Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00

Kinetic Monte-Carlo models

Ruben Staub

ENS de Lyon

Friday 18, 2018

Ruben Staub KMC models ENS de Lyon

1 / 27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00

- 1 Traditional kinetic models
 - Unimolecular decomposition
 - Langmuir-Hinshelwood model
- 2 Monte-Carlo Markov Chain
 - Metropolis-Hastings Monte-Carlo
 - From Metropolis Monte-Carlo to Kinetic Monte-Carlo
- 3 Kinetic Monte-Carlo models
 - Algorithms overview
 - Standard algorithm
 - First Reaction Method
 - Variable Step Size Method / N-fold way / BLK algorithm
 - Determining the kinetic rates

4 Annexes

- Derivations
- Discussions

Ruben Staub KMC models

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000				
000		00		00
Unimolecular decomposition				

Figure: Reactant is adsorbed on an unoccupied adsorption site, independently of local coverage.

Ruben Sta	uЬ
KMC mod	els

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
•00				
000		00		00
Unimolecular decomposition				

Figure: Adsorbed reactant at an adsorption site does not feel the influence of other adsorbed species.

Ruben Staub	ENS de Lyon
KMC models	3 / 27

・ロト ・回 ト ・ヨト ・ヨト

э

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
•00				
000		00		00
Unimolecular decomposition				

Figure: Reactant is decomposed and rapidly desorbed.

Ruben Staub	
KMC models	

ENS de Lyon 3/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000 000		0000 00		0000
Unimolecular decomposition				

Unimolecular decomposition

Reaction considered:

$$A(g) + S_{free} \xrightarrow[k_{-1}]{k_1} A(ads) \xrightarrow{k_2} Products(g) + S_{free}$$

Assuming elementary steps, the total reaction rate r is:

$$r = -\frac{dP_{\rm A}}{dt} = k_2[{\rm A}({\rm ads})] = k_2\theta[{\rm S}]$$
(1)

where θ is the surface coverage (i.e. fraction of sites occupied), and [S] is the surface concentration of adsorption sites

Applying a steady-state approximation to A (ads), we get:

$$r = \frac{k_1 k_2 P_{\rm A}[{\rm S}]}{k_1 P_{\rm A} + k_{-1} + k_2}$$
(2)

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000 000		0000 00		0000 00
Unimolecular decomposition				

Limitations

This approach has multiple limitations/approximations:

- Only unimolecular decomposition is considered
- Steady-state approximation of adsorbed species
- All catalytic sites are equivalent
- Adsorption sites can only be occupied by the reactant
- Each site can be occupied by at most one adsorbate
- The adsorption and decomposition/desorption steps are considered elementary

< 口 > < 同

- No spatial correlation/lateral interactions
- Kinetic constants are independent of coverage

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Langmuir-Hinshelwood mode				

Figure: Reactants are adsorbed on unoccupied adsorption sites, independently of local coverage.

Ruben	Staub
KMC r	nodels

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000				
Langmuir-Hinshelwood model				

Figure: Adsorbed reactants at an adsorption site does not feel the influence of other adsorbed species, and diffuse freely over the surface.

Ruber	1 Staub
кмс	models

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Langmuir-Hinshelwood mode				

Figure: Bimolecular reaction occurs and product is rapidly desorbed.

Ruben Staub	ENS de Lyon
KMC models	6 / 27

イロト イポト イヨト イヨト 三日

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000	000	0000		0000
000				
Langmuir-Hinshelwood model				

Reaction rate

$$\begin{array}{l} \mathsf{A}(\mathsf{g}) + \mathsf{S}_{\mathsf{free}} \xrightarrow[k_{-1}]{k_{-1}} \mathsf{A}(\mathsf{ads}) \\ \texttt{considered:} \qquad \mathsf{B}(\mathsf{g}) + \mathsf{S}_{\mathsf{free}} \xrightarrow[k_{-2}]{k_{-2}} \mathsf{B}(\mathsf{ads}) \\ \\ \mathsf{A}(\mathsf{ads}) + \mathsf{B}(\mathsf{ads}) \xrightarrow[k_{-3}]{k_{-3}} \mathsf{AB}(\mathsf{g}) \end{array}$$

