École Normale Supérieure de Lyon

Synthèse Organique L3

Cours de Résonance Magnétique Nucléaire

Sandrine DENIS-QUANQUIN

cours 1 - Introduction / Bases / Spectre

cours 2 - RMN hétéronucléaire / RMN 2D

cours 3 - Acquisition et traitement de données / Visite de la salle RMN

cours 4 - Exercices

Historique

1921	Découverte du spin de l'électron (expérience de Stern et Gerlach)
1924	Propriétés magnétiques de certains noyaux (Pauli)
1938	Le spin nucléaire (Rabi)
1946	La résonance nucléaire (Bloch et Purcell)
1950	Le déplacement chimique (Knight, Proctor & Yu)
1952	Le prix Nobel est accordé à Bloch et Purcell
1953	Premier spectromètre commercial
1957	Premier spectre RMN du ¹³ C (Lauterbur)
1965	Premier spectre ¹³ C découplé du ¹ H
1966	Premier spectre par Transformée de Fourier (Ernst)
1970	Premier spectromètre à Transformée de Fourier commercialisé
1971	Jean Jeener imagine la seconde dimension
1973	Imagerie par RMN (Lauterbur)
/	
1991	Le prix Nobel est attribué à Ernst
/	
2002	Le prix Nobel est attribué à Wüthrich
2003	Le prix Nobel est attribué à Lauterbur et Mansfield

	Le spin	nucléaire	
pin = propriété physi	que du noyau		
nb de masse A	n° atomique Z	nb de spin l	exemples
pair	pair	I = 0	¹² C, ¹⁶ O
pair	impair	I = entier	² H, ¹⁴ N
impair	pair/impair	I = (2n+1)/2	¹ H, ¹³ C, ³¹ P, ¹⁹ F, ¹⁵ N, ¹⁷ O
es isotopes différents	s d'un même atome o e aux novaux de spin	nt des spins différents ≠ ∩ Mag	S! netic Magnet
loment magnétique pin S sont liés: μ	nucléaire μ et mome γS	nt de	nent Momen
Υ = rapport caractéristiqu	gyromagnétique, e de chaque noyau	Spin Angula Momentum	r Spin Angular Momentum
		$\gamma > 0$	$\gamma < 0$
stration: Spin dynamics, 2n	d edition Malcom H Levitt V	Viley 2008	

isotope	spin	γ (10 ⁷ rad.s ⁻¹ .T ⁻¹)	$\frac{\gamma_x}{\gamma_H}$ (%)	freq (MHz)	abondance naturelle (%)	Sensibilité relative ¹ H	Receptivité D ^p	
1H	1/2	26,7522128	100	300,00	99,9885	1,00	1,00	
² H	1	4,10662791	15,350609	46,051	0,0115	9,65.10 ⁻³	1,11.10 ⁻⁶	
¹³ C	1/2	6,728284	25,145020	75,432	1,07	1,59.10 ⁻²	1,70.10-4	
¹⁴ N	1	1,9337792	7,226317	21,671	99,632	1,01.10 ⁻³	1.10 ⁻³	
¹⁵ N	1/2	-2,71261804	10,136767	30,398	0,368	2,91.10 ⁻²	3,84.10 ⁻⁶	
¹⁹ F	1/2	25,18148	94,094011	282,231	100	0,834	0,834	
²⁹ Si	1/2	-5,3190	19,867187	59,595	4,6832	7,84.10 ⁻³	3,68.10-4	
³¹ P	1/2	10,8394	40,480742	121,442	100	6,65.10 ⁻²	6,65.10 ⁻²	
				<i>B</i> _o = 7 T		$\frac{\gamma_x^3}{\gamma_H^3}$	sensibilité x abondance	

Population de spins

En l'absence de champ magnétique externe, les moments de spin des noyaux d'un échantillon sont distribués uniformément (ils pointent dans n'importe quelle direction). Le moment magnétique TOTAL d'un échantillon est donc NUL.

Attention par la suite à différencier le comportement d'UN spin et celui d'une POPULATION de spins.

11

Aimantation macroscopique

Un échantillon = une population de spins nucléaires.

