Validation for scientific computations Interval arithmetic

Cours de recherche master informatique

Nathalie Revol
Nathalie.Revol@ens-lyon.fr

26 January 2007

References for today's lecture

- R. Moore: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
- A. Neumaier: Interval methods for systems of equations, CUP, 1990.
- E. Hansen and W. Walster: Global optimization using interval analysis, MIT Press, 2004.
- R.B. Kearfott: Rigorous global search: continuous problems, Kluwer, 1996.
- V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational Complexity and Feasibility of Data Processing and Interval Computations, Dordrecht, 1997.
- L.H. Figueiredo, J. Stolfi: Affine arithmetic http://www.ic. unicamp.br/~stolfi/EXPORT/projects/affine-arith/.
- Taylor models arith.: M. Berz and K. Makino, N. Nedialkov, M. Neher.

Historical remarks

Who invented Interval Arithmetic?

- Ramon Moore in 1962-1966 ?
- T. Sunaga in 1958 ?
- Rosalind Cecil Young in 1931 ?

Cf. http://www.cs.utep.edu/interval-comp/, click on Early papers.
Popularization in the 1980, German school (U. Kulisch).
IEEE-754 standard for floating-point arithmetic in 1985: directed roundings are standardized and available (?).

Since the nineties: interval algorithms.

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:
(or "Thou shalt not lie"): the exact result (number or set) is contained in the computed interval.

No result is lost, the computed interval is guaranteed to contain every possible result.

A brief introduction

Interval Arithmetic and validated scientific computing: two directions

1. replace floating-point arithmetic by interval arithmetic to bound from above roundoff errors;
2. replace floating-point arithmetic and algorithms by interval ones to compute guaranteed enclosures.

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Initially: introduced to take into account roundoff errors (Moore 1966) and also uncertainties (on the physical data. . .).
Then: computations "in the large", computations with sets.

Interval analysis: develop algorithms for reliable (or verified, or guaranteed) computing, that are suited for interval arithmetic, i.e. different from the algorithms from classical numerical analysis.

A brief introduction: examples of applications

- control the roundoff errors, cf. computational geometry
- solve several problems with verified solutions: linear and nonlinear systems of equations and inequations, constraints satisfaction, (non/convex, un/constrained) global optimization, integrate ODEs e.g. particules trajectories. . .
- mathematical proofs: cf. Hales' proof of the Kepler's conjecture

Cf. http://www.cs.utep.edu/interval-comp/

Agenda

- Definitions of interval arithmetic (operations, function extensions)
- Cons (overestimation, complexity) and pros (contractant iterations: Brouwer's theorem)
- Some algorithms
- solving linear systems
- Newton
- global optimization wo/with constraints
- constraints programming
- Variants: affine arithmetic, Taylor models arithmetic

Agenda

- Definitions of interval arithmetic (operations, function extensions)
- Cons (overestimation, complexity) and pros (contractant iterations: Brouwer's theorem)
- Some algorithms
- solving linear systems
- Newton
- global optimization wo/with constraints
- constraints programming
- Variants: affine arithmetic, Taylor models arithmetic

Definitions: intervals

Objects:

- intervals of real numbers $=$ closed connected sets of \mathbb{R}
- interval for π : [3.14159, 3.14160]
- data d measured with an absolute error less than $\pm \varepsilon$: $[d-\varepsilon, d+\varepsilon]$
- interval vector: components = intervals; also called box

- interval matrix: components $=$ intervals.

Definitions: operations

$\boldsymbol{x} \diamond \boldsymbol{y}=\boldsymbol{H u l l}\{x \diamond y: x \in \boldsymbol{x}, y \in \boldsymbol{y}\}$
Arithmetic and algebraic operations: use the monotony

