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Unimolecular decomposition

Model presentation

Figure: Reactant is adsorbed on an unoccupied adsorption site,
independently of local coverage.

Ruben Staub ENS de Lyon

KMC models 3 / 27



Traditional kinetic models Monte-Carlo Markov Chain Kinetic Monte-Carlo models References Annexes

Unimolecular decomposition

Model presentation

Figure: Adsorbed reactant at an adsorption site does not feel the
in�uence of other adsorbed species.

Ruben Staub ENS de Lyon

KMC models 3 / 27



Traditional kinetic models Monte-Carlo Markov Chain Kinetic Monte-Carlo models References Annexes

Unimolecular decomposition

Model presentation

Figure: Reactant is decomposed and rapidly desorbed.
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Unimolecular decomposition

Unimolecular decomposition

Reaction considered:

A(g) + Sfree
k1−−⇀↽−−
k−1

A(ads)
k2−−→ Products(g) + Sfree

Assuming elementary steps, the total reaction rate r is:

r = −dPA
dt

= k2[A(ads)] = k2θ[S] (1)

where θ is the surface coverage (i.e. fraction of sites occupied), and [S] is the

surface concentration of adsorption sites

Applying a steady-state approximation to A(ads), we get:

r =
k1k2PA[S]

k1PA + k−1 + k2
(2)
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Unimolecular decomposition

Limitations

This approach has multiple limitations/approximations:

Only unimolecular decomposition is considered

Steady-state approximation of adsorbed species

All catalytic sites are equivalent

Adsorption sites can only be occupied by the reactant

Each site can be occupied by at most one adsorbate

The adsorption and decomposition/desorption steps are
considered elementary

No spatial correlation/lateral interactions

Kinetic constants are independent of coverage
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Langmuir-Hinshelwood model

Model presentation

Figure: Reactants are adsorbed on unoccupied adsorption sites,
independently of local coverage.
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Langmuir-Hinshelwood model

Model presentation

Figure: Adsorbed reactants at an adsorption site does not feel the
in�uence of other adsorbed species, and di�use freely over the surface.
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Langmuir-Hinshelwood model

Model presentation

Figure: Bimolecular reaction occurs and product is rapidly desorbed.
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Langmuir-Hinshelwood model

Reaction rate

Reactions considered:

A(g) + Sfree
k1−−⇀↽−−
k−1

A(ads)

B(g) + Sfree
k2−−⇀↽−−
k−2

B(ads)

A(ads) + B(ads)
k3−−→ AB(g)

Assuming elementary steps, the total reaction rate r is:

r = −dPA
dt

= −dPB
dt

= k3θAθB[S]2 (3)

Applying a steady-state approximation to A(ads) and B(ads), and
considering the rate determining step being the reaction/di�usion,
we get:

r =
KAKBPAPB[S]2

(1 + KAPA + KBPB)2
(4)
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Langmuir-Hinshelwood model

Limitations

This approach also has multiple limitations/approximations:

Steady-state approximation of adsorbed species

Reaction/di�usion between A(ads) and B(ads) is the rate
determining step

All catalytic sites are equivalent

Adsorption sites can only be occupied by the reactants

Each site can be occupied by at most one adsorbate

The adsorption and decomposition/desorption steps are
considered elementary

No spatial correlation/lateral interactions

Kinetic constants are independent of coverage
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Metropolis-Hastings Monte-Carlo

Metropolis-Hastings theory

Multiple MCMC (Monte-Carlo Markov Chain) methods for
generating samples from a probability distribution P(S).
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Metropolis-Hastings Monte-Carlo

Metropolis-Hastings theory

Multiple MCMC (Monte-Carlo Markov Chain) methods for
generating samples from a probability distribution P(S).

Based on random walk onto a Markov chain, with initial
proposal distribution g(Si → Sj).
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Metropolis-Hastings Monte-Carlo

Metropolis-Hastings theory

Multiple MCMC (Monte-Carlo Markov Chain) methods for
generating samples from a probability distribution P(S).

Based on random walk onto a Markov chain, with initial
proposal distribution g(Si → Sj).
Reaches asymptotically a stationary distribution π(S), such
that ∀S, π(S) = P(S).
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Metropolis-Hastings Monte-Carlo

Metropolis-Hastings theory

Multiple MCMC (Monte-Carlo Markov Chain) methods for
generating samples from a probability distribution P(S).

Based on random walk onto a Markov chain, with initial
proposal distribution g(Si → Sj).
Reaches asymptotically a stationary distribution π(S), such
that ∀S, π(S) = P(S).