La population de chaque niveau énergétique obéit à la distribution de Boltzmann, avec un léger excès de population sur le niveau le plus bas.

La différence de population est faible (1/10000) mais suffisante pour observer une aimantation résiduelle **M**. La RMN est une technique peu sensible.

Repère tournant / impulsions RF

On considère un repère Oxyz tournant autour de Oz à la vitesse ω_1 : B₁ est stationnaire dans le repère tournant et la vitesse de précession de M est $\omega_0 - \omega_1$ Ce changement de point de vue simplifie beaucoup de choses par la suite...

Retour à l'équilibre: relaxation

A la fin de l'impulsion d'excitation, l'aimantation retourne à sa position d'équilibre en précessant autour de B₀. On observe la disparition de la composante transverse M_{xy} et la restauration de l'aimantation longitudinale M_z.

Ce retour à l'équilibre est défini par deux temps caractéristiques.

- le temps de relaxation longitudinal (ou spin-réseau) T₁. Dans le cas de spin 1/2 les interactions dipôle-dipôle sont la source majoritaire de relaxation T1. Les noyaux voisins induisent des champs magnétiques locaux qui peuvent permettent des transferts d'énergie s'ils sont en résonance.
- le temps de relaxation transversal (ou spin-spin) T₂. Les spins ne précessent pas tous exactement à la même vitesse: après leur excitation par B₁ (qui a apporté de la cohérence au système) ils se désynchronisent. Ce déphasage est progressif et irréversible.

illustration: High-Resolution NMR Techniques in Organic Chemistry, Timothy Claridge

RMN¹H

- Intensité/intégrales
- Déplacement chimique
- Couplages scalaires

D'autres paramètres (temps de relaxation...) apportent des informations supplémentaires sur la structure, la dynamique... des molécules étudiées.

19

Intensités / Intégrales

Mesure de l'aire d'un signal \propto Nombre de spins impliqués (de façon plus ou moins exacte selon les paramètres expérimentaux... cf temps de relaxation T₁)

Déplacement chimique

Le champ magnétique B_0 induit des courants dans les nuages électroniques autour des noyau. Ces courants induisent en réponse des champs magnétiques locaux B^{induit} .

B

flow of

electrons

induced

field

Les noyaux i « ressentent » un champ local $B_i^{loc} = B_0 + B_i^{induit}.$

 $B_i^{induit} = \sigma_i B_0$ où σ_i est le tenseur d'écran

$$\mathbf{B}_{i}^{loc} = (\mathbf{1} - \boldsymbol{\sigma}_{i}) \mathbf{B}_{0}$$

La fréquence de résonance de chaque noyau est donc dépendante de son environnement électronique: on parle de déplacement chimique.

$$v_i = \frac{\gamma(1 - \sigma_i)B_0}{2\pi} \qquad \qquad \delta_i = \frac{v_i - v_{ref}}{v_{ref}} \times 10^6$$

Rq: pour éviter de manipuler des valeurs élevées (de l'ordre du MHz) le déplacement chimique δ est normalisé par rapport à une référence (le TMS dans le cas du proton). Il est donc indépendant du champ et on a alors des valeurs de δ en ppm (parties par million).

nuclear

spin

Isotropie/Anisotropie

La distribution électronique étant anisotrope au niveau des liaisons chimiques, B_i^{loc} , et donc δ_i , dépend de l'orientation de la liaison par rapport à B_0 . On parle d'anisotropie de déplacement chimique (CSA).

Dans un liquide isotrope (solvant) les molécules tournent rapidement sur elles même et on observe un déplacement chimique moyenné qu'on appelle déplacement chimique isotrope.

Attention, le cas est différent en RMN solide où l'anisotropie du mileu donne lieu à un déplacement chimique différent pour chaque orientation.

Illustration: Spin dynamics, 2nd edition, Malcom H. Levitt, Wiley, 2008

Nomenclature des systèmes de spins

Système de spins = ensemble de spins couplés les uns aux autres

La notation de Pople permet de décrire les systèmes de spins: des spins ayant des déplacements chimiques proches sont désignés par des lettres proches dans l'alphabet (A et B par exemple). On utilise des lettres éloignées dans l'alphabet (A et X par exemple) dans le cas de couplage faible.

