
Validation for scientific computations
Multiple precision arithmetic

Cours de recherche master informatique
Nathalie Revol

Nathalie.Revol@ens-lyon.fr

24 November 2006



References for today’s lecture

• J.-C. Bajard et N. Revol: Arithmétique multi-précision, coordonné par

M. Daumas et J.-M. Muller, Masson, 1998.

• R.P. Brent: The Complexity of Multiple-Precision Arithmetic, The

Complexity of Computation Problem Solving, ed. by R.S. Anderssen

and R.P. Brent, U. of Queensland Press, 1976. http://web.comlab.
ox.ac.uk/oucl/work/richard.brent/pd/rpb032.pdf

• R.P. Brent: Fast Multiple-Precision Evaluation of Elementary
Functions, Journal of the ACM, vol 23, no 2, pp 242-251, 1976.

http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb034a.
pdf

Validation in scientific computing - Nathalie Revol 1 24-11-2006

http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb032.pdf
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb032.pdf
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb034a.pdf
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb034a.pdf


• L. Imbert: Arithmétique multi-précision, in Calcul et arithmétique
des ordinateurs, édité par J.-C. Bajard et J.-M. Muller, Traité IC2,

série Informatique et systèmes d’information, Hermès, 2004.

• V. Kreinovich and S.M. Rump: Towards Optimal Use of Multi-
Precision Arithmetic, Reliable Computing, vol 12, no 5, pp 365-369,

2006.

• J.R. Shewchuk: Adaptive Precision Floating-Point Arithmetic and
Fast Robust Geometric Predicates, Discrete and Computational

Geometry, vol 18, no 3, pp 305-363, 1997.

• P. Zimmermann: Arithmétique en précision arbitraire, Réseaux et

systèmes répartis, vol 13, no 4-5, pp 357-386, 2001.

Validation in scientific computing - Nathalie Revol 2 24-11-2006



Agenda

• A remark on the number of correct digits of a computed result

• Introduction to multiple precision arithmetic

• Multiple precision arithmetic implemented using integers

• Multiple precision arithmetic implemented using floating-point numbers:

Shewchuk’s expansions

• Optimal adaptation of the computing precision (Kreinovich & Rump)

Validation in scientific computing - Nathalie Revol 3 24-11-2006



The number of correct digits of a computed result

“Rule of thumb”:
forward error ' condition number × backward error

or in other words

number of correct digits = computing precision − constant quantity

Validation in scientific computing - Nathalie Revol 4 24-11-2006



The number of correct digits of a computed result

Counter-example: determination of a multiple root x∗, of multiplicity

m, of a polynomial p(x) = anxn + · · ·+ a1x + a0.

A relative error u on ai perturbs the root x∗ to

x∗(u)− x∗ = u1/m

[
−m!aix

∗i

p(m)(x∗)

]1/m

multiple roots: always ill-conditioned, forward error: of the order of u1/m.

In other words,

number of correct digits = computing precision / constant quantity

Validation in scientific computing - Nathalie Revol 5 24-11-2006



Introduction to multiple precision arithmetic

Vocabulary: multiple precision vs arbitrary precision.

arbitrary precision:
used for integer or rational arithmetic, where the representation sizes of

the operands vary arbitrarily and can be arbitrarily large.

multiple precision (aka multi-precision):

used for floating-point arithmetic, where the lengths of the mantissas and

exponents are fixed but can be arbitrarily large.

Validation in scientific computing - Nathalie Revol 6 24-11-2006



Introduction to multiple precision arithmetic

Exact arithmetic will not be covered here (lack of time)

but some applications that use it (as a last resort), in computational

geometry, will be studied in the exam papers.

Lecture by C.-P. Jeannerod (2nd semester, M1):

mainly exact arithmetic (but also floating-point arithmetic)

mainly principles of the main algorithms in the field (and not validation

aspects).

Validation in scientific computing - Nathalie Revol 7 24-11-2006



Introduction to multiple precision arithmetic
Applications

Either a bit more accuracy than floating-point computations, and thus

a bit more computing precision (several hundreds of bits)

or extreme computations, such as the computation of the largest number

of digits of π: 1,241,100,000,000 first decimals of π (Kanada, Tokyo)

or checking some special cases to prove theorems

or determining a counter-example to a conjecture.

Validation in scientific computing - Nathalie Revol 8 24-11-2006



Introduction to multiple precision arithmetic
Representation

A multiple-precision floating-point number is a number of the form s.m.βe.

representation using integers:
the mantissa (of arbitrary length) is represented as an exact integer.

Exact integers may be represented as a sequence of machine integers (cf.

