Validation for scientific computations Multiple precision arithmetic

Cours de recherche master informatique

Nathalie Revol

Nathalie.Revol@ens-lyon.fr

24 November 2006

References for today's lecture

- J.-C. Bajard et N. Revol: Arithmétique multi-précision, coordonné par M. Daumas et J.-M. Muller, Masson, 1998.
- R.P. Brent: The Complexity of Multiple-Precision Arithmetic, The Complexity of Computation Problem Solving, ed. by R.S. Anderssen and R.P. Brent, U. of Queensland Press, 1976. http://web.comlab. ox.ac.uk/oucl/work/richard.brent/pd/rpb032.pdf
- R.P. Brent: Fast Multiple-Precision Evaluation of Elementary Functions, Journal of the ACM, vol 23, no 2, pp 242-251, 1976. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb034 pdf

- L. Imbert: Arithmétique multi-précision, in Calcul et arithmétique des ordinateurs, édité par J.-C. Bajard et J.-M. Muller, Traité IC2, série Informatique et systèmes d'information, Hermès, 2004.
- V. Kreinovich and S.M. Rump: *Towards Optimal Use of Multi-Precision Arithmetic*, Reliable Computing, vol 12, no 5, pp 365-369, 2006.
- J.R. Shewchuk: Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete and Computational Geometry, vol 18, no 3, pp 305-363, 1997.
- P. Zimmermann: *Arithmétique en précision arbitraire*, Réseaux et systèmes répartis, vol 13, no 4-5, pp 357-386, 2001.

Agenda

- A remark on the number of correct digits of a computed result
- Introduction to multiple precision arithmetic
- Multiple precision arithmetic implemented using integers
- Multiple precision arithmetic implemented using floating-point numbers: Shewchuk's expansions
- Optimal adaptation of the computing precision (Kreinovich & Rump)

The number of correct digits of a computed result

"Rule of thumb":

forward error \simeq condition number \times backward error or in other words number of correct digits = computing precision - constant quantity

The number of correct digits of a computed result

Counter-example: determination of a multiple root x^* , of multiplicity m, of a polynomial $p(x) = a_n x^n + \cdots + a_1 x + a_0$. A relative error u on a_i perturbs the root x^* to

$$x^*(u) - x^* = u^{1/m} \left[-\frac{m! a_i x^{*i}}{p^{(m)}(x^*)} \right]^{1/m}$$

multiple roots: always ill-conditioned, forward error: of the order of $u^{1/m}$. In other words, number of correct digits = computing precision / constant quantity

5

Introduction to multiple precision arithmetic

Vocabulary: multiple precision vs arbitrary precision.

arbitrary precision:

used for integer or rational arithmetic, where the representation sizes of the operands vary arbitrarily and can be arbitrarily large.

multiple precision (aka multi-precision):

used for floating-point arithmetic, where the lengths of the mantissas and exponents are fixed but can be arbitrarily large.

6

Introduction to multiple precision arithmetic

Exact arithmetic will not be covered here (lack of time) but some applications that use it (as a last resort), in computational geometry, will be studied in the exam papers.

Lecture by C.-P. Jeannerod (2nd semester, M1): mainly exact arithmetic (but also floating-point arithmetic) mainly principles of the main algorithms in the field (and not validation aspects).

Introduction to multiple precision arithmetic Applications

Either a bit more accuracy than floating-point computations, and thus a bit more computing precision (several hundreds of bits)

or extreme computations, such as the computation of the largest number of digits of π : 1,241,100,000,000 first decimals of π (Kanada, Tokyo) or checking some special cases to prove theorems or determining a counter-example to a conjecture.

Introduction to multiple precision arithmetic Representation

A multiple-precision floating-point number is a number of the form $s.m.\beta^e$.

representation using integers:

the mantissa (of arbitrary length) is represented as an exact integer. Exact integers may be represented as a sequence of machine integers (cf. GMP):

$$m = \sum_{i=0}^{n} m_i B^i$$

where m_i are machine integers and B is the length of a machine word. (This is more or less true, cf. later).

