Validation for scientific computations Multiple precision arithmetic

Cours de recherche master informatique
Nathalie Revol
Nathalie.Revol@ens-lyon.fr

24 November 2006

References for today's lecture

- J.-C. Bajard et N. Revol: Arithmétique multi-précision, coordonné par M. Daumas et J.-M. Muller, Masson, 1998.
- R.P. Brent: The Complexity of Multiple-Precision Arithmetic, The Complexity of Computation Problem Solving, ed. by R.S. Anderssen and R.P. Brent, U. of Queensland Press, 1976. http://web.comlab. ox.ac.uk/oucl/work/richard.brent/pd/rpb032.pdf
- R.P. Brent: Fast Multiple-Precision Evaluation of Elementary Functions, Journal of the ACM, vol 23, no 2, pp 242-251, 1976. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb03 pdf
- L. Imbert: Arithmétique multi-précision, in Calcul et arithmétique des ordinateurs, édité par J.-C. Bajard et J.-M. Muller, Traité IC2, série Informatique et systèmes d'information, Hermès, 2004.
- V. Kreinovich and S.M. Rump: Towards Optimal Use of MultiPrecision Arithmetic, Reliable Computing, vol 12, no 5, pp 365-369, 2006.
- J.R. Shewchuk: Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete and Computational Geometry, vol 18, no 3, pp 305-363, 1997.
- P. Zimmermann: Arithmétique en précision arbitraire, Réseaux et systèmes répartis, vol 13, no 4-5, pp 357-386, 2001.

Agenda

- A remark on the number of correct digits of a computed result
- Introduction to multiple precision arithmetic
- Multiple precision arithmetic implemented using integers
- Multiple precision arithmetic implemented using floating-point numbers: Shewchuk's expansions
- Optimal adaptation of the computing precision (Kreinovich \& Rump)

The number of correct digits of a computed result

"Rule of thumb":
forward error \simeq condition number \times backward error
or in other words
number of correct digits $=$ computing precision - constant quantity

The number of correct digits of a computed result

Counter-example: determination of a multiple root x^{*}, of multiplicity m, of a polynomial $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$.
A relative error u on a_{i} perturbs the root x^{*} to

$$
x^{*}(u)-x^{*}=u^{1 / m}\left[-\frac{m!a_{i} x^{* i}}{p^{(m)}\left(x^{*}\right)}\right]^{1 / m}
$$

multiple roots: always ill-conditioned, forward error: of the order of $u^{1 / m}$. In other words,
number of correct digits = computing precision / constant quantity

Introduction to multiple precision arithmetic

Vocabulary: multiple precision vs arbitrary precision.

arbitrary precision:

used for integer or rational arithmetic, where the representation sizes of the operands vary arbitrarily and can be arbitrarily large.
multiple precision (aka multi-precision):
used for floating-point arithmetic, where the lengths of the mantissas and exponents are fixed but can be arbitrarily large.

Introduction to multiple precision arithmetic

Exact arithmetic will not be covered here (lack of time) but some applications that use it (as a last resort), in computational geometry, will be studied in the exam papers.

Lecture by C.-P. Jeannerod (2nd semester, M1):
mainly exact arithmetic (but also floating-point arithmetic) mainly principles of the main algorithms in the field (and not validation aspects).

Introduction to multiple precision arithmetic Applications

Either a bit more accuracy than floating-point computations, and thus a bit more computing precision (several hundreds of bits)
or extreme computations, such as the computation of the largest number of digits of π : 1,241,100,000,000 first decimals of π (Kanada, Tokyo) or checking some special cases to prove theorems or determining a counter-example to a conjecture.

Introduction to multiple precision arithmetic Representation

A multiple-precision floating-point number is a number of the form s.m. β^{e}. representation using integers:
the mantissa (of arbitrary length) is represented as an exact integer. Exact integers may be represented as a sequence of machine integers (cf. GMP):

$$
m=\sum_{i=0}^{n} m_{i} B^{i}
$$

where m_{i} are machine integers and B is the length of a machine word. (This is more or less true, cf. later).

Introduction to multiple precision arithmetic Representation

representation using floating-point numbers:

$$
\sum_{i=0}^{n} f_{i}
$$

where the f_{i} are floating-point numbers, if possible with exponents sufficiently wide apart so that the mantissas do not overlap.
(This is more or less true, cf. later).