GMP):

m =
n∑

i=0

miB
i

where mi are machine integers and B is the length of a machine word.

(This is more or less true, cf. later).

Validation in scientific computing - Nathalie Revol 9 24-11-2006



Introduction to multiple precision arithmetic
Representation

representation using floating-point numbers:

n∑
i=0

fi

where the fi are floating-point numbers, if possible with exponents

sufficiently wide apart so that the mantissas do not overlap.

(This is more or less true, cf. later).

Validation in scientific computing - Nathalie Revol 10 24-11-2006



Introduction to multiple precision arithmetic
Representation: performance issues (time & memory)

discussion of the number of used bits in each machine word:
(either integer or floating-point)

if one uses all the bits of the machine word:

• optimal storage use, less steps in algorithms

• handling of overflows (such as carries in addition) is more complex

Validation in scientific computing - Nathalie Revol 11 24-11-2006



Introduction to multiple precision arithmetic
Representation: performance issues (time & memory)

discussion of the number of used bits in each machine word:
if one uses less than all the bits of the machine word (e.g. basis B < 232):

• wasted storage use, more steps in algorithms

• the addition of m products of ”digits” must be representable in one

word, i.e. nB2 is representable as a digit.

Useful for multiplication: if X =
∑n

i=0 xiB
i and Y =

∑n
i=0 yiB

i,

then Z = X × Y =
2n∑
i=0

ziB
i where zi =

∑
j+k=i

xj · yk.

Validation in scientific computing - Nathalie Revol 12 24-11-2006



Implementation using machine integers
addition and subtraction

Algorithms for the addition or subtraction = methods learnt at school:

• align the mantissas

• from right to left

• add or subtract the corresponding digits and propagate the carry.

Validation in scientific computing - Nathalie Revol 13 24-11-2006



Implementation using machine integers
addition and subtraction

Algorithms for the addition or subtraction

• align the mantissas

• naive method = add or subtract the corresponding digits

assumption: the sum or difference of two digits fits in a machine word

• normalize the computed result,

i.e. get a representation with digits between 0 and B − 1.

Validation in scientific computing - Nathalie Revol 14 24-11-2006



Implementation using machine integers
normalization

Go from X =
n∑

i=0

x̂iB
i to X =

n∑
i=0

xiB
i with 0 ≤ xi < B.

t0 = x̂0

for i = 0 . . . n− 1 do
xi = ti mod B

ti+1 = ti div B + x̂i+1

xn = tn

Validation in scientific computing - Nathalie Revol 15 24-11-2006



Implementation using machine integers
multiplication

Naive algorithm = school algorithm.

if X =
∑n

i=0 xiB
i and Y =

∑n
i=0 yiB

i,

then Z = X × Y =
2n∑
i=0

ziB
i where zi =

∑
j+k=i

xj · yk.

Of course, this representation of Z must be normalized, i.e. carries must

be handled.

Validation in scientific computing - Nathalie Revol 16 24-11-2006



Implementation using machine integers
complexity of the naive multiplication

• each digit of X is multiplied by each digit of Y : n2 products

• each digit of Z is the sum of l such products: O(n2) additions

⇒ overall complexity = O(n2)

In practice, difference between school method and algorithm: the sum of

the partial result and of the product of X by one digit of Y is done before

X is multiplied by the next digit of Y (better storage use).

For multiple precision, only the n first digits are needed. . . but most often

the 2n digits are computed.

Validation in scientific computing - Nathalie Revol 17 24-11-2006



Implementation using machine integers
faster multiplication: Karatsuba (Knuth version)

Let’s assume n is even and let’s decompose

X = XH ·Bn/2 + XL and Y = YH ·Bn/2 + YL.

Z = X · Y
= XH · YH ·Bn

+ [XH · YH − (XH −XL) · (YH − YL) + XL · YL] ·Bn/2

+XL · YL.

Only 3 multiplications of numbers of length n/2.

Recursively, one gets a complexity O(nlog2 3) = O(n1.585).

Validation in scientific computing - Nathalie Revol 18 24-11-2006



Implementation using machine integers
even faster multiplication: Toom-Cook

• split X and Y into k parts

• compute Z using 2k − 1 multiplications

• get a complexity O(nlogk(2k−1)).

Validation in scientific computing - Nathalie Revol 19 24-11-2006



Implementation using machine integers
fastest known multiplication

• algorithm due to Schönhage and Strassen (1971)

• inspired from FFT: Fast Fourier Transform

• complexity: O(n log n)

Validation in scientific computing - Nathalie Revol 20 24-11-2006



Implementation using machine integers
division and square root: Newton’s iteration

Newton’s iteration:
to solve f(x) = 0, compute the sequence xn+1 = xn − f(xn)

f ′(xn).