$$
\begin{aligned}
{[\underline{x}, \bar{x}]+[\underline{y}, \bar{y}] } & =[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
{[\underline{x}, \bar{x}]-[\underline{y}, \bar{y}] } & =[\underline{x}-\bar{y}, \bar{x}-\underline{y}] \\
\underline{x}, \bar{x}] \times[\underline{y}, \bar{y}] & =[\min (\underline{x} \times \underline{y}, \underline{x} \times \bar{y}, \bar{x} \times \underline{y}, \bar{x} \times \bar{y}), \max (\text { ibid. })] \\
& =\left[\min \left(\underline{x}^{2}, \bar{x}^{2}\right), \max \left(\underline{x}^{2}, \bar{x}^{2}\right)\right] \text { if } 0 \notin[\underline{x}, \bar{x}] \\
& {\left[0, \max \left(\underline{x}^{2}, \bar{x}^{2}\right)\right] \text { otherwise } } \\
1 /[\bar{y}, \bar{y}] & =[\min (1 / \underline{y}, 1 / \bar{y}), \max (1 / \underline{y}, 1 / \bar{y})] \text { if } 0 \notin[\underline{y}, \bar{y}] \\
\underline{x}, \bar{x}] /[\underline{y}, \bar{y}] & =[\underline{x}, \bar{x}] \times(1 /[\underline{y}, \bar{y}]) \text { if } 0 \notin[y, \bar{y}] \\
\sqrt{[\underline{x}, \bar{x}]} & =[\sqrt{x}, \sqrt{\bar{x}}] \text { if } 0 \leq \underline{x},[0, \sqrt{\bar{x}}] \text { otherwise }
\end{aligned}
$$

Definitions: operations

Algebraic properties: associativity, commutativity hold, some are lost:

- subtraction is not the inverse of addition, in particular $\boldsymbol{x}-\boldsymbol{x} \neq[0]$
- division is not the inverse of multiplication
- squaring is tighter than multiplication by oneself
- multiplication is only sub-distributive wrt addition

Definitions: functions

Definition:

an interval extension f of a function f satisfies

$$
\forall \boldsymbol{x}, f(\boldsymbol{x}) \subset \boldsymbol{f}(\boldsymbol{x}), \text { and } \forall x, f(\{x\})=\boldsymbol{f}(\{x\}) .
$$

Elementary functions: again, use the monotony.

$$
\begin{array}{ll}
\exp \boldsymbol{x} & =[\exp \underline{x}, \exp \bar{x}] \\
\log \boldsymbol{x} & =[\log \underline{x}, \log \bar{x}] \text { if } \underline{x} \geq 0,[-\infty, \log \bar{x}] \text { if } \bar{x}>0 \\
\sin [\pi / 6,2 \pi / 3] & =[1 / 2,1]
\end{array}
$$

Definitions: function extension

Example: $f(x)=x^{2}-x+1$ with $x \in[-2,1]$.
$[-2,1]^{2}-[-2,1]+1=[0,4]+[-1,2]+1=[0,7]$.
Since $x^{2}-x+1=x(x-1)+1$, we get $[-2,1] \cdot([-2,1]-1)+1=$ $[-2,1] \cdot[-3,0]+1=[-3,6]+1=[-2,7]$.
Since $x^{2}-x+1=(x-1 / 2)^{2}+3 / 4$, we get $([-2,1]-1 / 2)^{2}+3 / 4=$ $[-5 / 2,1 / 2]^{2}+3 / 4=[0,25 / 4]+3 / 4=[3 / 4,7]=f([-2,1])$.

Problem with this definition: infinitely many interval extensions, syntactic use (instead of semantic).
How to choose the best extension? How to choose a good one?

Definitions: function extension

Mean value theorem of order 1 (Taylor expansion of order 1):
$\forall x, \forall y, \exists \xi_{x, y} \in(x, y): f(y)=f(x)+(y-x) \cdot f^{\prime}\left(\xi_{x, y}\right)$
Interval interpretation:
$\forall y \in \boldsymbol{x}, \forall \tilde{x} \in \boldsymbol{x}, f(y) \in f(\tilde{x})+(y-\tilde{x}) \cdot \boldsymbol{f}^{\prime}(\boldsymbol{x})$
$\Rightarrow f(\boldsymbol{x}) \subset f(\tilde{x})+(\boldsymbol{x}-\tilde{x}) \cdot \boldsymbol{f}^{\prime}(\boldsymbol{x})$
Mean value theorem of order 2 (Taylor expansion of order 2):
$\forall x, \forall y, \exists \xi_{x, y} \in(x, y): f(y)=f(x)+(y-x) \cdot f^{\prime}(x)+\frac{(y-x)^{2}}{2} \cdot f^{\prime \prime}\left(\xi_{x, y}\right)$ Interval interpretation:
$\forall y \in \boldsymbol{x}, \forall \tilde{x} \in \boldsymbol{x}, f(y) \in f(\tilde{x})+(y-\tilde{x}) \cdot f^{\prime}(\tilde{x})+\frac{(y-\tilde{x})^{2}}{2} \cdot \boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$
$\Rightarrow f(\boldsymbol{x}) \subset f(\tilde{x})+(\boldsymbol{x}-\tilde{x}) \cdot f^{\prime}(\tilde{x})+\frac{(\boldsymbol{x}-\tilde{x})^{2}}{2} \cdot \boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$

Definitions: function extension

No need to go further:

- it is difficult to compute (automatically) the derivatives of higher order, especially for multivariate functions;
- there is no (theoretical) gain in quality.