Requires only the computation of an estimator W (S)
proportional to P(S), over all possible S.
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Metropolis-Hastings Monte-Carlo

Metropolis-Hastings theory
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Metropolis-Hastings Monte-Carlo

Metropolis-Hastings practical algorithm

A next candidate Sj is selected from the current state Si using
the proposal distribution g .

An acceptance probability is computed as:

A(Si ,Sj) = min

(
W (Sj)g(Si → Sj)
W (Si )g(Sj → Si )

, 1

)
In practice the targeted probability distribution P(S) is usually
a Boltzmann distribution. No need for partition function, as

W (Si ) = e
−Gi
kT ∝ P(Si ) is enough.

Pick random number x ∈ [0, 1], candidate Sj accepted i�:

x ≤ min

(
e
−(Gj−Gi )

kT ×
g(Si → Sj)
g(Sj → Si )

, 1

)
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Metropolis-Hastings Monte-Carlo

Limitations

With such acceptance criterion, asymptotic behaviour is
mathematically proven1.

Sampling at the thermodynamic equilibrium.

No time de�ned, no temporal evolution, no kinetics.

Need to introduce kinetic elements.

1Proof is straightforward, starting from detailed balance condition.
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From Metropolis Monte-Carlo to Kinetic Monte-Carlo

Theoretical background

Master equation2:

dP(Si , t)

dt
=
∑
j 6=i

(R(Sj → Si )P(Sj , t)− R(Si → Sj)P(Si , t))

Note: In the Metropolis-Hastings MC, a stronger version of
the master equation (with ∀i , dP(Si ,t)

dt = 0) was satis�ed:
detailed balance.

Need to de�ne states {S1,S2, . . .}, transitions Si → Sj , and
associated transition rates R(Si → Sj)
Analytical solution cannot be computed for real systems
⇒ numerical methods are required

2Can be proven from �rst principles
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Algorithms overview

Standard algorithm

1 Generate all N(Si ) possible transitions (i.e. elementary steps)
Si → Sj from current state Si .

2 Choose a transition Si → Sj at random.

3 Retrieve associated transition rate R(Si → Sj), and compute
Rmax(Si ) = max

j 6=i
(R(Si → Sj)).

4 Pick a random number r1 ∈ [0, 1]. Apply transition Si → Sj i�
r1 ≤

R(Si→Sj )
Rmax(Si ) .

5 If transition accepted, pick a random number r2 ∈ (0, 1], and

increase time by ∆t = −ln(r2)
N(Si )Rmax(Si ) .

Otherwise, transition is rejected. (If most transition rates are
negligible compared to Rmax ⇒ most attempts rejected).

6 Repeat.
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Algorithms overview

First Reaction Method

1 Generate all possible transitions (i.e. elementary steps)
Si → Sj from current state Si , and retrieve associated
transition rate R(Si → Sj)

2 For each possible transition Si → Sj , pick random number

rj ∈ (0, 1] and compute associated time τj =
−ln(rj )

R(Si→Sj ) .

3 Select transition Si → Sj with lowest τj .

4 Apply selected transition, and increase time by τj .

5 Repeat (previous computations might be stored, and updated).

Ruben Staub ENS de Lyon

KMC models 14 / 27



Traditional kinetic models Monte-Carlo Markov Chain Kinetic Monte-Carlo models References Annexes

Algorithms overview

Variable Step Size Method / N-fold way / BLK algorithm

1 Generate and store in a list all N(Si ) possible transitions (i.e.
elementary steps) Si → Sj from current state Si , and retrieve
associated transition rate R(Si → Sj).

2 Compute the cumulative function Rc(Si , j) =
j∑

k 6=i

R(Si → Sk),

and de�ne Rtot(Si ) = Rc(Si ,N(Si )).

3 Pick random number r1 ∈ (0, 1], and select transition Si → Sj
such that Rc(Si , j − 1) < r1Rtot(Si ) ≤ Rc(Si , j).

4 Apply selected transition, pick a random number r2 ∈ (0, 1],

and increase time by ∆t = −ln(r2)
Rtot(Si ) .