Advantages of Newton’s iteration:

• quadratic convergence: the number of correct digits roughly doubles

between xn and xn+1;

• auto-correction: computing errors made on xn do not modify the limit

of the sequence.

Consequence: double the computing precision at each iteration.

Complexity: complexity of the last iteration.

Validation in scientific computing - Nathalie Revol 21 24-11-2006



Implementation using machine integers
division: Newton’s iteration

Division:
solve f(x) = 1/x−A to compute the inverse of A.

The iteration is

xn+1 = xn(2−Axn).

Starting point: machine precision approximate inverse.

Validation in scientific computing - Nathalie Revol 22 24-11-2006



Implementation using machine integers
square root: Newton’s iteration

Square root:
solve f(x) = x2 −A to compute

√
A.

The iteration is

xn+1 =
1
2

(
xn +

A

xn

)
.

Better idea:

solve f(x) = 1/x2 −A to compute 1/
√

A and post-multiply by A.

The iteration is

xn+1 =
1
2
xn(3−Ax2

n).

Validation in scientific computing - Nathalie Revol 23 24-11-2006



Implementation using machine integers
elementary functions

Polynomial approximations:
domain reduction + Taylor expansions + reconstruction.

Validation in scientific computing - Nathalie Revol 24 24-11-2006



Implementation using machine integers
elementary functions

Example: exponential expx

• domain reduction: determine t and n such that n is an integer and

t = x−n ln 2
256 belongs to [−ln 2

512,
ln 2
512];

• Taylor expansion: exp t =
∑+∞

i=0
ti

i!

• reconstruction: expx = (exp t)256 · 2n, where (exp t)256 is obtained

through 8 successive squarings.

The logarithm is then obtained by Newton’s iteration.

Validation in scientific computing - Nathalie Revol 25 24-11-2006



Implementation using machine integers
elementary functions

Trigonometric functions:
use of the periodicity and of trigonometric identities to work on the

domain [− π
32,

π
32].

Inverse trigonometric functions:
Newton’s iteration applied to the trigonometric functions.

Validation in scientific computing - Nathalie Revol 26 24-11-2006



Implementation using machine integers
elementary functions

Arithmetic-geometric mean:
a0 = a

b0 = b

ai+1 = ai+bi
2

bi+1 =
√

aibi

Historical note: close to the method employed in Antiquity to compute

π: compute the length of regular polygons with 2n sides inscribed and

circonscribed to the unit circle.

Validation in scientific computing - Nathalie Revol 27 24-11-2006



Implementation using machine integers
elementary functions

Example: logarithm lnx

• domain reduction: determine s and m such that m is an integer and

s = x · 2m > 2n/2 where n is the precision;

• arithmetic-geometric mean of 1 and 4/s:

lnx ' π

2AG(1, 4/s)
−m ln 2

where π and ln 2 are also computed using AGMs;

The exponential is then obtained by Newton’s iteration.

Validation in scientific computing - Nathalie Revol 28 24-11-2006



Implementation using machine integers
complexity of evaluating elementary functions

Using the AGM, the complexity is the complexity of the multiplication

times a logarithmic factor.

Validation in scientific computing - Nathalie Revol 29 24-11-2006



Implementation using machine integers
algorithms in MPFR to evaluate elementary functions

with correct rounding

Validation in scientific computing - Nathalie Revol 30 24-11-2006



Implementation using machine floating-point numbers
Shewchuk’s expansions

Cf. Section 2 of Shewchuk’s paper (ref. on the Web page of this class).

Validation in scientific computing - Nathalie Revol 31 24-11-2006



Automatic adaptation of the computing precision

Computations done with precision p0 and computational time t0:

if the accuracy of the result is not sufficient, restart with precision p1 and

computational time t1 = f(t0);
if the accuracy of the result is not sufficient, restart with precision p2 and

computational time t2 = f(t1). . .

stop when the precision pfinal satisfies pfinal−1 < popt ≤ pfinal.

What is the best strategy to choose pi?
What is the best function f?

Validation in scientific computing - Nathalie Revol 32 24-11-2006



Automatic adaptation of the computing precision

Overhead:
ratio between the time spent: t0 + t1 + · · ·+ tfinal

and the optimal time topt.

Optimal strategy: choose pi+1 such that ti+1 = 2ti
Optimal overhead: ratio = 4.

Comments, limits:
the implicit assumption is that no previous computation can be used to

improve/speed up the next one.

Validation in scientific computing - Nathalie Revol 33 24-11-2006


	titre [0]