Theorem:

- for the natural extension \boldsymbol{f} of f, it holds $d(f(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{x})) \leq \mathcal{O}(w(\boldsymbol{x}))$
- for the first order Taylor extension $f_{T_{1}}$ of f, it holds $d\left(f(\boldsymbol{x}), \boldsymbol{f}_{\boldsymbol{T}_{1}}(\boldsymbol{x})\right) \leq \mathcal{O}\left(w(\boldsymbol{x})^{2}\right)$
- getting an order higher than 3 is impossible without the squaring operation, is difficult even with it. . .

Agenda

- Definitions of interval arithmetic (operations, function extensions)
- Cons (overestimation, complexity) and pros (contractant iterations: Brouwer's theorem)
- Some algorithms
- solving linear systems
- Newton
- global optimization wo/with constraints
- constraints programming
- Variants: affine arithmetic, Taylor models arithmetic

Cons: overestimation (1/2)

The result encloses the true result, but it is too large: overestimation phenomenon.
Two main sources: variable dependency and wrapping effect.
(Loss of) Variable dependency:

$$
\boldsymbol{x}-\boldsymbol{x}=\{x-y: x \in \boldsymbol{x}, y \in \boldsymbol{x}\} \neq\{x-x: x \in \boldsymbol{x}\}=\{0\} .
$$

Cons: overestimation (2/2)

2 successives rotations of $\pi / 4$ of the little central square

Cons: Complexity: almost every problem is NP-hard

Gaganov 1982, Rohn 1994 ff, Kreinovich. . .

- evaluate a function on a box (cartesian product of intervals)
- evaluate a function on a box up to ε
- solve a linear system
- solve a linear system up to $1 / 4 n^{4}$ ($n=\operatorname{dim}$. of the system)
- determine if the solution of a linear system is bounded
- compute the matrix norm $\|\boldsymbol{A}\|_{\infty, 1}$
- determine if an interval matrix (= a matrix with interval coefficients) is regular, i.e. if every possible punctual matrix in it is regular

Cons: Complexity: Gaganov 1982

evaluation of a multivariate polynomial with rational coeff. on a box is NP-hard

Idea: reduce polynomially the CNF-3 problem to this problem. On n boolean variables q_{1}, \cdots, q_{n}, a formula f in CNF-3 is defined by

$$
f=\bigwedge_{i=1}^{m} f_{i} \text { with } f_{i}=\bigvee_{j=1}^{1,2 o r 3} r_{i, j}
$$

with $r_{i, j}=q_{k_{i, j}}$ or $r_{i, j}=\neg q_{k_{i, j}}$.

1. to each boolean variable q_{i}, let us associate a real variable $x_{i} \in[0,1]$. Meaning: $x_{i}=0$ if $q_{i}=F$ and $x_{i}=1$ if $q_{i}=T$.

* Goal: get a polynomial which takes only values in $[0,1]$
i.e. allow only product of terms or sums of the form ($1-$ term).

A product corresponds to a conjunction and $1-x$ to a negation
\Rightarrow express f and the f_{i} using conjonctions and negations
\Rightarrow express the f_{i} as $\neg \bigwedge_{j=1}^{1,2 o r 3} \neg r_{i, j}$.
2. to each $r_{i, j}$ let us associate a polynomial $y_{i, j}$ (corresponding to the negation of $r_{i, j}$) defined by

$$
\begin{aligned}
r_{i, j} & =q_{k_{i, j}} \rightarrow y_{i, j}(x)=1-x_{k_{i, j}} \\
r_{i, j} & =\neg q_{k_{i, j}}
\end{aligned} \rightarrow y_{i, j}(x)=x_{k_{i, j}}
$$

3. to each f_{i}, let us associate a polynomial p_{i} (corresponding to the negation of f_{i}) defined by $f_{i}=\bigwedge r_{i, j} \rightarrow p_{i}(x)=\prod y_{i, j}(x)$.
4. to f, let us associate the polynomial p defined by $f=\bigwedge_{i=1}^{m} f_{i} \rightarrow$ $p(x)=\prod_{i=1}^{m}\left(1-p_{i}(x)\right)$.