9

Introduction to multiple precision arithmetic Representation

representation using floating-point numbers:

where the f_i are floating-point numbers, if possible with exponents sufficiently wide apart so that the mantissas do not overlap. (This is more or less true, cf. later).

Introduction to multiple precision arithmetic Representation: performance issues (time & memory)

discussion of the number of used bits in each machine word: (either integer or floating-point) if one uses all the bits of the machine word:

- optimal storage use, less steps in algorithms
- handling of overflows (such as carries in addition) is more complex

Introduction to multiple precision arithmetic Representation: performance issues (time & memory)

discussion of the number of used bits in each machine word: if one uses less than all the bits of the machine word (e.g. basis $B < 2^{32}$):

- wasted storage use, more steps in algorithms
- the addition of m products of "digits" must be representable in one word, i.e. nB² is representable as a digit.
 Useful for multiplication: if X = ∑ⁿ_{i=0} x_iBⁱ and Y = ∑ⁿ_{i=0} y_iBⁱ,

then
$$Z = X \times Y = \sum_{i=0}^{2n} z_i B^i$$
 where $z_i = \sum_{j+k=i} x_j \cdot y_k$.

Implementation using machine integers addition and subtraction

Algorithms for the addition or subtraction = methods learnt at school:

- align the mantissas
- from right to left
- add or subtract the corresponding digits and propagate the carry.

Implementation using machine integers addition and subtraction

Algorithms for the addition or subtraction

- align the mantissas
- naive method = add or subtract the corresponding digits assumption: the sum or difference of two digits fits in a machine word
- normalize the computed result,
 - i.e. get a representation with digits between 0 and B-1.

Implementation using machine integers normalization

Go from
$$X = \sum_{i=0}^{n} \hat{x}_i B^i$$
 to $X = \sum_{i=0}^{n} x_i B^i$ with $0 \le x_i < B$.

$$t_0 = \hat{x_0}$$

for $i = 0 \dots n - 1$ do
 $x_i = t_i \mod B$
 $t_{i+1} = t_i \dim B + \hat{x}_{i+1}$
 $x_n = t_n$

Implementation using machine integers multiplication

Naive algorithm = school algorithm. if $X = \sum_{i=0}^{n} x_i B^i$ and $Y = \sum_{i=0}^{n} y_i B^i$,

then
$$Z = X \times Y = \sum_{i=0}^{2n} z_i B^i$$
 where $z_i = \sum_{j+k=i} x_j \cdot y_k$.

Of course, this representation of Z must be normalized, i.e. carries must be handled.

Implementation using machine integers complexity of the naive multiplication

• each digit of X is multiplied by each digit of Y : n^2 products

• each digit of Z is the sum of l such products: $O(n^2)$ additions

 \Rightarrow overall complexity $= O(n^2)$

In practice, difference between school method and algorithm: the sum of the partial result and of the product of X by one digit of Y is done before X is multiplied by the next digit of Y (better storage use).

For multiple precision, only the n first digits are needed. . . but most often the 2n digits are computed.

Implementation using machine integers faster multiplication: Karatsuba (Knuth version)

Let's assume \boldsymbol{n} is even and let's decompose

$$X = X_H \cdot B^{n/2} + X_L \text{ and } Y = Y_H \cdot B^{n/2} + Y_L.$$

$$Z = X \cdot Y$$

= $X_H \cdot Y_H \cdot B^n$
+ $[X_H \cdot Y_H - (X_H - X_L) \cdot (Y_H - Y_L) + X_L \cdot Y_L] \cdot B^{n/2}$
+ $X_L \cdot Y_L$.

Only **3** multiplications of numbers of length n/2. Recursively, one gets a complexity $O(n^{\log_2 3}) = O(n^{1.585})$.

Validation in scientific computing - Nathalie Revol

Implementation using machine integers even faster multiplication: Toom-Cook

- split X and Y into k parts
- compute Z using 2k-1 multiplications
- get a complexity $O(n^{\log_k(2k-1)})$.