Voit on le couplage ¹³C sur un spectre¹H?

En abondance naturelle, il y a presque 99% de 12 C: on observe majoritairement des protons liés à des 12 C (spin= 0).

RMN ¹⁴N/¹⁵N

- Abondance naturelle : 99,63% pour $^{14}N,\,0,37\%$ pour ^{15}N
- Noyau peu sensible

• L'azote 14 est un noyau quadrupolaire (spin 1), la relaxation quadrupolaire a pour conséquence des signaux larges. La relaxation dépend de la valeur du moment quadrupolaire du noyau observé, ainsi que de la taille et de la symétrie de la molécule.

• Les biologistes étudient des protéines enrichies en ¹⁵N.

Impulsions sélectives

Une impulsion de durée Δt permet d'exciter une largeur spectrale SW = 2*(1/ Δt). Pour exciter SW = 10 ppm en proton (4000 Hz à 400 MHz) il faut une impulsion de moins de 500 µs. Une impulsion typique rectangulaire de 10 µs garantit une excitation uniforme.

Si l'on veut exciter un signal en particulier (par exemple un signal de solvant) on utilise typiquement une impulsion plus longue à basse puissance (soft pulse) et d'une forme non rectangulaire (shaped pulse).

RMN 2D

- Introduction, principe
- COSY
- TOCSY
- HSQC
- HMBC
- NOe et NOESY

	Introduction à la RMN 2D	_				
	séquence 1D préparation mélange détection					
	séquence 2D préparation évolution mélange détection					
Période de préparation: le système est pertubé (hors équilibre).						
	 Période d'évolution (d'une durée variable) : les spins évoluent en fonction de leur fréquence de résonance et des interactions permises par la période de préparation. 					
 Période de mélange : la polarisation est transférée entre les spins via des interactions scalaires, dipolaires 						
	Période de détection					
		50				
		76				

nOe

Nuclear Overhauser Effect = changement d'intensité des signaux de 2 noyaux en interaction dipolaire Le nOe est inversement proportionnel à la distance entre les 2 noyaux (distance max. \approx 5Å).

- NOE/ROE ROE 50% 4 unuixeu 0.2 50% ROE ! ~ 40% I I no NOE ! 0.0 small molecules large molecules high field low field -0.2 NOE -0.4 -0.6 -0.8 A. Otter & G. Kotovych Can. J. Chem. 66, 1814 (1988) - 100% -1.0 0.001 0.1 1.0 10 0.01 100 1000 ω,τ
- la NOESY, pas adaptée à l'étude de molécules de poids 800-1500 g/mol $(nOe \approx 0)$
- la ROESY: signaux moins intenses ٠ mais toujours $\neq 0$

~ 65%

Acquisition et traitement de données RMN

- Lock et shims
- Échantillonnage du signal
- Angle d'impulsion et S/B
- Zero filling / Prédiction linéaire
- Apodisation

console (électronique)

aimant

La sonde et l'échantillon

Elle permet d'observer différents noyaux. La plupart du temps 2 ou 3 bobines: une bobine spécifique ¹H et une large bande ou bien 3 bobines spécifiques (¹H, ¹³C et ¹⁵N pour l'étude de protéines par exemple).

La bobine la plus proche du tube est la plus sensible. Le volume actif est celui qui est situé au niveau de cette bobine. Une partie du volume d'échantillon, au dessus et en dessous de cette zone, n'est pas observée mais permet de faciliter les réglage dans la zone d'intérêt. C'est pourquoi la hauteur du tube dans le spinner est importante.

Le temps d'acquisition AQ est défini par la vitesse d'échantillonnage ($DW = \frac{1}{2SW}$) et par le nombre de points enregistrés.

$$AQ = DW.TD = \frac{TD}{2.SW}$$

TD est divisé en 2 jeux de points (partie réelle et imaginaire du FID) : $SI = \frac{TD}{2}$ points sont utilisés pour représenter le spectre.