Cons: Complexity: Gaganov 1982

evaluation of a multivariate polynomial with rational coeff. on a box is NP-hard

Lemma:

1. $\forall x \in[0,1], p(x) \in[0,1]$.
2. if α is a boolean vector and β is the associated $0-1$ vector, then

$$
\begin{aligned}
& f(\alpha)=T \Rightarrow p(\beta)=1 \\
& f(\alpha)=F \Rightarrow p(\beta)=0 .
\end{aligned}
$$

3. if f is not feasible, then $\forall x \in[0,1]^{n}, p(x) \leq 7 / 8$.

Proof of (3): (proving (1) and (2) is easy).
$\forall x \in[0,1]^{n}$, let us consider β the $0-1$ vector obtained by rounding x to the nearest.
Since f is not feasible, $p(\beta)=0$.
Since $p(x)=\prod_{i=1}^{m}\left(1-p_{i}(x)\right), \exists i_{0}$ such that $1-p_{i_{0}}(\beta)=0$.
One can prove that $p_{i_{0}}(x) \geq 1 / 8$, using the fact that it is the product of at most three terms, each of them $\leq 1 / 2$, using the fact that β is the rounding to nearest of x. Thus $1-p_{i_{0}}(x) \leq 7 / 8$.
The remaining factors $1-p_{j}(x)$ are less or equal to 1 .
Thus $p(x)=\prod_{i=1}^{m}\left(1-p_{i}(x)\right) \leq 7 / 8$.
Consequence: since checking the feasibility of a CNF-3 formula is NPhard, evaluating a multivariate polynomial (up to a small ε) is NP-hard.

Pros: set computing

Behaviour safe? controllable? dangerous?

always controllable.

On \boldsymbol{x}, are the extrema of the function f
$>f^{1},<f_{2}$?

No if $f(\boldsymbol{x})=[\underline{f}, \bar{f}] \subset\left[f_{2}, f^{1}\right]$.

Pros: Brouwer-Schauder theorem

A function f which is continuous on the unit ball B and which satisfies $f(B) \subset B$ has a fixed point on B.
Furthermore, if $f(B) \subset \operatorname{int} B$ then f has a unique fixed point on B.

The theorem remains valid if B is replaced by a box K.

Agenda

- Definitions of interval arithmetic (operations, function extensions)
- Cons (overestimation, complexity) and pros (contractant iterations: Brouwer's theorem)
- Some algorithms
- solving linear systems
- Newton
- global optimization wo/with constraints
- constraints programming
- Variants: affine arithmetic, Taylor models arithmetic

Algorithm: linear systems solving (Hansen-Sengupta)

Problem: solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ or equivalently:

$$
\boldsymbol{A}_{i, 1} \boldsymbol{x}_{1}+\ldots+\boldsymbol{A}_{i, i} \boldsymbol{x}_{i}+\ldots+\boldsymbol{A}_{i, n} \boldsymbol{x}_{n}=\boldsymbol{b}_{i} \text { for } 1 \leq i \leq n
$$

Determine Hull $\left(\Sigma_{\exists \exists}(\boldsymbol{A}, \boldsymbol{b})\right)=\operatorname{Hull}(\{x: \exists A \in \boldsymbol{A}, \exists b \in \boldsymbol{b}, A x=b\})$.
Pre-processing: multiply the system by an approximate $\operatorname{mid}(\boldsymbol{A})^{-1}$.
New system $=\operatorname{mid}(\boldsymbol{A})^{-1} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. Hope: contracting iteration.
Algorithm: apply Gauss-Seidel iteration while convergence not reached loop

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \boldsymbol{x}_{i}:=\left(\boldsymbol{b}_{i}-\sum_{j \neq i} \boldsymbol{A}_{i, j} \boldsymbol{x}_{j}\right) / \boldsymbol{A}_{i, i}
\end{aligned}
$$

Algorithm: solving a nonlinear system: Newton Why a specific iteration for interval computations?

Usual formula:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Direct interval transposition:

$$
\begin{gathered}
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{f\left(\boldsymbol{x}_{k}\right)}{f^{\prime}\left(\boldsymbol{x}_{k}\right)} \\
w\left(\boldsymbol{x}_{k+1}\right)=w\left(\boldsymbol{x}_{k}\right)+w\left(\frac{f\left(\boldsymbol{x}_{k}\right)}{f^{\prime}\left(\boldsymbol{x}_{k}\right)}\right)>w\left(\boldsymbol{x}_{k}\right)
\end{gathered}
$$

divergence!