Introduction to multiple precision arithmetic Representation: performance issues (time \& memory)

discussion of the number of used bits in each machine word: (either integer or floating-point)
if one uses all the bits of the machine word:

- optimal storage use, less steps in algorithms
- handling of overflows (such as carries in addition) is more complex

Introduction to multiple precision arithmetic Representation: performance issues (time \& memory)

discussion of the number of used bits in each machine word: if one uses less than all the bits of the machine word (e.g. basis $B<2^{32}$):

- wasted storage use, more steps in algorithms
- the addition of m products of "digits" must be representable in one word, i.e. $n B^{2}$ is representable as a digit.
Useful for multiplication: if $X=\sum_{i=0}^{n} x_{i} B^{i}$ and $Y=\sum_{i=0}^{n} y_{i} B^{i}$,

$$
\text { then } Z=X \times Y=\sum_{i=0}^{2 n} z_{i} B^{i} \text { where } z_{i}=\sum_{j+k=i} x_{j} \cdot y_{k}
$$

Implementation using machine integers addition and subtraction

Algorithms for the addition or subtraction = methods learnt at school:

- align the mantissas
- from right to left
- add or subtract the corresponding digits and propagate the carry.

Implementation using machine integers addition and subtraction

Algorithms for the addition or subtraction

- align the mantissas
- naive method $=$ add or subtract the corresponding digits assumption: the sum or difference of two digits fits in a machine word
- normalize the computed result, i.e. get a representation with digits between 0 and $B-1$.

Implementation using machine integers normalization

$$
\text { Go from } X=\sum_{i=0}^{n} \hat{x}_{i} B^{i} \text { to } X=\sum_{i=0}^{n} x_{i} B^{i} \text { with } 0 \leq x_{i}<B .
$$

$$
\begin{aligned}
t_{0}= & \hat{x_{0}} \\
\text { for } & i=0 \ldots n-1 \text { do } \\
& x_{i}=t_{i} \bmod B \\
& t_{i+1}=t_{i} \operatorname{div} B+\hat{x}_{i+1} \\
x_{n}= & t_{n}
\end{aligned}
$$

Implementation using machine integers multiplication

Naive algorithm $=$ school algorithm.
if $X=\sum_{i=0}^{n} x_{i} B^{i}$ and $Y=\sum_{i=0}^{n} y_{i} B^{i}$,

$$
\text { then } Z=X \times Y=\sum_{i=0}^{2 n} z_{i} B^{i} \text { where } z_{i}=\sum_{j+k=i} x_{j} \cdot y_{k}
$$

Of course, this representation of Z must be normalized, i.e. carries must be handled.

Implementation using machine integers complexity of the naive multiplication

- each digit of X is multiplied by each digit of $Y: n^{2}$ products
- each digit of Z is the sum of l such products: $O\left(n^{2}\right)$ additions \Rightarrow overall complexity $=O\left(n^{2}\right)$

In practice, difference between school method and algorithm: the sum of the partial result and of the product of X by one digit of Y is done before X is multiplied by the next digit of Y (better storage use).

For multiple precision, only the n first digits are needed. . . but most often the $2 n$ digits are computed.

Implementation using machine integers faster multiplication: Karatsuba (Knuth version)

Let's assume n is even and let's decompose

$$
\begin{aligned}
& X=X_{H} \cdot B^{n / 2}+X_{L} \text { and } Y=Y_{H} \cdot B^{n / 2}+Y_{L} . \\
Z= & X \cdot Y \\
= & X_{H} \cdot Y_{H} \cdot B^{n} \\
& +\left[X_{H} \cdot Y_{H}-\left(X_{H}-X_{L}\right) \cdot\left(Y_{H}-Y_{L}\right)+X_{L} \cdot Y_{L}\right] \cdot B^{n / 2} \\
& +X_{L} \cdot Y_{L} .
\end{aligned}
$$

Only 3 multiplications of numbers of length $n / 2$. Recursively, one gets a complexity $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$.

Implementation using machine integers even faster multiplication: Toom-Cook

- split X and Y into k parts
- compute Z using $2 k-1$ multiplications
- get a complexity $O\left(n^{\log _{k}(2 k-1)}\right)$.

Implementation using machine integers fastest known multiplication

- algorithm due to Schönhage and Strassen (1971)
- inspired from FFT: Fast Fourier Transform
- complexity: $O(n \log n)$

Implementation using machine integers division and square root: Newton's iteration

Newton's iteration:
to solve $f(x)=0$, compute the sequence $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
Advantages of Newton's iteration:

- quadratic convergence: the number of correct digits roughly doubles between x_{n} and x_{n+1};
- auto-correction: computing errors made on x_{n} do not modify the limit of the sequence.

