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Introduction

Concept%of%Gap%in%the%heart of%Photochemistry,%Semiconductor
sciences,%…

with a suitable width. When the energy of incident light is
larger than that of a band gap, electrons and holes are
generated in the conduction and valence bands, respectively.
The photogenerated electrons and holes cause redox reactions
similarly to electrolysis. Water molecules are reduced by the
electrons to form H2 and are oxidized by the holes to form O2

for overall water splitting. Important points in the semicon-
ductor photocatalyst materials are the width of the band gap
and levels of the conduction and valence bands. The bottom
level of the conduction band has to be more negative than the
redox potential of H+/H2 (0 V vs.NHE), while the top level of
the valence band be more positive than the redox potential of
O2/H2O (1.23 V). Therefore, the theoretical minimum band
gap for water splitting is 1.23 eV that corresponds to light of
about 1100 nm.

Band gap (eV) = 1240/l (nm) (3)

Band levels of various semiconductor materials are shown in
Fig. 6. The band levels usually shift with a change in pH
(!0.059 V/pH) for oxide materials.4,29,30 ZrO2, KTaO3,
SrTiO3 and TiO2 possess suitable band structures for water
splitting. These materials are active for water splitting when
they are suitably modified with co-catalysts. Although CdS
seems to have a suitable band position and a band gap with
visible light response it is not active for water splitting into H2

and O2. S
2! in CdS rather than H2O is oxidized by photo-

generated holes accompanied with elution of Cd2+ according
to the eqn (4).30

CdS + 2h+ - Cd2+ + S (4)

This reaction is called photocorrosion and is often a demerit
of a metal sulfide photocatalyst. ZnO is also photo-

corroded under band gap excitation even if it is an oxide
photocatalyst.

ZnO + 2h+ - Zn2+ + 1/2O2 (5)

However, CdS is an excellent photocatalyst for H2 evolution
under visible light irradiation if a hole scavenger exists as
mentioned in section 2.2. On the other hand, WO3 is a good
photocatalyst for O2 evolution under visible light irradiation
in the presence of an electron acceptor such as Ag+ and Fe3+

but is not active for H2 evolution because of its low conduction
band level. The band structure is just a thermodynamic
requirement but not a sufficient condition. The band gap of
a visible-light-driven photocatalyst should be narrower than
3.0 eV (l 4 415 nm). Therefore, suitable band engineering is
necessary for the design of photocatalysts with visible light
response as mentioned in section 7.1.1.
The second step (ii) in Fig. 4 consists of charge separation

and migration of photogenerated carriers. Crystal structure,
crystallinity and particle size strongly affect the step as shown
in Fig. 7. The higher the crystalline quality is, the smaller the
amount of defects is. The defects operate as trapping and
recombination centers between photogenerated electrons and
holes, resulting in a decrease in the photocatalytic activity. If
the particle size becomes small, the distance that photogener-
ated electrons and holes have to migrate to reaction sites on
the surface becomes short and this results in a decrease in the
recombination probability.
The final step (iii) in Fig. 4 involves the surface chemical

reactions. The important points for this step are
surface character (active sites) and quantity (surface area).
Even if the photogenerated electrons and holes possess

Fig. 4 Main processes in photocatalytic water splitting.

Fig. 5 Principle of water splitting using semiconductor photocatalysts.

Fig. 6 Relationship between band structure of semiconductor and

redox potentials of water splitting.5

Fig. 7 Effects of particle size and boundary on photocatalytic

activity.
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→%Many definitions of%the%« energy gap »,%that may differ



Overview

1. Different approaches to%the%concept%of%bandgap

2. Computing bandgap with DFT

3. Why hybrid functionals ?



1. Differents definitions around the'concept'
of'bandgap

a) For&an&organic chemist

• HOMOMLUMO%gap:%E(LUMO)%– E(HOMO)
Calculated value

• Fundamental gap:%IP%– EA%=%E(NM1)%– E(N)%
– [E(N)ME(N+1)]

• Optical%gap:%Lowest 1Mphoton%transition%energy
→%=%Efund – EB (binding%energy)

• Koopman’s theorem:%E(HOMO)%=%MIP%and%E(LUMO)%=%MEA,%approximation

generally substantially lower than the fundamental gap; the
reason is that, in the excited state (contrary to the ionized state),
the electron and hole remain electrostatically bound to one
another. The difference between the fundamental gap and the
optical gap (when the latter reects the transition from the
ground state to the lowest excited state) is then a measure of
the electron–hole pair binding energy, EB. Fig. 1 provides a
general illustration of the fundamental and optical gaps when
considering molecular state energies.

