
Validation for scientific computations
Interval arithmetic

Cours de recherche master informatique
Nathalie Revol

Nathalie.Revol@ens-lyon.fr

26 January 2007

References for today’s lecture

• R. Moore: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
• A. Neumaier: Interval methods for systems of equations, CUP, 1990.
• E. Hansen and W. Walster: Global optimization using interval

analysis, MIT Press, 2004.
• R.B. Kearfott: Rigorous global search: continuous problems, Kluwer,

1996.
• V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational

Complexity and Feasibility of Data Processing and Interval
Computations, Dordrecht, 1997.

• L.H. Figueiredo, J. Stolfi: Affine arithmetic http://www.ic.
unicamp.br/∼stolfi/EXPORT/projects/affine-arith/.

• Taylor models arith.: M. Berz and K. Makino, N. Nedialkov, M. Neher.

Validation in scientific computing - Nathalie Revol 1 26-01-2007

http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/

Historical remarks
Who invented Interval Arithmetic?

• Ramon Moore in 1962 - 1966 ?

• T. Sunaga in 1958 ?

• Rosalind Cecil Young in 1931 ?

Cf. http://www.cs.utep.edu/interval-comp/, click on Early papers.

Popularization in the 1980, German school (U. Kulisch).

IEEE-754 standard for floating-point arithmetic in 1985: directed

roundings are standardized and available (?).

Since the nineties: interval algorithms.

Validation in scientific computing - Nathalie Revol 2 26-01-2007

http://www.cs.utep.edu/interval-comp/

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:
(or “Thou shalt not lie”):
the exact result (number or set) is contained in the computed interval.

No result is lost, the computed interval is guaranteed to contain every

possible result.

Validation in scientific computing - Nathalie Revol 3 26-01-2007

A brief introduction

Interval Arithmetic and validated scientific computing:
two directions

1. replace floating-point arithmetic by interval arithmetic to bound from

above roundoff errors;

2. replace floating-point arithmetic and algorithms by interval ones to

compute guaranteed enclosures.

Validation in scientific computing - Nathalie Revol 4 26-01-2007

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Initially: introduced to take into account roundoff errors (Moore 1966)

and also uncertainties (on the physical data. . .).

Then: computations “in the large”, computations with sets.

Interval analysis: develop algorithms for reliable (or verified, or
guaranteed) computing,

that are suited for interval arithmetic,

i.e. different from the algorithms from classical numerical analysis.

Validation in scientific computing - Nathalie Revol 5 26-01-2007

A brief introduction: examples of applications

• control the roundoff errors, cf. computational geometry

• solve several problems with verified solutions: linear and nonlinear

systems of equations and inequations, constraints satisfaction,

(non/convex, un/constrained) global optimization, integrate ODEs e.g.

particules trajectories. . .

• mathematical proofs: cf. Hales’ proof of the Kepler’s conjecture

Cf. http://www.cs.utep.edu/interval-comp/

Validation in scientific computing - Nathalie Revol 6 26-01-2007

http://www.cs.utep.edu/interval-comp/

Agenda

• Definitions of interval arithmetic (operations, function extensions)

• Cons (overestimation, complexity)

and pros (contractant iterations: Brouwer’s theorem)

• Some algorithms

− solving linear systems
− Newton
− global optimization wo/with constraints
− constraints programming

• Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 7 26-01-2007

Agenda

• Definitions of interval arithmetic (operations, function extensions)

• Cons (overestimation, complexity)

and pros (contractant iterations: Brouwer’s theorem)

• Some algorithms

− solving linear systems
− Newton
− global optimization wo/with constraints
− constraints programming

• Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 8 26-01-2007

Definitions: intervals
Objects:

• intervals of real numbers = closed connected sets of R

− interval for π: [3.14159, 3.14160]
− data d measured with an absolute error less than ±ε: [d− ε, d + ε]
• interval vector: components = intervals; also called box

5

4

0 2

0 2
4

4.5

0 2
−6

−5

[0 ; 2]
[0 ; 2]

[4 ; 5]

[0;2]
[4 ; 4.5]
[−6 ; −5]

• interval matrix: components = intervals.