5 Update list of stored possible positions (add new transitions,
update rates, delete transitions no longer possible).

6 Repeat.
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Algorithms overview

BLK algorithm �owchart

kn

k3

k2

k1
0

ktot

r2ktot
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Determining the kinetic rates

Transition state theory

How to compute transition rates R(Si → Sj)?
Common model, transition state theory:

kTST = κkBT
h exp

(
−∆G‡ij

kBT

)
In practice, we de�ne:

R(Si → Sj) = kTST = κ
Q‡ij
Qi

kBT

h
exp

(
−

∆E ‡ij
kBT

)

where Q‡ij and Qi are the partition functions of the activated

complex and current state Si , and ∆E ‡ij is the energy barrier
for the elementary step Si → Sj .
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Determining the kinetic rates

Lateral interactions

How to compute ∆E ‡ij? Depends on the composition and
con�guration of Si and Sj
Cluster expansion techniques:

∆Eij = Ej − Ei = (Ej ,0 + Lj)− (Ei ,0 + Li ) = ∆Eij ,0 + Lij

where Ei,0 is the total energy of state Si as if the entities were in�nitely

separated; and Li are the lateral interactions present in state Si .

Activation energies are calculated with linear interpolation:

∆E ‡ij = ∆E ‡ij ,0 + ω · Lij
where ω ∈ [0, 1] is a proximity factor expressing how reactant- or

product-like the transition state is.
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Derivations

Unimolecular decomposition: derivations

Using steady-state approximation to A(ads):

d [A(ads)]

dt
= 0 = k1PA[Sfree]− (k−1 + k2)[A(ads)] (5)

⇔ 0 = k1(1− θ)PA[S]− (k−1 + k2)θ[S] (6)

⇔ θ =
k1PA

k1PA + k−1 + k2
(7)

Injecting (7) into (1):

r = k2θ[S] =
k1k2[A][S]

k1[A] + k−1 + k2
(8)
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Derivations

Langmuir-Hinshelwood model: derivations (part 1)

Using steady-state approximation to A(ads) and B(ads):

d [A(ads)]

dt
= 0 = k1PA[Sfree]− k−1[A(ads)]− k3θAθB[S]2 (9)

⇔ 0 = k1PA[Sfree]− k−1θA[S]− k3θAθB[S]2 (10)

⇔ 0 = k1(1− θA − θB)PA[S]− (k−1 + k3θB[S])θA[S] (11)

⇔ 0 = k1(1− θA − θB)PA − (k−1 + k3θB[S])θA (12)

d [B(ads)]

dt
= 0 = k2PB[Sfree]− k−2[B(ads)]− k3θAθB[S]2 (13)

⇔ 0 = k2PB[Sfree]− k−2θB[S]− k3θAθB[S]2 (14)

⇔ 0 = k2(1− θA − θB)PB[S]− (k−2 + k3θA[S])θB[S] (15)

⇔ 0 = k2(1− θA − θB)PB − (k−2 + k3θA[S])θB (16)
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Derivations

Langmuir-Hinshelwood model: derivations (part 2)

Assuming that the rate determining step is the reaction between
A(ads) and B(ads):

k−2 � k3θA[S] (17)

k−1 � k3θB[S] (18)

Therefore, we obtain (de�ning KA = k1
k−1

and KB = k2
k−2

):

d [A(ads)]

dt
= 0 = k1(1− θA − θB)PA − k−1θA (19)

⇔ 0 = KA(1− θA − θB)PA − θA (20)

d [B(ads)]

dt
= 0 = k2(1− θA − θB)PB − k−2θB (21)

⇔ 0 = KB(1− θA − θB)PB − θB (22)
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Derivations

Langmuir-Hinshelwood model: derivations (part 3)

Ratioing (22) by (20), we get:

θB
θA

=
KBPB
KAPA

(23)

Injecting (23) into (20) and (22):

θA =
KAPA

1 + KAPA + KBPB
(24)

θB =
KBPB

1 + KAPA + KBPB
(25)

Leading �nally to:

r = k3θAθB[S]2 =
KAKBPAPB[S]2

(1 + KAPA + KBPB)2
(26)
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Discussions

Time step justi�cation

Let us assume state Si is accepted at time t = ti , and de�ne
τ = t − ti ≥ 0. So that P(Si , 0) = 1.

P(Si , τ + ∆τ) = P(Si , τ)
(no-transition proba)

(1− Rtot(Si )∆τ
(any-transition proba)

) (27)

⇔ dP(Si , τ)

dτ
= −P(Si , τ)Rtot(Si ) (28)

⇒ P(Si , τ) = e−Rtot(Si )τ (29)

Probability p to time τ meaningful conversion:

τ = − ln(p)

Rtot(Si )
(30)
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Discussions
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