We now turn our attention from organic molecules to
organic molecular (or polymeric) materials. Here, intermolec-
ular interactions broaden the molecular energy levels into
electronic bands. The widths of these bands depend on the
strengths of these interactions, i.e., on the electronic couplings
between adjacent molecules. As in the case of inorganic semi-
conductors, the upper occupied band can be referred to as the
valence band and the lower unoccupied band as the conduction
band. In perfectly ordered structures, such as defect-free single
crystals, the wave functions delocalize over the whole system.
However, in the disordered structures commonly found in
organic thin lms, the wave functions tend to localize over a few
neighboring molecules or even a single molecule. We note that
the degree of localization/delocalization is a function of the
balance between the strength of the intermolecular electronic
couplings, which favors delocalization, and the extent of
disorder, which leads to localization.

The band gap is dened as the energy difference between the
top of the valence band and the bottom of the conduction band.
Thus, rigorously speaking, it corresponds to the energy differ-
ence between the ionization potential and electron affinity of
the material. The band gap is also referred to as the transport
gap since it represents the minimum energy necessary to create
a positive charge carrier somewhere in the material (IP) minus
the energy gained by adding a negative charge carrier (EA)
elsewhere. The band gap or transport gap can be estimated

experimentally via a combination of ultraviolet photoelectron
spectroscopy (UPS) and inverse photoemission spectroscopy
(IPES). Thus, the band gap is the equivalent, at the materials
level, of the molecular fundamental gap. It is important to note,
however, that the band gap is typically considerably smaller in
energy than the molecular fundamental gap; this is due to the
fact that, in the solid state, p-conjugated molecules adjacent to
the one carrying a charge do strongly polarize, an effect that
stabilizes the cationic and anionic states (each generally by
about one eV in p-conjugated materials).

Upon photon absorption in a p-conjugated organic material,
the lowest optical transition denes the optical gap. It also leads
to the formation of a bound electron–hole pair, termed an
exciton in the context of condensed-matter physics (the elec-
tron–hole pair can indeed be considered as a quasiparticle as it
can move from molecule to molecule). Then, the difference
between, on the one hand, the band gap or transport gap and, on
the other hand, the optical gap between the ground state and the
lowest excited state denes the exciton binding energy; in
p-conjugatedmaterials, EB is usually on the order of a few tenths
of eV (again, a value smaller than the electron–hole pair binding
energy in the gas phase due to stabilization of both cations and
anions by polarization of surrounding molecules). It is useful to
bear inmind that themagnitude of the exciton binding energy is
due not only to the small dielectric constant (3! 3–5) but also to
substantial electron–electron and electron–vibration interac-
tions typical of p-conjugated materials. In contrast, in conven-
tional inorganic semiconductor crystals, the exciton binding
energy is oen so small (a few meV) that at room temperature
optical excitation directly leads to the formation of free charge
carriers (and thus in these systems Eopt ! Etransport).

Finally, it is useful to mention that the solid-state values of
ionization potential and electron affinity are, in many instances,
approximated experimentally via cyclic voltammetry measure-
ments of the oxidation and reduction potentials carried out in
solution. Conversion factors, assessed on a limited set of systems,
are then used to translate the redox potentials into solid-state
ionization energies. The values of ionization potential and elec-
tron affinity determined in this way have thus to be taken with
much caution. Moreover, given the use of several approaches to
the conversion factors, it is difficult to compare values from
different sources; to minimize this issue, it is highly desirable
that, in addition to the estimated IP and EA values, the experi-
mental electrode potentials and the approximations and
assumptions used in the conversions be reported. (Oen, these
cyclic-voltammetry-based ionization potentials and electron
affinities are inappropriately referred to as “HOMO” and “LUMO”
energies).

In a number of instances, either the oxidation potential or the
reduction potential is experimentally not accessible. A common
procedure is then to use the optical gap to deduce the missing
potential. For instance, in the absence of a measurable reduction
potential, the electron affinity would be assessed by subtracting
the optical gap from the ionization potential. As should be clear
from our discussion, this practice is highly misleading since it
ignores the exciton binding energy built into the optical gap.
Other complications also arise with this practice when the

Fig. 1 Illustration of gap energies in the molecular case: S0 denotes the
(singlet) electronic ground state and S1 the lowest (singlet) excited state
(considered here to be accessible via one-photon absorption). The S1" S0
energy difference then corresponds to the optical gap Eopt. The magni-
tude of the ionization potential is given by the blue vertical line and the
magnitude of the electron affinity by the green vertical line; the IP " EA
difference represents the fundamental gap, Efund. The electron–hole pair
binding energy, EB, is given by Efund " Eopt.
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1. Differents definitions around the'concept'
of'bandgap

b) For&a&solid3state&chemists

• band%gap:%IP%– EA%
(=%fundamental gap)