Reactions considered

Assuming elementary steps, the total reaction rate r is:

$$r = -\frac{dP_{\rm A}}{dt} = -\frac{dP_{\rm B}}{dt} = k_3 \theta_{\rm A} \theta_{\rm B} [\rm S]^2 \tag{3}$$

Applying a steady-state approximation to A(ads) and B(ads), and considering the rate determining step being the reaction/diffusion, we get:

$$r = \frac{K_{\rm A}K_{\rm B}P_{\rm A}P_{\rm B}[{\rm S}]^2}{(1 + K_{\rm A}P_{\rm A} + K_{\rm B}P_{\rm B})^2} \tag{4}$$

Ruben Staub KMC models

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000				
Langmuir-Hinshelwood model				

Limitations

This approach also has multiple limitations/approximations:

- Steady-state approximation of adsorbed species
- Reaction/diffusion between A(ads) and B(ads) is the rate determining step
- All catalytic sites are equivalent
- Adsorption sites can only be occupied by the reactants
- Each site can be occupied by at most one adsorbate
- The adsorption and decomposition/desorption steps are considered elementary
- No spatial correlation/lateral interactions
- Kinetic constants are independent of coverage

ENS de Lvon

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
	000			
Metropolis-Hastings Monte-C	arlo			

 Multiple MCMC (Monte-Carlo Markov Chain) methods for generating samples from a probability distribution P(S).

Ruben	Staub
кмс і	nodels

4 同

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
	000			
Metropolis-Hastings Monte-C	arlo			

 Multiple MCMC (Monte-Carlo Markov Chain) methods for generating samples from a probability distribution P(S).

• = • •

Based on random walk onto a Markov chain, with initial proposal distribution $g(S_i \rightarrow S_j)$.

ENS de Lvon

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
	000			
Metropolis-Hastings Monte-C	arlo			

- Multiple MCMC (Monte-Carlo Markov Chain) methods for generating samples from a probability distribution P(S).
- Based on random walk onto a Markov chain, with initial proposal distribution $g(S_i \rightarrow S_j)$.
- Reaches asymptotically a stationary distribution $\pi(S)$, such that $\forall S, \pi(S) = P(S)$.

ENS de Lvon

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
	000			
000		00		00
Metropolis-Hastings Monte-C	arlo			

- Multiple MCMC (Monte-Carlo Markov Chain) methods for generating samples from a probability distribution P(S).
- Based on random walk onto a Markov chain, with initial proposal distribution $g(S_i \to S_j)$.
- Reaches asymptotically a stationary distribution π(S), such that ∀S, π(S) = P(S).
- Requires only the computation of an estimator W(S) proportional to P(S), over all possible S.

ENS de Lvon

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000	000	0000		0000
Metropolis-Hastings Monte-C	arlo			

Ruben Staub KMC models ENS de Lyon

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes		
000	000	0000		0000		
Metropolis- Hastings Monte-Carlo						

 A next candidate S_j is selected from the current state S_i using the proposal distribution g.

ıben Staub			
MC models			

ENS de Lyon 10/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes		
000	000	0000		0000		
Metropolis- Hastings Monte-Carlo						

Ruben Staub

KMC models

- A next candidate S_j is selected from the current state S_i using the proposal distribution g.
- An acceptance probability is computed as:

$$A(\mathcal{S}_i, \mathcal{S}_j) = \min\left(\frac{W(\mathcal{S}_j)g(\mathcal{S}_i \to \mathcal{S}_j)}{W(\mathcal{S}_i)g(\mathcal{S}_j \to \mathcal{S}_i)}, 1\right)$$

글 > - < 글 >

ENS de Lyon

10/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes		
000	000	0000		0000		
Metropolis- Hastings Monte-Carlo						

- A next candidate S_j is selected from the current state S_i using the proposal distribution g.
- An acceptance probability is computed as:

$$A(\mathcal{S}_i, \mathcal{S}_j) = \min\left(\frac{W(\mathcal{S}_j)g(\mathcal{S}_i \to \mathcal{S}_j)}{W(\mathcal{S}_i)g(\mathcal{S}_j \to \mathcal{S}_i)}, 1\right)$$

In practice the targeted probability distribution P(S) is usually a Boltzmann distribution. No need for partition function, as $W(S_i) = e^{\frac{-S_i}{kT}} \propto P(S_i)$ is enough.