Algorithm: interval Newton principle of an iteration

(Hansen \& Greenberg 83, Baker Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)

Algorithm: interval Newton principle of an iteration

Algorithm: interval Newton

Input: $F, F^{\prime}, x_{0} \quad / / x_{0}$ initial search interval
Initialization: $\mathcal{L}=\left\{x_{0}\right\}, \alpha=0.75 \quad$ //any value in $] 0.5,1[$ is suitable Loop: while $\mathcal{L} \neq \emptyset$
Suppress ($\boldsymbol{x}, \mathcal{L}$)
$x:=\operatorname{mid}(x)$
$\left(x_{1}, x_{2}\right):=\left(x-\frac{F(\{x\})}{F^{\prime}(x)}\right) \cap x \quad / / x_{1}$ and x_{2} can be empty
if $w\left(\boldsymbol{x}_{1}\right)>\alpha w(\boldsymbol{x})$ or $w\left(\boldsymbol{x}_{2}\right)>\alpha w(\boldsymbol{x})$ then $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right):=\operatorname{bisect}(\boldsymbol{x})$
if $x_{1} \neq \emptyset$ and $F\left(x_{1}\right) \ni 0$ then
if $w\left(\boldsymbol{x}_{1}\right) /\left|\operatorname{mid}\left(\boldsymbol{x}_{1}\right)\right| \leq \varepsilon_{x}$ or $w\left(F\left(\boldsymbol{x}_{1}\right)\right) \leq \varepsilon_{Y}$ then Insert \boldsymbol{x}_{1} in Res
else Insert x_{1} in \mathcal{L}
same handling of x_{2}
Output: Res, a list of intervals that may contain the roots.

Algorithm: interval Newton

Existence and uniqueness of properties \mathbf{a} root are proven:
if there is no hole and if the new iterate (before \bigcap) is contained in the interior of the previous one.

Existence of a root is proven:

- using the mean value theorem:

OK if $f(\inf (\boldsymbol{x}))$ and $f(\sup (\boldsymbol{x}))$ have opposite signs.
(Miranda theorem in higher dimensions).

- using Schauder theorem: if the new iterate (before \bigcap) in contained in the previous one.

Algorithm: optimize a continuous function

Problem: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, determine x^{*} and f^{*} that verify

$$
f^{*}=f\left(x^{*}\right)=\min _{x} f(x)
$$

Assumptions:

- search within a box x_{0}
- $x^{*} \in$ in the interior of $\left(x_{0}\right)$, not at the boundary
- f continuous enough: \mathcal{C}^{2}

Algorithm: optimize a continuous function

(Ratschek and Rokne 1988, Hansen 1992, Kearfott 1996. . .)
Goal: determine the minimum of f, continuous function on a box x_{0}.
x_{0} current box
\bar{f} current upper bound of f^{*}
while there is a box in the waiting list
if $f(\boldsymbol{x})>\bar{f}$ then

$$
\text { reject } \boldsymbol{x}
$$

otherwise
update \bar{f} : if $f(\operatorname{mid}(\boldsymbol{x}))<\bar{f}$ then $\bar{f}=f(\operatorname{mid}(\boldsymbol{x}))$
bisect \boldsymbol{x} into \boldsymbol{x}_{1} and \boldsymbol{x}_{2}
examine \boldsymbol{x}_{1} and \boldsymbol{x}_{2}

Algorithm: optimize a continuous function the rejection procedure

Algorithm: optimize a continuous function the reduction procedure

Algorithm: optimize a continuous function

Hansen algorithm Hansen 1992
$\mathcal{L}=$ list of not yet examined boxes $:=\left\{x_{0}\right\}$
while $\mathcal{L} \neq \emptyset$ loop
remove \boldsymbol{x} from \mathcal{L}
reject x ?
yes if $f(\boldsymbol{x})>\bar{f}$
yes if $\operatorname{Grad} f(\boldsymbol{x}) \not \supset 0$
yes if $H f(\boldsymbol{x})$ has its diagonal non >0
reduce \boldsymbol{x}
Newton applied to the gradient
solve $\boldsymbol{y} \subset \boldsymbol{x}$ such that $f(\boldsymbol{y}) \leq \bar{f}$
bisect y : insert the resulting \boldsymbol{y}_{1} and \boldsymbol{y}_{2} in \mathcal{L}

Algorithm: constrained optimization

Problem: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, determine x^{*} and f^{*} that verify

$$
f^{*}=f\left(x^{*}\right)=\min _{\{x \mid c(x) \leq 0\}} f(x)
$$

Assumptions:

- search within a box x_{0}
- f continuous enough: \mathcal{C}^{2}
- c continuous enough: \mathcal{C}^{1}

Algorithm: constrained optimization $c(x) \leq 0$ the rejection procedure

Algorithm: constrained optimization $c(x) \leq 0$ the reduction procedure

Algorithm: constrained optimization $c(x) \leq 0$

```
L :={\mp@subsup{\boldsymbol{x}}{0}{}}
while }\mathcal{L}\not=\emptyset\mathrm{ loop
    remove }\boldsymbol{x}\mathrm{ from }\mathcal{L
    reject }x\mathrm{ ?
        yes if f(\boldsymbol{x})>\overline{f}
yes if Gradf(x)\not\supset0
yes if f not convex on x
    reduce }
    solve }\boldsymbol{y}\subset\boldsymbol{x}|f(\boldsymbol{y})\leq\overline{f
    Newton applied to the gradient
    bisect }\boldsymbol{y}\mathrm{ into }\mp@subsup{\boldsymbol{y}}{1}{}\mathrm{ and }\mp@subsup{\boldsymbol{y}}{2}{
    insert \mp@subsup{\boldsymbol{y}}{1}{}}\mathrm{ and }\mp@subsup{\boldsymbol{y}}{2}{}\mathrm{ in }\mathcal{L
```

'solve $\boldsymbol{y} \subset \boldsymbol{x}$ such that $c(\boldsymbol{y})$ Newton applied to the Lagran bisect \boldsymbol{y} into \boldsymbol{y}_{1} and \boldsymbol{y}_{2} insert \boldsymbol{y}_{1} and \boldsymbol{y}_{2} in \mathcal{L}

Algorithm: constraints programming

Cleary 1987, Benhamou et al. 1999, Jaulin et al. 2001

Problem:

$$
\left\{\begin{array}{l}
c_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
c_{p}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

expressed as:

$$
\begin{array}{rlr}
y_{i} & =x_{i} \quad \text { for } 1 \leq i \leq n \\
y_{k} & =y_{i} \diamond y_{j} \quad \text { for } n+1 \leq k \leq m \text { and } i, j<k \\
& & y_{k} \text { auxiliary variable } \\
\text { where } \quad y_{k} & =\varphi\left(y_{i}\right) \quad \text { for } n+1 \leq k \leq m \text { and } i<k
\end{array}
$$

Algorithm: constraints programming

Initializations: $\boldsymbol{y}_{1}:=\boldsymbol{x}_{1}, \ldots, \boldsymbol{y}_{n}:=\boldsymbol{x}_{n}$
Propagation: forward mode
for $k=n+1$ to m loop

$$
\boldsymbol{y}_{k}:=\boldsymbol{y}_{i} \diamond \boldsymbol{y}_{j} \text { or } \boldsymbol{y}_{k}:=\varphi\left(\boldsymbol{y}_{i}\right)
$$

Propagation: backward mode for $k=m$ to n loop
if \boldsymbol{y}_{k} is defined as $\boldsymbol{y}_{i} \diamond \boldsymbol{y}_{j}$ then

$$
\begin{aligned}
& \boldsymbol{y}_{i}:=\left(\boldsymbol{y}_{k} \diamond^{-r} \boldsymbol{y}_{j}\right) \cap \boldsymbol{y}_{i} \\
& \boldsymbol{y}_{j}:=\left(\boldsymbol{y}_{i} \diamond^{-l} \boldsymbol{y}_{k}\right) \cap \boldsymbol{y}_{j}
\end{aligned}
$$

else if \boldsymbol{y}_{k} is defined as $\varphi\left(\boldsymbol{y}_{i}\right)$ then

$$
\boldsymbol{y}_{i}:=\varphi^{-1}\left(\boldsymbol{y}_{k}\right) \cap \boldsymbol{y}_{i}
$$

$$
\text { Algorithm: constraints programming: }\left\{\begin{array}{l}
x_{1} x_{2}^{2}-2 x_{3}=0 \\
\cos x_{1}+x_{3}=0
\end{array}\right.
$$