• Optical%gap:%Eband gap%– EB (binding%energy)
→%EB smaller than for%molecules (~meV)

• Bandgap measured by%:%XPS,%optical
absorption,%photoluminescence

generally substantially lower than the fundamental gap; the
reason is that, in the excited state (contrary to the ionized state),
the electron and hole remain electrostatically bound to one
another. The difference between the fundamental gap and the
optical gap (when the latter reects the transition from the
ground state to the lowest excited state) is then a measure of
the electron–hole pair binding energy, EB. Fig. 1 provides a
general illustration of the fundamental and optical gaps when
considering molecular state energies.

We now turn our attention from organic molecules to
organic molecular (or polymeric) materials. Here, intermolec-
ular interactions broaden the molecular energy levels into
electronic bands. The widths of these bands depend on the
strengths of these interactions, i.e., on the electronic couplings
between adjacent molecules. As in the case of inorganic semi-
conductors, the upper occupied band can be referred to as the
valence band and the lower unoccupied band as the conduction
band. In perfectly ordered structures, such as defect-free single
crystals, the wave functions delocalize over the whole system.
However, in the disordered structures commonly found in
organic thin lms, the wave functions tend to localize over a few
neighboring molecules or even a single molecule. We note that
the degree of localization/delocalization is a function of the
balance between the strength of the intermolecular electronic
couplings, which favors delocalization, and the extent of
disorder, which leads to localization.

The band gap is dened as the energy difference between the
top of the valence band and the bottom of the conduction band.
Thus, rigorously speaking, it corresponds to the energy differ-
ence between the ionization potential and electron affinity of
the material. The band gap is also referred to as the transport
gap since it represents the minimum energy necessary to create
a positive charge carrier somewhere in the material (IP) minus
the energy gained by adding a negative charge carrier (EA)
elsewhere. The band gap or transport gap can be estimated

experimentally via a combination of ultraviolet photoelectron
spectroscopy (UPS) and inverse photoemission spectroscopy
(IPES). Thus, the band gap is the equivalent, at the materials
level, of the molecular fundamental gap. It is important to note,
however, that the band gap is typically considerably smaller in
energy than the molecular fundamental gap; this is due to the
fact that, in the solid state, p-conjugated molecules adjacent to
the one carrying a charge do strongly polarize, an effect that
stabilizes the cationic and anionic states (each generally by
about one eV in p-conjugated materials).

Upon photon absorption in a p-conjugated organic material,
the lowest optical transition denes the optical gap. It also leads
to the formation of a bound electron–hole pair, termed an
exciton in the context of condensed-matter physics (the elec-
tron–hole pair can indeed be considered as a quasiparticle as it
can move from molecule to molecule). Then, the difference
between, on the one hand, the band gap or transport gap and, on
the other hand, the optical gap between the ground state and the
lowest excited state denes the exciton binding energy; in
p-conjugatedmaterials, EB is usually on the order of a few tenths
of eV (again, a value smaller than the electron–hole pair binding
energy in the gas phase due to stabilization of both cations and
anions by polarization of surrounding molecules). It is useful to
bear inmind that themagnitude of the exciton binding energy is
due not only to the small dielectric constant (3! 3–5) but also to
substantial electron–electron and electron–vibration interac-
tions typical of p-conjugated materials. In contrast, in conven-
tional inorganic semiconductor crystals, the exciton binding
energy is oen so small (a few meV) that at room temperature
optical excitation directly leads to the formation of free charge
carriers (and thus in these systems Eopt ! Etransport).

Finally, it is useful to mention that the solid-state values of
ionization potential and electron affinity are, in many instances,
approximated experimentally via cyclic voltammetry measure-
ments of the oxidation and reduction potentials carried out in
solution. Conversion factors, assessed on a limited set of systems,
are then used to translate the redox potentials into solid-state
ionization energies. The values of ionization potential and elec-
tron affinity determined in this way have thus to be taken with
much caution. Moreover, given the use of several approaches to
the conversion factors, it is difficult to compare values from
different sources; to minimize this issue, it is highly desirable
that, in addition to the estimated IP and EA values, the experi-
mental electrode potentials and the approximations and
assumptions used in the conversions be reported. (Oen, these
cyclic-voltammetry-based ionization potentials and electron
affinities are inappropriately referred to as “HOMO” and “LUMO”
energies).