Validation in scientific computing - Nathalie Revol 9 26-01-2007

Definitions: operations

x � y = Hull{x � y : x ∈ x , y ∈ y}
Arithmetic and algebraic operations: use the monotony

[x, x] +
[
y, y

]
=

[
x + y, x + y

]
[x, x]−

[
y, y

]
=

[
x− y, x− y

]
[x, x]×

[
y, y

]
=

[
min(x× y, x× y, x× y, x× y),max(ibid.)

]
[x, x]2 =

[
min(x2, x2),max(x2, x2)

]
if 0 6∈ [x, x][

0,max(x2, x2)
]

otherwise

1/
[
y, y

]
=

[
min(1/y, 1/ y),max(1/y, 1/ y)

]
if 0 6∈

[
y, y

]
[x, x] /

[
y, y

]
= [x, x]× (1/

[
y, y

]
) if 0 6∈

[
y, y

]√
[x, x] =

[√
x,
√

x
]

if 0 ≤ x,
[
0,
√

x
]

otherwise

Validation in scientific computing - Nathalie Revol 10 26-01-2007

Definitions: operations

Algebraic properties: associativity, commutativity hold, some are lost:

• subtraction is not the inverse of addition, in particular x − x 6= [0]

• division is not the inverse of multiplication

• squaring is tighter than multiplication by oneself

• multiplication is only sub-distributive wrt addition

Validation in scientific computing - Nathalie Revol 11 26-01-2007

Definitions: functions

Definition:
an interval extension f of a function f satisfies

∀x , f(x) ⊂ f (x), and ∀x, f({x}) = f ({x}).

Elementary functions: again, use the monotony.

expx = [expx, exp x]
log x = [log x, log x] if x ≥ 0, [−∞, log x] if x > 0
sin[π/6, 2π/3] = [1/2, 1]
. . .

Validation in scientific computing - Nathalie Revol 12 26-01-2007

Definitions: function extension

Example: f(x) = x2 − x + 1 with x ∈ [−2, 1].

[−2, 1]2 − [−2, 1] + 1 = [0, 4] + [−1, 2] + 1 = [0, 7].
Since x2 − x + 1 = x(x − 1) + 1, we get [−2, 1] · ([−2, 1] − 1) + 1 =
[−2, 1] · [−3, 0] + 1 = [−3, 6] + 1 = [−2, 7].
Since x2 − x + 1 = (x − 1/2)2 + 3/4, we get ([−2, 1] − 1/2)2 + 3/4 =
[−5/2, 1/2]2 + 3/4 = [0, 25/4] + 3/4 = [3/4, 7] = f([−2, 1]).

Problem with this definition: infinitely many interval extensions,

syntactic use (instead of semantic).

How to choose the best extension? How to choose a good one?

Validation in scientific computing - Nathalie Revol 13 26-01-2007

Definitions: function extension

Mean value theorem of order 1 (Taylor expansion of order 1):
∀x,∀y,∃ξx,y ∈ (x, y) : f(y) = f(x) + (y − x) · f ′(ξx,y)
Interval interpretation:

∀y ∈ x ,∀x̃ ∈ x , f(y) ∈ f(x̃) + (y − x̃) · f ′(x)
⇒ f(x) ⊂ f(x̃) + (x − x̃) · f ′(x)

Mean value theorem of order 2 (Taylor expansion of order 2):

∀x,∀y,∃ξx,y ∈ (x, y) : f(y) = f(x) + (y − x) · f ′(x) + (y−x)2

2 · f ′′(ξx,y)
Interval interpretation:

∀y ∈ x ,∀x̃ ∈ x , f(y) ∈ f(x̃) + (y − x̃) · f ′(x̃) + (y−x̃)2

2 · f ′′(x)

⇒ f(x) ⊂ f(x̃) + (x − x̃) · f ′(x̃) + (x−x̃)2

2 · f ′′(x)

Validation in scientific computing - Nathalie Revol 14 26-01-2007

Definitions: function extension
No need to go further:

• it is difficult to compute (automatically) the derivatives of higher order,

especially for multivariate functions;
• there is no (theoretical) gain in quality.