ENS de Lvon

▲ @ ▶ < ≡ ▶</p>

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes		
000	000	0000		0000		
Metropolis- Hastings Monte-Carlo						

- A next candidate S_j is selected from the current state S_i using the proposal distribution g.
- An acceptance probability is computed as:

$$A(\mathcal{S}_i, \mathcal{S}_j) = \min\left(\frac{W(\mathcal{S}_j)g(\mathcal{S}_i \to \mathcal{S}_j)}{W(\mathcal{S}_i)g(\mathcal{S}_j \to \mathcal{S}_i)}, 1\right)$$

- In practice the targeted probability distribution P(S) is usually a Boltzmann distribution. No need for partition function, as $W(S_i) = e^{\frac{-G_i}{kT}} \propto P(S_i)$ is enough.
- Pick random number $x \in [0, 1]$, candidate S_j accepted iff:

$$x \leq \min\left(e^{rac{-(G_j-G_i)}{kT}} imes rac{g(\mathcal{S}_i o \mathcal{S}_j)}{g(\mathcal{S}_j o \mathcal{S}_i)}, \ 1
ight)$$

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes		
	000					
000		00		00		
Metropolis-Hastings Monte-Carlo						

- With such acceptance criterion, asymptotic behaviour is mathematically proven¹.
- Sampling at the thermodynamic equilibrium.
- No time defined, no temporal evolution, no kinetics.
- Need to introduce kinetic elements.

 ¹Proof is straightforward, starting from detailed balance condition.
 ≥
 Ruben Staub
 ENS de Lyon

 KMC models
 11/27

Traditional kinetic models 000 000	Monte-Carlo Markov Chain 000	Kinetic Monte-Carlo models 0000 00	References 0 0	Annexes 0000 00
From Metropolis Monte-Carlo	to Kinetic Monte-Carlo			

Theoretical background

Master equation²:

$$\frac{dP(\mathcal{S}_i, t)}{dt} = \sum_{j \neq i} \left(R(\mathcal{S}_j \to \mathcal{S}_i) P(\mathcal{S}_j, t) - R(\mathcal{S}_i \to \mathcal{S}_j) P(\mathcal{S}_i, t) \right)$$

- Note: In the Metropolis-Hastings MC, a stronger version of the master equation (with $\forall i$, $\frac{dP(S_i,t)}{dt} = 0$) was satisfied: detailed balance.
- Need to define states {S₁, S₂,...}, transitions S_i → S_j, and associated transition rates R(S_i → S_j)

< ∃ >

■ Analytical solution cannot be computed for real systems ⇒ numerical methods are required

²Can be proven from first principles

Traditional kinetic models	Monte-Carlo Markov Chain 000 0	Kinetic Monte-Carlo models ●000	References 0	Annexes
Algorithms overview				

Standard algorithm

- Generate all $N(S_i)$ possible transitions (i.e. elementary steps) $S_i \rightarrow S_j$ from current state S_i .
- 2 Choose a transition $\mathcal{S}_i \to \mathcal{S}_j$ at random.
- 3 Retrieve associated transition rate $R(S_i \to S_j)$, and compute $R_{\max}(S_i) = \max_{\substack{j \neq i}} (R(S_i \to S_j)).$
- 4 Pick a random number $r_1 \in [0, 1]$. Apply transition $S_i \to S_j$ iff $r_1 \leq \frac{R(S_i \to S_j)}{R_{\max}(S_i)}$.
- **5** If transition accepted, pick a random number $r_2 \in (0, 1]$, and increase time by $\Delta t = \frac{-\ln(r_2)}{N(S_i)R_{\max}(S_i)}$.
 - Otherwise, transition is rejected. (If most transition rates are negligible compared to $R_{max} \Rightarrow most$ attempts rejected).