In a number of instances, either the oxidation potential or the
reduction potential is experimentally not accessible. A common
procedure is then to use the optical gap to deduce the missing
potential. For instance, in the absence of a measurable reduction
potential, the electron affinity would be assessed by subtracting
the optical gap from the ionization potential. As should be clear
from our discussion, this practice is highly misleading since it
ignores the exciton binding energy built into the optical gap.
Other complications also arise with this practice when the

Fig. 1 Illustration of gap energies in the molecular case: S0 denotes the
(singlet) electronic ground state and S1 the lowest (singlet) excited state
(considered here to be accessible via one-photon absorption). The S1" S0
energy difference then corresponds to the optical gap Eopt. The magni-
tude of the ionization potential is given by the blue vertical line and the
magnitude of the electron affinity by the green vertical line; the IP " EA
difference represents the fundamental gap, Efund. The electron–hole pair
binding energy, EB, is given by Efund " Eopt.
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1. Differents definitions around the'concept'
of'bandgap

c) For&an&electrochemist
• Band%gap%=%Energy derived from
Oxidative /%Reductive potentials
obtained by%CV

→%Solvent effects (surface%polarisation)

  175

HOMO/LOMO ESTIMATION

The corresponding HOMO and LUMO levels were calculated 
using Eox

 (onset) for the measurements in film (P3OT) and 
in solution (PCBE). The estimations were done with the 
empirical relation ELUMO= [(Ered- E1/2(ferrocene)) +4.8] eV or 
EHOMO= [(Eox- E1/2(ferrocene)) +4.8] eV. Ferrocene was used as 
external standard. It shows two peaks at 0.37 and 0.44 V 
hence the E1/2 (ferrocence) is equal to 0.41 V which can be used 
in equation to calculate the EHOMO.
 Based on cyclic voltammetry results, PCBE shows 
EHOMO= 5.87 eV, Egap= 1.96 eV and ELUMO= 3.91. Based on 
the cyclic voltammetry results, P3OT shows EHOMO=5.59 
eV, Egap=1.83 eV and ELUMO=3.76 eV.
 Figure 6 shows the band diagram with HOMO/LUMO 
levels of P3OT and PCBE in addition the ITO and Al work 
functions (Al-Ibrahim et al. 2005 b). This proves that 
the required energy level for the materials is fulfilled 
for fabricating organic solar cells using these two 
materials.
 Regarding to the required criteria in selecting 
material selecting for organic solar cells especially energy 
concepts, these two materials can be used as a potential 
active layer for organic solar cells. The fabrication of 
bulk heterojunction organic solar cells, with these two 
materials, has been reported (Shafiee et al. 2008, 2009). 
The devices show a reasonable Voc up to 780 mV, though 

the Jsc is still under improvement to enhance the device 
efficiency.

CONCLUSION

HOMO/LUMO of two organic semiconductors were 
successfully characterized as potential materials for active 
layer in the fabrication of bulk heterojunction organic solar 
cells. Based on cyclic voltametry studies, in addition to the 

FIGURE 2. Absorption spectrum and optical band gap of PCBE
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FIGURE 3. Current -voltage curve for PCBE
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FIGURE 4. Absorption spectrum and optical band gap of P3OT
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FIGURE 5. Current -voltage for P3OT
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FIGURE 6. Energy Band Diagram of P3OT/PCBE in 
addition to the work function of ITO and Al



1. Differents definitions around the'concept'
of'bandgap

d) For&a&theoretical chemist

• Band%gap:%g%=%ƐBOCB – ƐTOVB monoelectronic

• Fundamental gap:%
G=%IP%– EA%=%E(NM1)%– E(N)%– [E(N)ME(N+1)]

=%E(N+1)%– E(N)%– [E(N)ME(NM1)]
→%Ground%state%energy difference

• Optical%gap%→%need to%compute excited states

– – –

–



2. Computing bandgap with DFT

a) Computing&g&and&G
Kohn Sham method→%Description%of%ground state%energy from a%nonMinteracting
system,%through the%choice of%accurate XC%functional Exc[ρ]

• Total%energy :%accurate →%linked to%G
• Orbitals :%Hypothetical→%linked to%g
→%g%has%no%reason to%be accurate as%KS%eigenvalues are%monoelectronicand%should
not%have%physical meaning.
→%Adding /%removing electrons to%extended systems is complicated

E[⇢] = TS [⇢] +

Z
dr · vext(r)⇢(r) + EH [⇢] + EXC [⇢]



2. Computing bandgap with DFT

b) Is&g&equal to&G&?&Numerical demonstration
d

Perdew,%J.%P.,%Yang,%W.,%Burke,%K.,%Yang,%Z.,%Gross,%E.%K.%U.,%Scheffler,%M.,%…%Görling,%A.%(2017).%Understanding band%gaps%of%solids in%generalizedKohn–Sham theory.%Proceedings of,the,National,
Academy of,Sciences,%114(11),%2801–2806.%https://doi.org/10.1073/pnas.1621352114

For a typical approximate functional, the GKS band gap g is the
ground-state energy difference G. Improvements in G correlate
at least roughly with other improvements in ground-state energy
differences for integer electron numbers, relevant to atomization
energies and lattice constants.

