduction to Monte Carlo arithmetic

• comments by W. Kahan
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Monte Carlo arithmetic

Exact value: a real number that can be exactly represented in a given

floating-point format.

Inexact value: either a real number that cannot be exactly represented

in a given floating-point format and thus must be rounded,

or a real value that is not completely known.
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Monte Carlo arithmetic

Essence: model any inexact value with a random variable.

Randomization of x to s digits:

x̃ = x + 2e+1−sζ

where e is the exponent of x in base 2,

s is a real value (typically a positive integer)

ζ is a random variable (typically uniform over [−1
2,

1
2]).
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Monte Carlo arithmetic

randomize(x) =
{

x if x is exact within t digits

x + 2e+1−tζ otherwise.

If x is not exact within t digits, this superimposes a random perturbation

so that the resulting significance is bounded by t digits.
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Monte Carlo arithmetic

random rounding:
random round (x) = round (randomize (x)).

random unrounding:
x� y = round (randomize (x)• randomize (y)).
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Monte Carlo arithmetic

Monte Carlo arithmetic operations:
x� y = round ( randomize( randomize (x)• randomize (y))).

Implementation???
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W. Kahan’s analysis
Definition of error analysis

Definition of error analysis:
it is a process and a product; it is an estimate of the error in a computation,

and a proof of the estimate’s validity.
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W. Kahan’s analysis
Error analyses

Error analyses start from models of errors, like β and µ in

w = ((x · y) · (1 + β) + z) · (1 + µ),

taking more or less their properties into account, to infer estimates of

their subsequent effects. Some analyses obscure their domains of validity

by ignoring nonlinear terms like β2, β ·µ and µ2. Anyway, inferences entail

tedious manipulations of numerous inequalities, only partly mechanizable.

Probabilistic error analyses estimate errors’ means and standard

deviations instead of upper bounds for errors.
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W. Kahan’s analysis
Two statistical strategies: Theoretical and Experimental

Theoretical: Probabilistic Error-Analyses
. . . are based upon attempts to approximate each rounding error by a

random variate of tiny amplitude, and then estimates how lots of them

will propagate and accumulate in the final computed results.
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W. Kahan’s analysis
Two statistical strategies: Theoretical and Experimental

Experimental: Randomized Error-Sampling
. . . attempts to assay the impact of roundoff upon any computation by

treating that computation as one sample drawn from a population of

similar randomized computations differing only

• either in the data, which are randomly perturbed slightly from the given

data (F. Chatelin and V. Frayssé)

• or in arithmetic operations, which are randomly perturbed slightly (J.

Vignes et al.).
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W. Kahan’s analysis
why are they unsatisfactory?

They tend to provide unsatisfactory answers for two crucial questions:

1. insurance premiums: how much should a prudent corporation put

into reserve to cover the expected cost of extraordinarily big numerical

errors detexted too late?

2. unreliability: how likely is an extraordinarily big numerical error, if one

occurs, to be detected too late despite probabilistic analysis and/or

randomized error sampling?
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W. Kahan’s analysis
problem

0

probability

magnitude of undected error

?

Three reasons, all of which call into question the application of the

Central Limit Theorem.
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W. Kahan’s analysis
1st problem with the application of the Central Limit Theorem

The Central Limit Theorem is generally cited to justify approximating

probability via a normal or ξ2 distribution. But such approximations

converge very slowly along the tails of the distribution. Therefore, where

probability is tiny, the approximation can be extremely tiny and yet wrong

by orders of magnitude.

Validation in scientific computing - Nathalie Revol 14 25-10-2006



W. Kahan’s analysis
2nd problem with the application of the Central Limit Theorem

To justify invoking this theorem, rounding errors are presumed to be

• random

• weakly correlated

• distributed continuously over a tiny interval.

Actually, they are

• not random

• often correlated (perhaps intentionally)

• often behave more like discrete than continuous variables.
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W. Kahan’s analysis
2nd problem with the application of the Central Limit Theorem

Illustration: cf. the example with the rational fraction from his talk

”Improber”.

Illustration: cf. lecture 2: Sterbenz lemma (no rounding error, please do

not introduce one), or x√
x2+y2
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W. Kahan’s analysis
3rd problem with the application of the Central Limit Theorem

Only a few (as few as two or three) rounding errors are the dominant

contributors to the final error, especially when it is extraordinarily big

because some nearby singularity amplified them.

Examples:

cf. 3 ∗ tan(atan(10000000.0))/10000000.0) and the ”singularity” of atan

cf. the rational fraction: the first subtractions performed in the numerator

and denominator of rp(x) contribute two rounding errors that dominate

all the rest.
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W. Kahan’s analysis
example of failures

Solve
4194304 4194303
4194303 4194302

4194304 4194303
4194303 4194302

4194304 4194303
4194303 4194302

·


x1

y1

x2

y2

x3

y3

 =


0
3
0
3
0
3


Solutions to each block system:

(1.3E + 7 − 1.3E + 7)t for the first block

(1.2E + 7 − 1.2E + 7)t for the second block

(1.2509611E + 7 − 1.2509613E + 7)t for the third block.
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Further readings

• F. Chatelin and V. Frayssé: Lecture on Finite Precision Arithmetic,

SIAM, 1996

• M. Daumas and D. Lester: Formal Methods for Rare Failure Events

due to the Accumulation of Errors, Oct. 2006, http://arXiv.org/
abs/cs/0610110.

Validation in scientific computing - Nathalie Revol 19 25-10-2006

http://arXiv.org/abs/cs/0610110
http://arXiv.org/abs/cs/0610110

	titre [0]