Implementation using machine integers fastest known multiplication

- algorithm due to Schönhage and Strassen (1971)
- inspired from FFT: Fast Fourier Transform
- complexity: $O(n \log n)$

Implementation using machine integers division and square root: Newton's iteration Newton's iteration:

to solve f(x) = 0, compute the sequence $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

Advantages of Newton's iteration:

- quadratic convergence: the number of correct digits roughly doubles between x_n and x_{n+1} ;
- auto-correction: computing errors made on x_n do not modify the limit of the sequence.

Consequence: double the computing precision at each iteration. Complexity: complexity of the last iteration.

Implementation using machine integers division: Newton's iteration

Division:

solve f(x) = 1/x - A to compute the inverse of A. The iteration is

$$x_{n+1} = x_n(2 - Ax_n).$$

Starting point: machine precision approximate inverse.

Implementation using machine integers square root: Newton's iteration

Square root:

solve $f(x) = x^2 - A$ to compute \sqrt{A} . The iteration is $1 \ \ell$

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right).$$

Better idea:

solve $f(x) = 1/x^2 - A$ to compute $1/\sqrt{A}$ and post-multiply by A. The iteration is

$$x_{n+1} = \frac{1}{2}x_n(3 - Ax_n^2).$$

 Λ

Polynomial approximations:

domain reduction + Taylor expansions + reconstruction.

Example: exponential $\exp x$

- domain reduction: determine t and n such that n is an integer and $t=\frac{x-n\ln 2}{256}$ belongs to $[-\frac{\ln 2}{512},\frac{\ln 2}{512}];$
- Taylor expansion: $\exp t = \sum_{i=0}^{+\infty} \frac{t^i}{i!}$
- reconstruction: $\exp x = (\exp t)^{256} \cdot 2^n$, where $(\exp t)^2 56$ is obtained through 8 successive squarings.

The logarithm is then obtained by Newton's iteration.

Trigonometric functions:

use of the periodicity and of trigonometric identities to work on the domain $\left[-\frac{\pi}{32}, \frac{\pi}{32}\right]$.

Inverse trigonometric functions:

Newton's iteration applied to the trigonometric functions.

Arithmetic-geometric mean:

$$\begin{cases} a_0 = a \\ b_0 = b \\ a_{i+1} = \frac{a_i + b_i}{2} \\ b_{i+1} = \sqrt{a_i b_i} \end{cases}$$

Historical note: close to the method employed in Antiquity to compute π : compute the length of regular polygons with 2^n sides inscribed and circonscribed to the unit circle.

Example: logarithm $\ln x$

- domain reduction: determine s and m such that m is an integer and $s = x \cdot 2^m > 2^{n/2}$ where n is the precision;
- arithmetic-geometric mean of 1 and 4/s:

$$\ln x \simeq \frac{\pi}{2AG(1,4/s)} - m\ln 2$$

where π and $\ln 2$ are also computed using AGMs;

The exponential is then obtained by Newton's iteration.

Implementation using machine integers complexity of evaluating elementary functions

Using the AGM, the complexity is the complexity of the multiplication times a logarithmic factor.

Implementation using machine integers algorithms in MPFR to evaluate elementary functions with correct rounding

Implementation using machine floating-point numbers Shewchuk's expansions

Cf. Section 2 of Shewchuk's paper (ref. on the Web page of this class).

Automatic adaptation of the computing precision

Computations done with precision p_0 and computational time t_0 : if the accuracy of the result is not sufficient, restart with precision p_1 and computational time $t_1 = f(t_0)$;

if the accuracy of the result is not sufficient, restart with precision p_2 and computational time $t_2 = f(t_1)$...

stop when the precision p_{final} satisfies $p_{final-1} < p_{opt} \leq p_{final}$.

What is the best strategy to choose p_i ? What is the best function f?

Automatic adaptation of the computing precision

Overhead:

ratio between the time spent: $t_0 + t_1 + \cdots + t_{final}$ and the optimal time t_{opt} .

Optimal strategy: choose p_{i+1} such that $t_{i+1} = 2t_i$ **Optimal overhead:** ratio = 4.

Comments, limits:

the implicit assumption is that no previous computation can be used to improve/speed up the next one.