Numerical Demonstration
Because computational effort typically scales like the cube of the
number of atoms, finite 3- and even 2D clusters are much harder
to converge to the mesoscopic length scale, so we consider as a
first model a finite 1D linear chain of realistic H2 molecules. The
separation between the nuclei of neighboring molecules is taken
to be 1.25× the separation between nuclei within a molecule
(0.74 Å), to produce a gap of order 3 or 4 eV. To demonstrate
our conclusions, the model does not need to be realistic, and its
exact gap does not need to be known. With an even number
(two) of electrons per unit cell, this system is a band insulator.
We consider chains with 1–500 molecules. At large numbers Nmol
of molecules, the correction to the limit Nmol →∞ is (13, 34) of
order 1=Nmol, simplifying the extrapolation. Figs. 1 and 2 show
that for all tested approximate functionals, G− g tends to zero as
Nmol →∞. Table 1 shows limiting values. Within numerical ac-
curacy, as Nmol →∞, I→ − «HO, A→ − «LU, and G→ g.
The positive ions show delocalization of the extra positive

charge over the finite chain, even without periodic boundary
conditions, as expected from the approximate functionals studied
here. The negative ions are resonances, with negative electron
affinity of the chain, captured by the finite basis set. But, the
resonance can evolve smoothly (35) to a bound state with posi-
tive electron affinity as the chain length grows. In contrast to the
situation for atoms and molecules, the resonant one-electron
states of bulk solids can be converged with respect to basis set.
Ref. 36 states without an explicit proof a major result proved

here: For a hybrid functional implemented in a generalized KS
scheme, the band gap equals the fundamental gap within the
same approximation. Refs. 36 and 37 show how to calculate the
fundamental gaps of real extended solids from a given func-
tional without extrapolating from clusters of finite size (and ref.
37 thereby finds realistic band gaps for many solids from the
random phase approximation, by a method different from that
of ref. 38). This makes it possible to demonstrate our conclu-
sions for real 3D solids using a computer code with periodic
boundary conditions.
To that end, we report calculations for the semiconductor

aluminum arsenide and the large-gap insulator solid argon with

the Perdew–Burke–Ernzerhof (PBE) GGA (4) and the PBE0
hybrid (7, 26, 27) functionals as representatives for KS and GKS
methods, via the approach of refs. 36 and 37. Regular grids of
n × n × n k points containing the Γ-point are used, corresponding
to a collection of n × n × n primitive unit cells in periodic
boundary conditions. For n → ∞ an infinite periodic solid would
be obtained, forbidding symmetry-breaking localization of the
added electron or hole, which we do not expect for the solids and
functionals considered here. Symmetry breaking (forming po-
larons) can be captured by a related supercell approach (39). A
self-consistent calculation for the neutral system yields a band
gap g and an energy E(N). Removal of one electron from the HO
orbital or one-electron state (the k point at the top of the valence
band), while keeping the other occupations and orbitals un-
changed, yields the non–self-consistent Enon-SCF(N − 1), whereas
allowing orbital relaxation yields the self-consistent ESCF(N − 1).
Contributions to the Hartree energy and Hartree potential from
the zero reciprocal lattice vector are not taken into account in
the charged systems, or (as usual) in the neutral ones. This long-
known approach for charged systems (40) is better justified for
bulk periodic solids than for other cases (41). Thus, without any
code modification, a finite energy E(N − 1) is obtained. An
ionization potential I(N) is just the difference E(N − 1) − E(N),
where neither energy is divided by the number of primitive unit
cells. An energy E(N + 1) is obtained analogously by adding one
electron to the k point representing the bottom of the conduction
band. From Eq. 1 the fundamental energy gaps Gnon-SCF and
GSCF, for the cases without and with orbital relaxation, re-
spectively, are calculated. Convergence with mesh size is rapid

Fig. 1. PBE GGA fundamental gap G and band gap g for a linear chain of
Nmol H2 molecules. Note that G converges to the limit Nmol →∞ much more
slowly than g does.

Fig. 2. Difference between the fundamental gap G= I−A and the GKS
band gap g= «LU − «HO for a linear chain of Nmol hydrogen molecule.