Theorem:

• for the natural extension f of f , it holds d(f(x), f (x)) ≤ O(w(x))
• for the first order Taylor extension fT1 of f , it holds

d(f(x), fT1(x)) ≤ O(w(x)2)
• getting an order higher than 3 is impossible without the squaring

operation, is difficult even with it. . .

Validation in scientific computing - Nathalie Revol 15 26-01-2007

Agenda

• Definitions of interval arithmetic (operations, function extensions)

• Cons (overestimation, complexity)

and pros (contractant iterations: Brouwer’s theorem)

• Some algorithms

− solving linear systems
− Newton
− global optimization wo/with constraints
− constraints programming

• Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 16 26-01-2007

Cons: overestimation (1/2)

The result encloses the true result, but it is too large:
overestimation phenomenon.

Two main sources: variable dependency and wrapping effect.

(Loss of) Variable dependency:

x − x = {x− y : x ∈ x , y ∈ x} 6= {x− x : x ∈ x} = {0}.

Validation in scientific computing - Nathalie Revol 17 26-01-2007

Cons: overestimation (2/2)

f(X)

F(X)

image of f(x) 2 successives rotations of π/4
with f : R2 → R2 of the little central square

Validation in scientific computing - Nathalie Revol 18 26-01-2007

Cons: Complexity: almost every problem is NP-hard
Gaganov 1982, Rohn 1994 ff, Kreinovich. . .

• evaluate a function on a box (cartesian product of intervals)

• evaluate a function on a box up to ε

• solve a linear system

• solve a linear system up to 1/4n4 (n = dim. of the system)

• determine if the solution of a linear system is bounded

• compute the matrix norm ‖A‖∞,1

• determine if an interval matrix (= a matrix with interval coefficients)

is regular, i.e. if every possible punctual matrix in it is regular

• . . .

Validation in scientific computing - Nathalie Revol 19 26-01-2007

Cons: Complexity: Gaganov 1982
evaluation of a multivariate polynomial with rational coeff. on a box is NP-hard

Idea: reduce polynomially the CNF-3 problem to this problem.
On n boolean variables q1, · · · , qn, a formula f in CNF-3 is defined by

f =
m∧

i=1

fi with fi =
1,2or3∨
j=1

ri,j

with ri,j = qki,j
or ri,j = ¬qki,j

.

1. to each boolean variable qi, let us associate a real variable xi ∈ [0, 1].
Meaning: xi = 0 if qi = F and xi = 1 if qi = T .

Validation in scientific computing - Nathalie Revol 20 26-01-2007

∗ Goal: get a polynomial which takes only values in [0, 1]
i.e. allow only product of terms or sums of the form (1− term).

A product corresponds to a conjunction and 1− x to a negation

⇒ express f and the fi using conjonctions and negations

⇒ express the fi as ¬
∧1,2or3

j=1 ¬ri,j.

2. to each ri,j let us associate a polynomial yi,j (corresponding to the

negation of ri,j) defined by
ri,j = qki,j

→ yi,j(x) = 1− xki,j

ri,j = ¬qki,j
→ yi,j(x) = xki,j

3. to each fi, let us associate a polynomial pi (corresponding to the

negation of fi) defined by fi =
∧

ri,j → pi(x) =
∏

yi,j(x).

Validation in scientific computing - Nathalie Revol 21 26-01-2007

4. to f , let us associate the polynomial p defined by f =
∧m

i=1 fi →
p(x) =

∏m
i=1(1− pi(x)).