$\boldsymbol{x}_{1}=[0,2 \pi / 3], \boldsymbol{x}_{2}=[-1,1], \boldsymbol{x}_{3}=[-1 / 2,3]$
iter. 1 : forward $y_{4}=y_{2}^{2}$

$$
y_{5}=y_{1} y_{4}
$$

$$
\boldsymbol{y}_{6}=2 \boldsymbol{y}_{3}
$$

$$
y_{7}=y_{5}-y_{6}
$$

$$
\boldsymbol{y}_{8}=\cos \boldsymbol{y}_{1}
$$

$$
\boldsymbol{y}_{9}=\boldsymbol{y}_{8}+\boldsymbol{y}_{3}
$$

backward

$$
\begin{aligned}
& \boldsymbol{y}_{9}=\boldsymbol{y}_{8}+\boldsymbol{y}_{3} \\
& \boldsymbol{y}_{8}=\cos \boldsymbol{y}_{1} \\
& \boldsymbol{y}_{7}=\boldsymbol{y}_{5}-\boldsymbol{y}_{6} \\
& \boldsymbol{y}_{6}=2 \boldsymbol{y}_{3} \\
& \boldsymbol{y}_{5}=\boldsymbol{y}_{1} \boldsymbol{y}_{4} \\
& \boldsymbol{y}_{4}=\boldsymbol{y}_{2}^{2}
\end{aligned}
$$

$\boldsymbol{y}_{1}=[0,2 \pi / 3], \boldsymbol{y}_{2}=[-1,1], \boldsymbol{y}_{3}=[-1 / 2,3]$
$\boldsymbol{y}_{4}=[0,1]$
$\boldsymbol{y}_{5}=[0,2 \pi / 3]$
$\boldsymbol{y}_{6}=[-1,6]$
$\boldsymbol{y}_{7}=[-6,1+2 \pi / 3] \ni 0$
$\boldsymbol{y}_{8}=[-1 / 2,1]$
$\boldsymbol{y}_{9}=[-1,4] \ni 0$
$\left\{\begin{array}{l}\boldsymbol{y}_{8}=\left(\boldsymbol{y}_{9}-\boldsymbol{y}_{3}\right) \cap \boldsymbol{y}_{8}=[-1 / 2,1 / 2] \\ \boldsymbol{y}_{3}=\left(\boldsymbol{y}_{9}-\boldsymbol{y}_{8}\right) \cap \boldsymbol{y}_{3}=[-1 / 2,1 / 2]\end{array}\right.$
$\boldsymbol{y}_{1}=\cos ^{-1} \boldsymbol{y}_{8} \cap \boldsymbol{y}_{1}=[\pi / 3,2 \pi / 3]$
$\left\{\begin{array}{l}\boldsymbol{y}_{5}=\left(\boldsymbol{y}_{7}+\boldsymbol{y}_{6}\right) \cap \boldsymbol{y}_{5}=[0,2 \pi / 3] \\ \boldsymbol{y}_{6}=\left(\boldsymbol{y}_{5}-\boldsymbol{y}_{7}\right) \cap \boldsymbol{y}_{6}=[0,2 \pi / 3]\end{array}\right.$
$\boldsymbol{y}_{3}=\left(1 / 2 \boldsymbol{y}_{6}\right) \cap \boldsymbol{y}_{3}=[0,1 / 2]$
$\left\{\begin{array}{l}\boldsymbol{y}_{1}=\left(\boldsymbol{y}_{5} / \boldsymbol{y}_{4}\right) \cap \boldsymbol{y}_{1}=[\pi / 3,2 \pi / 3] \\ \boldsymbol{y}_{4}=\left(\boldsymbol{y}_{5} / \boldsymbol{y}_{1}\right) \cap \boldsymbol{y}_{4}=[0,1]\end{array}\right.$
$\boldsymbol{y}_{2}= \pm \sqrt{\boldsymbol{y}_{4}} \cap \boldsymbol{y}_{2}=[-1,1]$

$$
\text { Algorithm: constraints programming: }\left\{\begin{array}{l}
x_{1} x_{2}^{2}-2 x_{3}=0 \\
\cos x_{1}+x_{3}=0
\end{array}\right.
$$

$$
x_{1}=\left[0, \frac{2 \pi}{3}\right], x_{2}=[-1,1], x_{3}=\left[-\frac{1}{2}, 3\right]
$$

iter. 2: forward $y_{4}=y_{2}^{2}$

$$
\begin{aligned}
& y_{5}=y_{1} y_{4} \\
& y_{6}=2 y_{3} \\
& y_{8}=\cos y_{1}
\end{aligned}
$$

backward \quad| $y_{9}=\boldsymbol{y}_{8}+\boldsymbol{y}_{3}$ |
| :--- |
| $y_{8}=\cos \boldsymbol{y}_{1}$ |
| $\boldsymbol{y}_{7}=\boldsymbol{y}_{5}-\boldsymbol{y}_{6}$ |
| $\boldsymbol{y}_{6}=2 \boldsymbol{y}_{3}$ |
| $y_{5}=\boldsymbol{y}_{1} \boldsymbol{y}_{4}$ |
| $\boldsymbol{y}_{4}=\boldsymbol{y}_{2}^{2}$ |