Table 1. Ionization energy I, electron affinity A, and
fundamental gap G= I−A of an infinite linear chain of H2

molecules, evaluated by extrapolation from finite chains, and the
band edges eHO, eLU and band gap g= eLU − eHO, in the LSDA (2),
PBE GGA (4), SCAN meta-GGA (5), and HSE06 range-separated
hybrid (8) functionals

eV (I+A)/2 I -«HO A -«LU G g

LSDA 1.65 3.14 3.13 0.16 0.17 2.98 2.96
PBE 1.67 3.24 3.23 0.09 0.10 3.15 3.13
SCAN 1.68 3.33 3.31 0.01 0.02 3.32 3.29
HSE06 1.82 3.92 3.91 −0.29 −0.28 4.21 4.18

The extrapolated band energies agree closely with those from a periodic-
boundary-condition calculation (shown). ðI+AÞ=2, the energy difference
from the gap center to the vacuum level (15), depends only weakly on the
approximation.

Perdew et al. PNAS | March 14, 2017 | vol. 114 | no. 11 | 2803
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For a typical approximate functional, the GKS band gap g is the
ground-state energy difference G. Improvements in G correlate
at least roughly with other improvements in ground-state energy
differences for integer electron numbers, relevant to atomization
energies and lattice constants.

Numerical Demonstration
Because computational effort typically scales like the cube of the
number of atoms, finite 3- and even 2D clusters are much harder
to converge to the mesoscopic length scale, so we consider as a
first model a finite 1D linear chain of realistic H2 molecules. The
separation between the nuclei of neighboring molecules is taken
to be 1.25× the separation between nuclei within a molecule
(0.74 Å), to produce a gap of order 3 or 4 eV. To demonstrate
our conclusions, the model does not need to be realistic, and its
exact gap does not need to be known. With an even number
(two) of electrons per unit cell, this system is a band insulator.
We consider chains with 1–500 molecules. At large numbers Nmol
of molecules, the correction to the limit Nmol →∞ is (13, 34) of
order 1=Nmol, simplifying the extrapolation. Figs. 1 and 2 show
that for all tested approximate functionals, G− g tends to zero as
Nmol →∞. Table 1 shows limiting values. Within numerical ac-
curacy, as Nmol →∞, I→ − «HO, A→ − «LU, and G→ g.
The positive ions show delocalization of the extra positive

charge over the finite chain, even without periodic boundary
conditions, as expected from the approximate functionals studied
here. The negative ions are resonances, with negative electron
affinity of the chain, captured by the finite basis set. But, the
resonance can evolve smoothly (35) to a bound state with posi-
tive electron affinity as the chain length grows. In contrast to the
situation for atoms and molecules, the resonant one-electron
states of bulk solids can be converged with respect to basis set.
Ref. 36 states without an explicit proof a major result proved

here: For a hybrid functional implemented in a generalized KS
scheme, the band gap equals the fundamental gap within the
same approximation. Refs. 36 and 37 show how to calculate the
fundamental gaps of real extended solids from a given func-
tional without extrapolating from clusters of finite size (and ref.
37 thereby finds realistic band gaps for many solids from the
random phase approximation, by a method different from that
of ref. 38). This makes it possible to demonstrate our conclu-
sions for real 3D solids using a computer code with periodic
boundary conditions.
To that end, we report calculations for the semiconductor

aluminum arsenide and the large-gap insulator solid argon with

the Perdew–Burke–Ernzerhof (PBE) GGA (4) and the PBE0
hybrid (7, 26, 27) functionals as representatives for KS and GKS
methods, via the approach of refs. 36 and 37. Regular grids of
n × n × n k points containing the Γ-point are used, corresponding
to a collection of n × n × n primitive unit cells in periodic
boundary conditions. For n → ∞ an infinite periodic solid would
be obtained, forbidding symmetry-breaking localization of the
added electron or hole, which we do not expect for the solids and
functionals considered here. Symmetry breaking (forming po-
larons) can be captured by a related supercell approach (39). A
self-consistent calculation for the neutral system yields a band
gap g and an energy E(N). Removal of one electron from the HO
orbital or one-electron state (the k point at the top of the valence
band), while keeping the other occupations and orbitals un-
changed, yields the non–self-consistent Enon-SCF(N − 1), whereas
allowing orbital relaxation yields the self-consistent ESCF(N − 1).
Contributions to the Hartree energy and Hartree potential from
the zero reciprocal lattice vector are not taken into account in
the charged systems, or (as usual) in the neutral ones. This long-
known approach for charged systems (40) is better justified for
bulk periodic solids than for other cases (41). Thus, without any
code modification, a finite energy E(N − 1) is obtained. An
ionization potential I(N) is just the difference E(N − 1) − E(N),
where neither energy is divided by the number of primitive unit
cells. An energy E(N + 1) is obtained analogously by adding one
electron to the k point representing the bottom of the conduction
band. From Eq. 1 the fundamental energy gaps Gnon-SCF and
GSCF, for the cases without and with orbital relaxation, re-
spectively, are calculated. Convergence with mesh size is rapid