Validation in scientific computing - Nathalie Revol 22 26-01-2007

Cons: Complexity: Gaganov 1982
evaluation of a multivariate polynomial with rational coeff. on a box is NP-hard

Lemma:

1. ∀x ∈ [0, 1], p(x) ∈ [0, 1].
2. if α is a boolean vector and β is the associated 0− 1 vector, then

f(α) = T ⇒ p(β) = 1
f(α) = F ⇒ p(β) = 0.

3. if f is not feasible, then ∀x ∈ [0, 1]n, p(x) ≤ 7/8.

Validation in scientific computing - Nathalie Revol 23 26-01-2007

Proof of (3): (proving (1) and (2) is easy).

∀x ∈ [0, 1]n, let us consider β the 0-1 vector obtained by rounding x to

the nearest.

Since f is not feasible, p(β) = 0.

Since p(x) =
∏m

i=1(1− pi(x)), ∃i0 such that 1− pi0(β) = 0.

One can prove that pi0(x) ≥ 1/8, using the fact that it is the product of

at most three terms, each of them ≤ 1/2, using the fact that β is the

rounding to nearest of x. Thus 1− pi0(x) ≤ 7/8.

The remaining factors 1− pj(x) are less or equal to 1.

Thus p(x) =
∏m

i=1(1− pi(x)) ≤ 7/8.

Consequence: since checking the feasibility of a CNF-3 formula is NP-

hard, evaluating a multivariate polynomial (up to a small ε) is NP-hard.

Validation in scientific computing - Nathalie Revol 24 26-01-2007

Pros: set computing

Behaviour safe? On x , are the extrema of the function f

controllable? dangerous? > f1, < f2?

x

f(x)

f

f

f

f
2

1

always controllable. No if f(x) = [f, f] ⊂ [f2, f
1].

Validation in scientific computing - Nathalie Revol 25 26-01-2007

Pros: Brouwer-Schauder theorem

A function f which is continuous on the unit ball B and which satisfies

f(B) ⊂ B has a fixed point on B.

Furthermore, if f(B) ⊂ intB then f has a unique fixed point on B.

Kf(K)

The theorem remains valid if B is replaced by a box K.

Validation in scientific computing - Nathalie Revol 26 26-01-2007

Agenda

• Definitions of interval arithmetic (operations, function extensions)

• Cons (overestimation, complexity)

and pros (contractant iterations: Brouwer’s theorem)

• Some algorithms

− solving linear systems
− Newton
− global optimization wo/with constraints
− constraints programming

• Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 27 26-01-2007

Algorithm: linear systems solving (Hansen-Sengupta)

Problem: solve Ax = b or equivalently:

Ai,1x1 + . . . + Ai,ixi + . . . + Ai,nxn = bi for 1 ≤ i ≤ n

Determine Hull (Σ∃∃(A, b)) = Hull ({x : ∃A ∈ A, ∃b ∈ b, Ax = b}).

Pre-processing: multiply the system by an approximate mid(A)−1.

New system = mid(A)−1Ax = b. Hope: contracting iteration.

Algorithm: apply Gauss-Seidel iteration

while convergence not reached loop

for i = 1 to n do

xi :=
(
bi −

∑
j 6=i Ai,jxj

)
/Ai,i

Validation in scientific computing - Nathalie Revol 28 26-01-2007

Algorithm: solving a nonlinear system: Newton
Why a specific iteration for interval computations?

Usual formula:

xk+1 = xk −
f(xk)
f ′(xk)

Direct interval transposition:

xk+1 = xk −
f(xk)
f ′(xk)

w(xk+1) = w(xk) + w

(
f(xk)
f ′(xk)

)
> w(xk)

divergence!