6 Repeat.

Ruben KMC 1

_	(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	臣	996
Staub		ENS d	e Lyon
nodels			13 / 27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	An n ex es
000	000	○●○○	0	0000
000	0	○○	0	00
Algorithms overview				

First Reaction Method

- I Generate all possible transitions (i.e. elementary steps) S_i → S_j from current state S_i, and retrieve associated transition rate R(S_i → S_j)
- 2 For each possible transition $S_i \to S_j$, pick random number $r_j \in (0, 1]$ and compute associated time $\tau_j = \frac{-\ln(r_j)}{R(S_i \to S_i)}$.
- **3** Select transition $S_i \to S_j$ with lowest τ_j .
- **4** Apply selected transition, and increase time by τ_j .
- 5 Repeat (previous computations might be stored, and updated).

ヘロン 人間 とくほとく

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	R ef er en ces	Annexes
		0000		
000		00		00
Algorithms overview				

Variable Step Size Method / N-fold way / BLK algorithm

- **I** Generate and store in a list all $N(S_i)$ possible transitions (i.e. elementary steps) $S_i \rightarrow S_j$ from current state S_i , and retrieve associated transition rate $R(S_i \rightarrow S_j)$.
- 2 Compute the cumulative function $R_c(S_i, j) = \sum_{k \neq i}^{J} R(S_i \to S_k)$, and define $R_{tot}(S_i) = R_c(S_i, N(S_i))$.
- 3 Pick random number $r_1 \in (0, 1]$, and select transition $S_i \to S_j$ such that $R_c(S_i, j-1) < r_1 R_{tot}(S_i) \le R_c(S_i, j)$.
- Apply selected transition, pick a random number $r_2 \in (0, 1]$, and increase time by $\Delta t = \frac{-\ln(r_2)}{R_{tot}(S_i)}$.
- **5** Update list of stored possible positions (add new transitions, update rates, delete transitions no longer possible).
- 6 Repeat.

イロト イポト イヨト イヨ

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000	000	000●	0	0000
000	0	00	0	00
Algorithms overview				

BLK algorithm flowchart

Ruben Staub	ENS de Lyon
KMC models	16 / 27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000	000	○○○○	0	0000
000	0	●○	0	00
Determining the kinetic rates				

Transition state theory

• How to compute transition rates $R(S_i \rightarrow S_j)$?

Common model, transition state theory:

$$k_{\text{TST}} = \kappa \frac{k_B T}{h} \exp\left(-\frac{\Delta G_{ij}^{\ddagger}}{k_B T}\right)$$

In practice, we define:

$$R(\mathcal{S}_i \to \mathcal{S}_j) = k_{\text{TST}} = \kappa \frac{Q_{ij}^{\ddagger}}{Q_i} \frac{k_B T}{h} \exp\left(-\frac{\Delta E_{ij}^{\ddagger}}{k_B T}\right)$$

where Q_{ij}^{\ddagger} and Q_i are the partition functions of the activated complex and current state S_i , and ΔE_{ij}^{\ddagger} is the energy barrier for the elementary step $S_i \rightarrow S_i$.

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	R ef er en ces	Annexes
000		00		00
Determining the kinetic rates				

Lateral interactions

- How to compute ΔE[‡]_{ij}? Depends on the composition and configuration of S_i and S_j
- Cluster expansion techniques:

$$\Delta E_{ij} = E_j - E_i = (E_{j,0} + L_j) - (E_{i,0} + L_i) = \Delta E_{ij,0} + L_{ij}$$

where $E_{i,0}$ is the total energy of state S_i as if the entities were infinitely separated; and L_i are the lateral interactions present in state S_i .