$$
x_{1}=\left[0, \frac{2 \pi}{3}\right], x_{2}=[-1,1], x_{3}=\left[-\frac{1}{2}, 3\right]
$$

$$
\left.\left.\begin{array}{l}
\boldsymbol{y}_{1}=\left[\frac{\pi}{3}, \frac{2 \pi}{3}\right], \boldsymbol{y}_{2}=[-1,1], \boldsymbol{y}_{3}=\left[0, \frac{1}{2}\right] \\
\boldsymbol{y}_{4}=[0,1], \boldsymbol{y}_{5}=[0,2 \pi / 3], \boldsymbol{y}_{6}=[0,1] \\
\boldsymbol{y}_{7}=0, \boldsymbol{y}_{8}=[-1 / 2,1 / 2], \boldsymbol{y}_{9}=0 \\
\boldsymbol{y}_{4}=[0,1] \\
\boldsymbol{y}_{5}=[0,2 \pi / 3] \\
\boldsymbol{y}_{6}=[0,1] \\
\boldsymbol{y}_{8}=[-1 / 2,1 / 2] \\
\left\{\begin{array}{c}
\boldsymbol{y}_{8}=\left(\boldsymbol{y}_{9}-\boldsymbol{y}_{3}\right) \cap \boldsymbol{y}_{8}=[-1 / 2,0] \\
\boldsymbol{y}_{3}=\left(\boldsymbol{y}_{9}-\boldsymbol{y}_{8}\right) \cap \boldsymbol{y}_{3}=[0,1 / 2]
\end{array}\right. \\
\boldsymbol{y}_{1}=\cos ^{-1} \boldsymbol{y}_{8} \cap \boldsymbol{y}_{1}=[\pi / 2,2 \pi / 3]
\end{array}\right\} \begin{array}{l}
\boldsymbol{y}_{5}=\left(\boldsymbol{y}_{7}+\boldsymbol{y}_{6}\right) \cap \boldsymbol{y}_{5}=[0,1] \\
\boldsymbol{y}_{6}=\left(\boldsymbol{y}_{5}-\boldsymbol{y}_{7}\right) \cap \boldsymbol{y}_{6}=[0,1]
\end{array} \boldsymbol{y}_{3}=\left(1 / 2 \boldsymbol{y}_{6}\right) \cap \boldsymbol{y}_{3}=[0,1 / 2] \begin{array}{l}
\text { an }
\end{array}\right]
$$

$$
\text { Problem: }\left\{\begin{array}{l}
x_{1} x_{2}^{2}-2 x_{3}=0 \\
\cos x_{1}+x_{3}=0
\end{array}\right.
$$

with $\boldsymbol{x}_{1}=\left[0, \frac{2 \pi}{3}\right], \boldsymbol{x}_{2}=[-1,1], \boldsymbol{x}_{3}=\left[-\frac{1}{2}, 3\right]$.

Optimal solution obtained after two iterations:
$\boldsymbol{x}_{1}=\left[\frac{\pi}{2}, \frac{2 \pi}{3}\right], \boldsymbol{x}_{2}=\left[-\sqrt{\frac{2}{\pi}}, \sqrt{\frac{2}{\pi}}\right], \boldsymbol{x}_{3}=\left[0, \frac{1}{2}\right]$.

Agenda

- Definitions of interval arithmetic (operations, function extensions)
- Cons (overestimation, complexity) and pros (contractant iterations: Brouwer's theorem)
- Some algorithms
- solving linear systems
- Newton
- global optimization wo/with constraints
- constraints programming
- Variants: affine arithmetic, Taylor models arithmetic

Conclusions

Interval algorithms

- can solve problems that other techniques are not able to solve
- is a simple version of set computing
- give effective versions of theorems which did not seem to be effective (Brouwer)
- can determine all zeros or all extrema of a continuous function
- overestimate the result
- is less efficient than floating-point arithmetic (theoretical factor: 4, practical factor: 20)
\Rightarrow solve "small" problems.

Philosophical conclusion

Morale

- forget one's biases:
- do not use without thinking algorithms which are supposed to be good ones (Newton)
- do not reject without thinking algorithm which are supposed to be bad ones (Gauss-Seidel)
- prefer contracting iterations whenever possible