Validation in scientific computing - Nathalie Revol 29 26-01-2007

Algorithm: interval Newton
principle of an iteration

(Hansen & Greenberg 83, Baker Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)

smallest slope

tangent with the deepest slope

tangent with the

X(k+1)

X(k)

x(k)

x1 :=
(

x− F ({x})
F ′(x)

) ⋂
x

Validation in scientific computing - Nathalie Revol 30 26-01-2007

Algorithm: interval Newton
principle of an iteration

X(k+1)

X(k)

X(k+1)

x(k)

tangent with the deepest slopetangent with the smallest slope

(x1,x2) :=
(

x− F ({x})
F ′(x)

) ⋂
x

Validation in scientific computing - Nathalie Revol 31 26-01-2007

Algorithm: interval Newton

Input: F , F ′, x0 // x0 initial search interval

Initialization: L = {x0}, α = 0.75 //any value in]0.5, 1[is suitable

Loop: while L 6= ∅
Suppress (x ,L)

x := mid(x)

(x1,x2) :=
(
x− F ({x})

F ′(x)

) ⋂
x // x1 and x2 can be empty

if w(x1) > αw(x) or w(x2) > αw(x) then (x1,x2) := bisect(x)

if x1 6= ∅ and F (x1) 3 0 then

if w(x1)/|mid(x1)| ≤ εx or w(F (x1)) ≤ εY then Insert x1 in Res

else Insert x1 in L
same handling of x2

Output: Res, a list of intervals that may contain the roots.

Validation in scientific computing - Nathalie Revol 32 26-01-2007

Algorithm: interval Newton
properties

Existence and uniqueness of a root are proven:
if there is no hole and if the new iterate (before

⋂
) is contained in the

interior of the previous one.

Existence of a root is proven:

• using the mean value theorem:

OK if f(inf(x)) and f(sup(x)) have opposite signs.

(Miranda theorem in higher dimensions).
• using Schauder theorem: if the new iterate (before

⋂
) in contained in

the previous one.

Validation in scientific computing - Nathalie Revol 33 26-01-2007

Algorithm: optimize a continuous function

Problem: f : Rn → R, determine x∗ and f∗ that verify

f∗ = f(x∗) = min
x

f(x)

Assumptions:

• search within a box x0

• x∗ ∈ in the interior of (x0),
not at the boundary

• f continuous enough: C2

Validation in scientific computing - Nathalie Revol 34 26-01-2007

Algorithm: optimize a continuous function
(Ratschek and Rokne 1988, Hansen 1992, Kearfott 1996. . .)

Goal: determine the minimum of f , continuous function on a box x0.

x0 current box

f̄ current upper bound of f∗

while there is a box in the waiting list

if f(x) > f̄ then

reject x

otherwise

update f̄ : if f(mid(x)) < f̄ then f̄ = f(mid(x))
bisect x into x1 and x2

examine x1 and x2

Validation in scientific computing - Nathalie Revol 35 26-01-2007

Algorithm: optimize a continuous function
the rejection procedure

F(X1)

X1 X2 X3
f non convexe sur X3

f

f

0 n’est pas dans G(X2)

f trop haute : F(X1) > f

Validation in scientific computing - Nathalie Revol 36 26-01-2007

Algorithm: optimize a continuous function
the reduction procedure

x

f

f

x

y

1

1 y

2

2

Validation in scientific computing - Nathalie Revol 37 26-01-2007

Algorithm: optimize a continuous function
Hansen algorithm Hansen 1992

L = list of not yet examined boxes := {x0}
while L 6= ∅ loop

remove x from L
reject x?

yes if f(x) > f̄

yes if Gradf(x) 63 0
yes if Hf(x) has its diagonal non > 0

reduce x

Newton applied to the gradient

solve y ⊂ x such that f(y) ≤ f̄

bisect y : insert the resulting y1 and y2 in L

Validation in scientific computing - Nathalie Revol 38 26-01-2007

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Validation in scientific computing - Nathalie Revol 39 26-01-2007

Algorithm: constrained optimization

Problem: f : Rn → R and c : Rn → Rm,

determine x∗ and f∗ that verify

f∗ = f(x∗) = min
{x|c(x)≤0}

f(x)