Stabilité du champ: lock

L'aimant n'est jamais parfaitement stable et le champ magnétique dérive légèrement au cours du temps. Cette dérive est significative en RMN liquide car les signaux sont fins et une dérive aussi faible que 1 Hz se verrait sur le spectre.

Le spectromètre comporte un système de verrouillage champfréquence appelé lock, dédié à l'observation du deuterium dans l'échantillon (solvant). La fenêtre de lock montre un balayage en fréquence avec un signal en dispersion à la fréquence du deuterium du solvant.

Le spectromètre corrige la valeur du champ magnétique B_0 en fonction de la dérive observée sur ce signal. Cette mesure est faite plusieurs milliers de fois par seconde pendant que le lock est actif (boucle de feedback).

Délai de relaxation (D1)

Il permet le retour à l'équilibre de l'aimantation des noyaux entre 2 scans. Il est déterminé en fonction du T₁ (temps de relaxation longitudinal) qui varie selon le type de noyau étudié et la taille de la molécule.

Angle de Ernst / Accumulation de signal

Quand on utilise une séquence d'impulsions basée sur des impulsions précises une erreur de calibration peut affecter le spectre final. Il faut aussi être vigilant quand on veut obtenir des résultats quantitatifs.

En 1D de routine on cherche à avoir le meilleur rapport S/B possible. On va utiliser l'angle de Ernst: c'est celui qui permet d'obtenir un maximum de signal avec un temps de répétition le plus court possible.

Il est défini par cos $\theta = \exp(-t_r/T_1)$

illustration: High-Resolution NMR Techniques in Organic Chemistry, Timothy Claridge

Traitement du signal: zero filling et prédiction linéaire

Il est possible d'améliorer la résolution digitale artificiellement en ajoutant des points d'intensité zéro à la fin du FID, on appelle ce traitement zero filling (fig 1).

Cependant si on applique du zero filling à un FID tronqué (c.a.d. qui n'est pas revenu à zéro à la fin de l'acquisition) le spectre présente des artefacts appelés wiggles (fig 2b). Il vaut mieux appliquer une multiplication exponentielle au FID obtenu (fig 2c) voire même appliquer une prédiction linéaire (fig 2d).

Traitement du signal: apodisation

Consiste à multiplier le FID par une fonction (exponentielle, sinus...) avant la transformée de Fourier. L'intensité des signaux décroit durant l'acquisition alors que le niveau de bruit reste constant.

En « taillant » la queue du FID on supprime donc du bruit et on améliore la sensibilité.

En favorisant le milieu du FID c'est la résolution qu'on peut améliorer.

L'apodisation est essentielle pour traiter les expériences 2D dans la dimension indirecte car le FID est toujours fortement tronqué dans cette dimension (cf aussi diapos suivantes).

Exemple: multiplication exponentielle:

Améliore la sensibilité MAIS les signaux sont élargis. Le paramètre LB (line broadening) caractérise la vitesse de décroissance de l'exponentielle. LB doit être raisonnable en regard de la largeur initiale des signaux.

(a) pas d'apodisation (b) multiplication exponentielle, LB= 1Hz

Références

- Understanding NMR Spectroscopy, James Keeler, Wiley, 2005
- Spin dynamics, 2nd edition, Malcom H. Levitt, Wiley, 2008
- High-Resolution NMR Techniques in Organic Chemistry, Thimoty D. W.
- Claridge, Pergamon Press, 3rd edition
- <u>http://www.unice.fr/cdiec/cours/rmn_web/rmn_theorie/c_theorie.htm</u>

cours de RMN simplifiée de l'Université de Nice (en français)

<u>https://ceisam.univ-nantes.fr/espace-enseignement-pedagogie/</u>

cours de l'université de Nantes (en français)

<u>http://www.u-of-o-nmr-facility.blogspot.com/</u>

blog de la plateforme de RMN de l'Université d'Ottawa

<u>https://organicchemistrydata.org/links/#spectroscopy_resources</u>

ressources diverses (cours, recueil de déplacements chimiques et de constantes de couplages ¹H, ¹³C, ¹⁹F et ³¹P notamment