Fig. 1. PBE GGA fundamental gap G and band gap g for a linear chain of
Nmol H2 molecules. Note that G converges to the limit Nmol →∞ much more
slowly than g does.

Fig. 2. Difference between the fundamental gap G= I−A and the GKS
band gap g= «LU − «HO for a linear chain of Nmol hydrogen molecule.

Table 1. Ionization energy I, electron affinity A, and
fundamental gap G= I−A of an infinite linear chain of H2

molecules, evaluated by extrapolation from finite chains, and the
band edges eHO, eLU and band gap g= eLU − eHO, in the LSDA (2),
PBE GGA (4), SCAN meta-GGA (5), and HSE06 range-separated
hybrid (8) functionals

eV (I+A)/2 I -«HO A -«LU G g

LSDA 1.65 3.14 3.13 0.16 0.17 2.98 2.96
PBE 1.67 3.24 3.23 0.09 0.10 3.15 3.13
SCAN 1.68 3.33 3.31 0.01 0.02 3.32 3.29
HSE06 1.82 3.92 3.91 −0.29 −0.28 4.21 4.18

The extrapolated band energies agree closely with those from a periodic-
boundary-condition calculation (shown). ðI+AÞ=2, the energy difference
from the gap center to the vacuum level (15), depends only weakly on the
approximation.
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2. Computing bandgap with DFT

b) Is&g&equal to&G&?&Theoretical understanding
Let’s add and%remove 1%electron to%the%fundamental state%:

• Janak’s theorem :%

Perdew,%J.%P.,%Yang,%W.,%Burke,%K.,%Yang,%Z.,%Gross,%E.%K.%U.,%Scheffler,%M.,%…%Görling,%A.%(2017).%Understanding band%gaps%of%solids in%generalizedKohn–Sham theory.%Proceedings of,the,National,
Academy of,Sciences,%114(11),%2801–2806.%https://doi.org/10.1073/pnas.1621352114
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2. Computing bandgap with DFT

b) Is&g&equal to&G&?&Theoretical understanding
Let’s add and%remove 1%electron to%the%fundamental state%:

• Janak’s theorem :%

The%density change%is very small and%delocalized� E%is linear in%ni

Therefore
Perdew,%J.%P.,%Yang,%W.,%Burke,%K.,%Yang,%Z.,%Gross,%E.%K.%U.,%Scheffler,%M.,%…%Görling,%A.%(2017).%Understanding band%gaps%of%solids in%generalizedKohn–Sham theory.%Proceedings of,the,National,

Academy of,Sciences,%114(11),%2801–2806.%https://doi.org/10.1073/pnas.1621352114
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�E� = E(N)� E(N � 1) = "HO ·�N = "HO

�E+ = E(N + 1)� E(N) = "LU ·�N = "LU

g = "LU � "HO = IP � EA = G



3. Why hybrid functionals ?

a) Bandgaps and&functionals

We can notice that the discrepancy of the computed gap with
global hybrid functionals increases in the series CdS, CdSe, and
CdTe, while the agreement improves for the GGA functional
PBE. As for the cell parameter calculation, this is certainly a
consequence of relativistic effects. To support this hypothesis, a
single-point relativistic calculation on CdTe (which contains
the heaviest elements in the list of SCs we selected) was
performed with VASP by taking into account spin−orbit
coupling along with the noncollinear formalism and the HSE06
functional (see the Supporting Information). The computed Eg
is 1.23 eV, so 0.3 eV lower than the result obtained when scalar-
relativistic effects are considered through the pseudopotential.
Consequently, PBE artificially reproduces this effect by
underestimating the bandgap. In other words, the apparent
fairly good description of Eg by PBE does not mean that the
electronic structure of the system is well reproduced by PBE.
From a photochemical point of view, we understand better

why Si, CdTe, and GaAs are used as sunlight absorber in
photovoltaic devices since they have a Eg almost in the
optimum range, i.e., between 1.1 and 1.4 eV. The bandgap of
Ge is too small for a use in a simple p-n junction, but it is
employed in multijunction solar cells where the requirement on
the bandgap is different. Despite the good position of the gap of
CdO for a photovoltaic application, this SC is not used in this
field. Actually, the gap of CdO is indirect which means that the
light absorption is not efficient. The first direct bandgap in
CdO is around 2.21 eV (computed with HSE06 at the Γ point),
which is too high for a photovoltaic application.
For the water splitting application, the CdS compound is

reasonably well placed with a gap not far from the optimum
area (being between 1.8 and 2.2 eV).23 This explains why this
compound is intensively studied for this application.2,4,21