Assumptions:

• search within a box x0

• f continuous enough: C2

• c continuous enough: C1

Validation in scientific computing - Nathalie Revol 40 26-01-2007

Algorithm: constrained optimization c(x) ≤ 0
the rejection procedure

x*

F(X1)

X1

f

f

f trop haute : f(X1) > f

X2
contraintes non satisfaites : c(X2) > 0

x| c(x) <= 0x| c(x) <= 0

Validation in scientific computing - Nathalie Revol 41 26-01-2007

Algorithm: constrained optimization c(x) ≤ 0
the reduction procedure

x*

x

y1

y2 y’2

f

f

x| c(x) <= 0x| c(x) <= 0

Validation in scientific computing - Nathalie Revol 42 26-01-2007

Algorithm: constrained optimization c(x) ≤ 0
L := {x0} L := {x0}
while L 6= ∅ loop while L 6= ∅ loop

remove x from L remove x from L
reject x? reject x?

yes if f(x) > f̄ yes if f(x) > f

yes if Gradf(x) 63 0 yes if c(x) > 0
yes if f not convex on x

reduce x reduce x

solve y ⊂ x | f(y) ≤ f̄ ’solve y ⊂ x such that c(y) ≤ 0
Newton applied to the gradient Newton applied to the Lagrangian

bisect y into y1 and y2 bisect y into y1 and y2

insert y1 and y2 in L insert y1 and y2 in L

Validation in scientific computing - Nathalie Revol 43 26-01-2007

Algorithm: constraints programming
Cleary 1987, Benhamou et al. 1999, Jaulin et al. 2001

Problem:
c1(x1, . . . , xn) = 0
...

cp(x1, . . . , xn) = 0

expressed as:

yi = xi for 1 ≤ i ≤ n

yk = yi � yj for n + 1 ≤ k ≤ m and i, j < k

yk auxiliary variable

where yk = ϕ(yi) for n + 1 ≤ k ≤ m and i < k

Validation in scientific computing - Nathalie Revol 44 26-01-2007

Algorithm: constraints programming

Initializations: y1 := x1, . . . ,yn := xn

Propagation: forward mode
for k = n + 1 to m loop

yk := yi � yj or yk := ϕ(yi)

Propagation: backward mode
for k = m to n loop

if yk is defined as yi � yj then

yi := (yk �−r yj) ∩ yi

yj :=
(
yi �−l yk

)
∩ yj

else if yk is defined as ϕ(yi) then

yi := ϕ−1(yk) ∩ yi

Validation in scientific computing - Nathalie Revol 45 26-01-2007

Algorithm: constraints programming:

{
x1x

2
2 − 2x3 = 0

cos x1 + x3 = 0

Validation in scientific computing - Nathalie Revol 46 26-01-2007

x1 = [0, 2π/3], x2 = [−1, 1], x3 = [−1/2, 3] y1 = [0, 2π/3], y2 = [−1, 1], y3 = [−1/2, 3]
iter. 1 : forward y4 = y2

2 y4 = [0, 1]
y5 = y1y4 y5 = [0, 2π/3]
y6 = 2y3 y6 = [−1, 6]
y7 = y5 − y6 y7 = [−6, 1 + 2π/3] 3 0
y8 = cosy1 y8 = [−1/2, 1]
y9 = y8 + y3 y9 = [−1, 4] 3 0

backward y9 = y8 + y3

{
y8 = (y9 − y3) ∩ y8 = [−1/2, 1/2]
y3 = (y9 − y8) ∩ y3 = [−1/2, 1/2]

y8 = cosy1 y1 = cos−1 y8 ∩ y1 = [π/3, 2π/3]

y7 = y5 − y6

{
y5 = (y7 + y6) ∩ y5 = [0, 2π/3]
y6 = (y5 − y7) ∩ y6 = [0, 2π/3]

y6 = 2y3 y3 = (1/2y6) ∩ y3 = [0, 1/2]

y5 = y1y4

{
y1 = (y5/y4) ∩ y1 = [π/3, 2π/3]
y4 = (y5/y1) ∩ y4 = [0, 1]

y4 = y2
2 y2 = ±√y4 ∩ y2 = [−1, 1]