Activation energies are calculated with linear interpolation:

$$\Delta E_{ij}^{\ddagger} = \Delta E_{ij,0}^{\ddagger} + \omega \cdot L_{ij}$$

where $\omega \in [0, 1]$ is a proximity factor expressing how reactant- or product-like the transition state is.

Ruben Staub KMC models ENS de Lyon 18/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
			•	
000		00		00
Bibliography				

References I

	3.5 Applications : Kinetics of Catalytic Reactions.
	http://www.chem.qmul.ac.uk/surfaces/scc/scat3_5.htm.
	Kinetic Monte Carlo: from transition probabilities to transition rates.
	http://people.virginia.edu/~lz2n/mse627/notes/kMC.pdf
	Kinetics of Surface Catalysed Reactions.
_	http://vallance.chem.ox.ac.uk/pdfs/KineticsAtSurfaces.pdf.
	Lecture : Kinetic Monte Carlo Simulations.
_	https://pulse2017.sciencesconf.org/data/pages/Cours_Pierre_Louis.pdf.
	The UCL Centre for Cosmic Chemistry and Physics: Surface mechanisms.
	http://www.chem.ucl.ac.uk/cosmicdust/er-lh.htm.
	A. B. Bortz, M. H. Kalos, and J. L. Lebowitz.
	A new algorithm for Monte Carlo simulation of Ising spin systems.
	Journal of Computational Physics, 17(1):10–18, January 1975.
	A. P. J. Jansen.
	Monte Carlo simulations of chemical reactions on a surface with time-dependent reaction-rate

constants. Computer Physics Communications, 86(1):1–12, April 1995.

Ruben	Staub
кмс і	nodels

Ξ.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
			•	
000		00		00
Bibliography				

References II

Peter Kratzer.

Monte Carlo and kinetic Monte Carlo methods. arXiv:0904.2556 [cond-mat, physics:physics], April 2009. arXiv: 0904.2556.

J. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, R. J. Gelten, and A. P. J. Jansen. Efficient Monte Carlo methods for the simulation of catalytic surface reactions. *Physical Review E*, 58(2):2598-2610, August 1998.

Santiago A. Serebrinsky.

Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains. Physical Review E, 83(3):037701, March 2011.

Michail Stamatakis and Dionisios G. Vlachos.

A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. The Journal of Chemical Physics, 134(21):214115, June 2011.

Arthur F. Voter.

INTRODUCTION TO THE KINETIC MONTE CARLO METHOD. NATO Science Series, pages 1–23. Springer, Dordrecht, 2007.

Ruber	staub
кмс	models

ENS de Lyon

(日) (同) (三) (三)

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000	000	0000		0000
			•	
Outline				

- 1 Traditional kinetic models
 - Unimolecular decomposition
 - Langmuir-Hinshelwood model
- 2 Monte-Carlo Markov Chain
 - Metropolis-Hastings Monte-Carlo
 - From Metropolis Monte-Carlo to Kinetic Monte-Carlo
- 3 Kinetic Monte-Carlo models
 - Algorithms overview
 - Standard algorithm
 - First Reaction Method
 - Variable Step Size Method / N-fold way / BLK algorithm
 - Determining the kinetic rates

4 Annexes

- Derivations
- Discussions

Ruben Staub KMC models ENS de Lyon 21/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
				0000
000		00		00
Derivations				

Unimolecular decomposition: derivations

Using steady-state approximation to A(ads):

$$\frac{d[A(ads)]}{dt} = 0 = k_1 P_A[S_{free}] - (k_{-1} + k_2)[A(ads)]$$
(5)

$$\Leftrightarrow \quad \mathbf{0} = k_1(1-\theta)P_{\mathbf{A}}[\mathbf{S}] - (k_{-1}+k_2)\theta[\mathbf{S}] \qquad (6)$$

$$\Leftrightarrow \quad \theta = \frac{k_1 P_{\rm A}}{k_1 P_{\rm A} + k_{-1} + k_2} \tag{7}$$