The oxides TiO2 (rutile and anatase) and ZnO have a very
high Eg, which means that they almost do not absorb the
sunlight except the UV fraction. That is the reason why they are
used in DSSCs or in Quantum-Dots-Sensitized Solar Cells
(QDSSCs), since these oxides have to conduct the photo-
generated electrons without absorbing the sunlight, which is
done by dyes or quantum dots. However, for some photo-
chemical reactions, there is a minimum photovoltage below
which the photoreaction does not occur, for example in water
splitting devices or for the photodegradation of pollutant. For
these applications, oxides like TiO2 or ZnO are efficient since
they can achieve high photovoltage because of their high Eg.

III. Dielectric Constants. The dielectric constant plays an
important role in the exciton dissociation, since the electrostatic
force bonding the electron and the hole is reduced by the
increase of εr (eq 1). In the Methodology section, it was
recalled that the dielectric constant represents the ability of
charges constituting the SC to reorganize when an electric field
is applied (caused by the exciton), which screens the electron
and the hole. The charges constituting a crystal are the
electronic density and the ions of the lattice. So two
contributions are present in the dielectric constant, the
electronic one, which is linked to the polarizability of the
electron density, and the vibrational one, which is linked to the
ionic degrees of freedom.
Figure 4 presents ε∞, which takes into account only the

electronic contribution, and Figure 5 gathers the total εr, taking
into account the electronic and vibrational contributions to the
dielectric constant. Vibrational contributions were not
computed with HSE06 functional since the needed frequencies
calculations request too much calculation resources.
From the functionals point of view, all of them give values of

ε∞ in fairly good agreement with the experiment. Generally,
PBE gives higher ε∞ than the other functionals because the gap
computed by PBE is lower. As for Eg, HSE06 clearly
outperforms the other functionals for the calculation of this
property, with a MAE of only 2.7%. The agreement is good also
for ZnO, for which Eg was not so well reproduced by HSE06.
This confirms, along with the good results obtained for lattice
parameters and Eg calculations, that HSE06 reproduces well the
electronic structures of SCs. For the global dielectric constant εr
(containing both electronic and vibrational contributions), the
agreement with experiments is generally good as well for all
functionals (MAE between 8 and 10%). More precisely, for SCs
having an important vibrational contribution to εr such as TiO2
(anatase and rutile) and CdO, the different functionals
reproduce this large amount of vibrational contribution.
However, PBE, and to a smaller extent B3LYP, largely
overestimates this strong vibrational contributions for TiO2
rutile. This is a consequence of the bad reproduction of the
phonon spectrum, already noticed in the literature, which
causes this discrepancy.79 We have to keep in mind that only
the softest modes (below 100 cm−1) contribute to the dielectric
constant (eq 6). A small error of 10 cm−1 induces a large error
on the vibrational contribution to the dielectric constant. As a

Figure 3. Computed gaps (in eV) along with the MAE (in %). The colors blue, orange, red, green, and black correspond to PBE, B3LYP, PBE0,
HSE06, and experiment, respectively.
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→&Hybrid functionals work best&!



3. Why hybrid functionals ?

b) Comparison of&hybrid and&non3hybrid functionals

• LDA,%GGA%functionals are%spacialy local,%while HF%exchange%functional
is nonMlocal

• When an%electron is added or%removed,%the%density change%should be
infinitesimal and%periodic



3. Why hybrid functionals ?

c) Choice&of&HF&amount

Too low %HF%:%Underestimation of%bandgap
Too high%%HF%:%Overestimation of%bandgap

Best%results for%%HF%= "##
$%

→%Best%functional depends on%the%
semiconductor

Marques,%M.%A.%L.;%Vidal,%J.;%Oliveira,%M.%J.%T.;%Reining,%L.;%Botti,S.%DensityMBased Mixing Parameter for%Hybrid Functionals.% Phys.%Rev.%B%2011,%83,%035119.
Conesa,% J.%C.%Band%Structures% and%Nitrogen Doping%Effects in%Zinc%Titanate%Photocatalysts.%Catal.%Today 2013,%208,%11−18
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