Consequence: double the computing precision at each iteration. Complexity: complexity of the last iteration.

Implementation using machine integers division: Newton's iteration

Division:

solve $f(x)=1 / x-A$ to compute the inverse of A.
The iteration is

$$
x_{n+1}=x_{n}\left(2-A x_{n}\right) .
$$

Starting point: machine precision approximate inverse.

Implementation using machine integers square root: Newton's iteration

Square root:
solve $f(x)=x^{2}-A$ to compute \sqrt{A}.
The iteration is

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{A}{x_{n}}\right) .
$$

Better idea:
solve $f(x)=1 / x^{2}-A$ to compute $1 / \sqrt{A}$ and post-multiply by A. The iteration is

$$
x_{n+1}=\frac{1}{2} x_{n}\left(3-A x_{n}^{2}\right)
$$

Implementation using machine integers elementary functions

Polynomial approximations:
domain reduction + Taylor expansions + reconstruction.

Implementation using machine integers elementary functions

Example: exponential $\exp x$

- domain reduction: determine t and n such that n is an integer and $t=\frac{x-n \ln 2}{256}$ belongs to $\left[-\frac{\ln 2}{512}, \frac{\ln 2}{512}\right]$;
- Taylor expansion: $\exp t=\sum_{i=0}^{+\infty} \frac{t^{i}}{i!}$
- reconstruction: $\exp x=(\exp t)^{256} \cdot 2^{n}$, where $(\exp t)^{2} 56$ is obtained through 8 successive squarings.

The logarithm is then obtained by Newton's iteration.

Implementation using machine integers elementary functions

Trigonometric functions:
use of the periodicity and of trigonometric identities to work on the domain $\left[-\frac{\pi}{32}, \frac{\pi}{32}\right]$.

Inverse trigonometric functions:
Newton's iteration applied to the trigonometric functions.

Implementation using machine integers elementary functions

Arithmetic-geometric mean:

$$
\begin{cases}a_{0} & =a \\ b_{0} & =b \\ a_{i+1} & =\frac{a_{i}+b_{i}}{2} \\ b_{i+1} & =\sqrt{a_{i} b_{i}}\end{cases}
$$

Historical note: close to the method employed in Antiquity to compute π : compute the length of regular polygons with 2^{n} sides inscribed and circonscribed to the unit circle.

Implementation using machine integers elementary functions

Example: logarithm $\ln x$

- domain reduction: determine s and m such that m is an integer and $s=x \cdot 2^{m}>2^{n / 2}$ where n is the precision;
- arithmetic-geometric mean of 1 and $4 / s$:

$$
\ln x \simeq \frac{\pi}{2 A G(1,4 / s)}-m \ln 2
$$

where π and $\ln 2$ are also computed using AGMs;
The exponential is then obtained by Newton's iteration.

Implementation using machine integers complexity of evaluating elementary functions

Using the AGM, the complexity is the complexity of the multiplication times a logarithmic factor.

Implementation using machine integers algorithms in MPFR to evaluate elementary functions with correct rounding

Implementation using machine floating-point numbers Shewchuk's expansions

Cf. Section 2 of Shewchuk's paper (ref. on the Web page of this class).

Automatic adaptation of the computing precision

Computations done with precision p_{0} and computational time t_{0} : if the accuracy of the result is not sufficient, restart with precision p_{1} and computational time $t_{1}=f\left(t_{0}\right)$;
if the accuracy of the result is not sufficient, restart with precision p_{2} and computational time $t_{2}=f\left(t_{1}\right)$. .
stop when the precision $p_{\text {final }}$ satisfies $p_{\text {final-1 }}<p_{\text {opt }} \leq p_{\text {final }}$.

What is the best strategy to choose p_{i} ?
What is the best function f ?

Automatic adaptation of the computing precision

Overhead:

ratio between the time spent: $t_{0}+t_{1}+\cdots+t_{\text {final }}$ and the optimal time $t_{\text {opt }}$.

Optimal strategy: choose p_{i+1} such that $t_{i+1}=2 t_{i}$ Optimal overhead: ratio $=4$.

Comments, limits:
the implicit assumption is that no previous computation can be used to improve/speed up the next one.