Injecting (7) into (1):

$$r = k_2 \theta[S] = \frac{k_1 k_2 [A][S]}{k_1 [A] + k_{-1} + k_2}$$
(8)

・ロト ・四ト ・ヨト ・ヨト

Ruber	Staub
кмс	models

ENS de Lyon 22/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
				0000
000		00		00
Derivations				

Langmuir-Hinshelwood model: derivations (part 1)

Using steady-state approximation to A(ads) and B(ads):

$$\frac{d[\mathrm{A(ads)}]}{dt} = 0 = k_1 P_{\mathrm{A}}[\mathrm{S}_{\mathrm{free}}] - k_{-1}[\mathrm{A(ads)}] - k_3 \theta_{\mathrm{A}} \theta_{\mathrm{B}}[\mathrm{S}]^2$$
(9)

$$\Leftrightarrow \quad \mathbf{0} = k_1 P_{\mathrm{A}}[\mathrm{S}_{\mathrm{free}}] - k_{-1} \theta_{\mathrm{A}}[\mathrm{S}] - k_3 \theta_{\mathrm{A}} \theta_{\mathrm{B}}[\mathrm{S}]^2 \tag{10}$$

$$\Leftrightarrow \quad \mathbf{0} = k_1 (1 - \theta_{\mathrm{A}} - \theta_{\mathrm{B}}) P_{\mathrm{A}}[\mathrm{S}] - (k_{-1} + k_3 \theta_{\mathrm{B}}[\mathrm{S}]) \theta_{\mathrm{A}}[\mathrm{S}] \qquad (11)$$

$$\Leftrightarrow \quad 0 = k_1 (1 - \theta_{\rm A} - \theta_{\rm B}) P_{\rm A} - (k_{-1} + k_3 \theta_{\rm B}[{\rm S}]) \theta_{\rm A} \tag{12}$$

$$\frac{d[\mathrm{B(ads)}]}{dt} = 0 = k_2 P_{\mathrm{B}}[\mathrm{S}_{\mathrm{free}}] - k_{-2}[\mathrm{B(ads)}] - k_3 \theta_{\mathrm{A}} \theta_{\mathrm{B}}[\mathrm{S}]^2$$
(13)

$$\Leftrightarrow \quad \mathbf{0} = k_2 P_{\mathrm{B}}[\mathrm{S}_{\mathrm{free}}] - k_{-2} \theta_{\mathrm{B}}[\mathrm{S}] - k_3 \theta_{\mathrm{A}} \theta_{\mathrm{B}}[\mathrm{S}]^2 \tag{14}$$

$$\Leftrightarrow \quad 0 = k_2 (1 - \theta_{\mathrm{A}} - \theta_{\mathrm{B}}) P_{\mathrm{B}}[\mathrm{S}] - (k_{-2} + k_3 \theta_{\mathrm{A}}[\mathrm{S}]) \theta_{\mathrm{B}}[\mathrm{S}] \qquad (15)$$

$$\Leftrightarrow \quad 0 = k_2(1 - \theta_{\rm A} - \theta_{\rm B})P_{\rm B} - (k_{-2} + k_3\theta_{\rm A}[{\rm S}])\theta_{\rm B} \tag{16}$$

Ruben Staub KMC models

150/

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
				0000
000		00		00
Derivations				

Langmuir-Hinshelwood model: derivations (part 2)

Assuming that the rate determining step is the reaction between A(ads) and B(ads):

$$k_{-2} \gg k_3 \theta_{\rm A}[{\rm S}]$$
(17)
$$k_{-1} \gg k_3 \theta_{\rm B}[{\rm S}]$$
(18)