Validation in scientific computing - Nathalie Revol 47 26-01-2007

Algorithm: constraints programming:

{
x1x

2
2 − 2x3 = 0

cos x1 + x3 = 0

Validation in scientific computing - Nathalie Revol 48 26-01-2007

x1 = [0, 2π
3], x2 = [−1, 1], x3 = [−1

2, 3] y1 = [π3 , 2π
3], y2 = [−1, 1], y3 = [0, 1

2]
y4 = [0, 1], y5 = [0, 2π/3], y6 = [0, 1]
y7 = 0, y8 = [−1/2, 1/2], y9 = 0

iter. 2: forward y4 = y2
2 y4 = [0, 1]

y5 = y1y4 y5 = [0, 2π/3]
y6 = 2y3 y6 = [0, 1]
y8 = cosy1 y8 = [−1/2, 1/2]

backward y9 = y8 + y3

{
y8 = (y9 − y3) ∩ y8 = [−1/2, 0]
y3 = (y9 − y8) ∩ y3 = [0, 1/2]

y8 = cosy1 y1 = cos−1 y8 ∩ y1 = [π/2, 2π/3]

y7 = y5 − y6

{
y5 = (y7 + y6) ∩ y5 = [0, 1]
y6 = (y5 − y7) ∩ y6 = [0, 1]

y6 = 2y3 y3 = (1/2y6) ∩ y3 = [0, 1/2]

y5 = y1y4

{
y1 = (y5/y4) ∩ y1 = [π/2, 2π/3]
y4 = (y5/y1) ∩ y4 = [0, 2/π]

y4 = y2
2 y2 = ±√y4 ∩ y2 = [−

√
2/π,

√
2/π]

x1 = [0, 2π
3], x2 = [−1, 1], x3 = [−1

2, 3] y1 = [π2 , 2π
3], y2 = [−

√
2/π,

√
2/π], y3 = [0, 1

2]

Validation in scientific computing - Nathalie Revol 49 26-01-2007

Problem:

{
x1x

2
2 − 2x3 = 0

cos x1 + x3 = 0

with x1 = [0, 2π
3], x2 = [−1, 1], x3 = [−1

2, 3].

Optimal solution obtained after two iterations:

x1 = [π2 , 2π
3], x2 = [−

√
2
π,

√
2
π], x3 = [0, 1

2].

Validation in scientific computing - Nathalie Revol 50 26-01-2007

Agenda

• Definitions of interval arithmetic (operations, function extensions)

• Cons (overestimation, complexity)

and pros (contractant iterations: Brouwer’s theorem)

• Some algorithms

− solving linear systems
− Newton
− global optimization wo/with constraints
− constraints programming

• Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 51 26-01-2007

Conclusions

Interval algorithms

• can solve problems that other techniques are not able to solve
• is a simple version of set computing
• give effective versions of theorems which did not seem to be effective

(Brouwer)
• can determine all zeros or all extrema of a continuous function
• overestimate the result
• is less efficient than floating-point arithmetic (theoretical factor: 4,

practical factor: 20)

⇒ solve “small” problems.

Validation in scientific computing - Nathalie Revol 52 26-01-2007

Philosophical conclusion

Morale

• forget one’s biases:

− do not use without thinking algorithms which are supposed to be

good ones (Newton)
− do not reject without thinking algorithm which are supposed to be

bad ones (Gauss-Seidel)

• prefer contracting iterations whenever possible

Validation in scientific computing - Nathalie Revol 53 26-01-2007

	title [0]
	definitions [8]
	cons and pros [16]
	algos: lin sys [27]
	algos: Newton [29]
	algos: GOP [34]
	algos: cst [44]
	Conclusion [52]