Therefore, we obtain (defining $K_{\rm A} = \frac{k_1}{k_{-1}}$ and $K_{\rm B} = \frac{k_2}{k_{-2}}$):

$$\frac{d[\mathrm{A(ads)}]}{dt} = 0 = k_1(1 - \theta_{\mathrm{A}} - \theta_{\mathrm{B}})P_{\mathrm{A}} - k_{-1}\theta_{\mathrm{A}}$$
(19)

$$\Leftrightarrow \quad \mathbf{0} = \mathcal{K}_{\mathrm{A}}(1 - \theta_{\mathrm{A}} - \theta_{\mathrm{B}})\mathcal{P}_{\mathrm{A}} - \theta_{\mathrm{A}} \tag{20}$$

$$\frac{d[\mathrm{B(ads)}]}{dt} = 0 = k_2(1 - \theta_\mathrm{A} - \theta_\mathrm{B})P_\mathrm{B} - k_{-2}\theta_\mathrm{B} \qquad (21)$$

$$\Leftrightarrow \quad \mathbf{0} = \mathcal{K}_{\mathrm{B}}(1 - \theta_{\mathrm{A}} - \theta_{\mathrm{B}}) \mathcal{P}_{\mathrm{B}} - \theta_{\mathrm{B}} \tag{22}$$

Ruben Staub KMC models

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
				0000
000		00		00
Derivations				

Langmuir-Hinshelwood model: derivations (part 3)

Ratioing (22) by (20), we get:

$$\frac{\theta_{\rm B}}{\theta_{\rm A}} = \frac{K_{\rm B}P_{\rm B}}{K_{\rm A}P_{\rm A}} \tag{23}$$

Injecting (23) into (20) and (22):

$$\theta_{A} = \frac{K_{A}P_{A}}{1 + K_{A}P_{A} + K_{B}P_{B}}$$
(24)
$$\theta_{B} = \frac{K_{B}P_{B}}{1 + K_{A}P_{A} + K_{B}P_{B}}$$
(25)

Leading finally to:

$$r = k_3 \theta_A \theta_B [S]^2 = \frac{K_A K_B P_A P_B [S]^2}{(1 + K_A P_A + K_B P_B)^2}$$
(26)

Ruben Staub KMC models ENS de Lyon 25/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000	000	0000		0000
				•0
Discussions				

Time step justification

Let us assume state S_i is accepted at time $t = t_i$, and define $\tau = t - t_i \ge 0$. So that $P(S_i, 0) = 1$.

$$P(S_i, \tau + \Delta \tau) = P(S_i, \tau) \overline{(1 - \frac{R_{tot}(S_i)\Delta \tau}{(any-transition \ proba)}})}$$
(27)

$$\Leftrightarrow \quad \frac{dP(\mathcal{S}_i,\tau)}{d\tau} = -P(\mathcal{S}_i,\tau)R_{\rm tot}(\mathcal{S}_i) \tag{28}$$

$$\Rightarrow P(\mathcal{S}_i, \tau) = e^{-R_{\text{tot}}(\mathcal{S}_i)\tau}$$
(29)

Probability p to time τ meaningful conversion:

$$\tau = -\frac{\ln(p)}{R_{\rm tot}(S_i)} \tag{30}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Ruben Staub	ENS de Lyon
KMC models	26 / 27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Discussions				

· • • • • • • • • •	ê⊁ ≪ Ē⊁ —	ヨー わへで
---------------------	-----------	--------

Ruben Staub KMC models ENS de Lyon 27/27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Discussions				

Ruben KMC

Staub	ENS de Lyon
models	27 / 27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Discussions				

Ruben Staub			
KMC models			

ENS de Lyon

æ

・ロト ・四ト ・ヨト ・ヨト

27 / 27

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Discussions				

	ENS d	e Lvon
・日・ ・四・ ・回・ ・ 回・	- E	୬୯୯

Ruben Staub	
KMC models	

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Discussions				

pprox Chemist's intuition!

EN	S de Lyon
	27 / 27

イロト イポト イヨト イヨト 三日

Ruben Staub KMC models

Traditional kinetic models	Monte-Carlo Markov Chain	Kinetic Monte-Carlo models	References	Annexes
000		00		00
Discussions				

Poster teaser

pprox Chemist's intuition!

Come and see for yourself...

Ruben Staub KMC models ENS de Lyon