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Part I

Introduction: Main Concepts in Game

Theory and a few applications



What is Game Theory and what is it for?

Definition (Roger Myerson, ”Game Theory, Analysis of Conflicts”)

“Game theory can be defined as the study of mathematical models
of conflict and cooperation between intelligent rational
decision-makers. Game theory provides general mathematical
techniques for analyzing situations in which two or more individuals
make decisions that will influence one another’s welfare.”

I Branch of optimization

I Multiple actors with different objectives

I Actors interact with each others
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Game Theory and Nobel Prices

I Roger B. Myerson (2007, 1951) – eq. in dynamic games

I Leonid Hurwicz (2007, 1917-2008) – incentives

I Eric S. Maskin (2007, 1950) – mechanism design

I Robert J. Aumann (2005, 1930) – correlated equilibria

I Thomas C. Schelling (2005, 1921) – bargaining

I William Vickrey (1996, 1914-1996) – pricing

I Robert E. Lucas Jr. (1995, 1937) – rational expectations

I John C. Harsanyi (1994, 1920-2000) – Bayesian games, eq. selection

I John F. Nash Jr. (1994, 1928) – NE, NBS

I Reinhard Selten (1994, 1930) – Subgame perf. eq., bounded rationality

I Kenneth J. Arrow (1972, 1921) – Impossibility theorem

I Paul A. Samuelson (1970, 1915-2009) – thermodynamics to econ.

(Jorgen Weibull - Chairman 2004-2007)
(more info on http://lcm.csa.iisc.ernet.in/gametheory/nobel.html)
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Example of Game
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Example

I 2 boxers fighting.

I Each of them bet $1 million.

I Whoever wins the game gets all the money...

Question: Elements of the Game

I What are the player actions and strategies?

I What are the players corresponding payoffs?

I What are the possible outputs of the game?

I What are the players set of information?

I How long does a game last?

I Are there chance moves?

I Are the players rational?



Outline

1 ”Simple” Games and their solutions: One Round, Simultaneous
plays, Perfect Information

Zero-Sum Games
General Case

2 Two Inspiring Examples

3 Optimality

4 Bargaining Concepts

5 Measuring the Inefficiency of a Policy

6 Application: Multiple Bag-of-Task Applications in Distributed
Platforms
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Pure Competition: Modeling
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Definition:
Two Players, Zero-Sum Game.

I 2 players, finite number of actions

I Payoffs of players are opposite (and
depend on both players’ actions)

Modelization

I We call strategy a decision rule on the set of actions

I (Pure Strategy) Payoffs can be represented by a matrix
A where
Player 1 chooses i,
Player 2 chooses j

}
⇒
{

player 1 gets aij
player 2 gets −aij

I A solution point is such that

no player has incentives to
deviate
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Solution of a Game

What is the solution of the game

Player 2

P
la

ye
r

1 5 1 3
3 2 4
−3 0 1

?

Interpretation:

I Solution point is a saddle point

I Value of a game: V = min
j

max
i
aij︸ ︷︷ ︸

V+

= max
i

min
j
aij︸ ︷︷ ︸

V−
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Spatial Representation
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Games with no solution?

Proposition:

For any game, we can define:
V− = max

i
min
j
aij and V+ = min

j
max
i
aij .

In general V− ≤ V+

Proof.

∀i, min
j

max
i
aij ≥ min

j
aij

Example:

 4 2

1 3

 V−

V+
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Interpretation of V− and V+
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4 0 1

0 −1 2

−1 3 1

Interpretation 1: Security Strategy and Level

V− is the utility that Player 1 can secure (“gain-floor”).
V+ is the ”loss-ceiling” for Player 2.
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4 0 1

0 −1 2

−1 3 1

Interpretation 1: Security Strategy and Level

V− is the utility that Player 1 can secure (“gain-floor”).
V+ is the ”loss-ceiling” for Player 2.

4 0 1 0 −1 2 −1 3 1

1 2 3

Player 1

Player 2

1 2 3 1 1 22 3 3

Interpretation 2: Ordered Decision
Making

Suppose that there is a predefined order
in which players take decisions. (Then,
whoever plays second has an
advantage.)
V− is the solution value when Player 1
plays first.
V+ is the solution value when Player 2
plays first.

4 0 0 −1 1−1 3 21

Player 2

Player 1

1

2 31321321

2 3



Games with more than one solution?

Proposition: Uniqueness of Solution

A zero-sum game admits a unique V− and V+. If it exists V is
unique.
A zero-sum game admits at most one (strict) saddle point

Proof.

Let (i, j) and (k, l) be two saddle points.

 aij · · · ail
...

akj · · · akl


By definition of aij : aij ≤ ail and aij ≥ akj . Similarly, by
definition of akl : akl ≤ akj and akl ≥ ail.
Then, aij ≤ ail ≤ akl ≤ akj ≤ aij

Corinne Touati (INRIA) Part I. Main Concepts Simple Games 14 / 66



Extension to Mixed Strategies

Definition: Mixed Strategy.

A mixed strategy x is a probability distribution on the set of pure

strategies: ∀i, xi ≥ 0,
∑
i

xi = 1

Optimal Strategies:

I Player 1 maximize its expected gain-floor with
x = argmax min

y
xAyt.

I Player 2 minimizes its expected loss-ceiling with
y = argmin max

x
xAyt.

Values of the game:

I V m
− = max

x
min
y
xAyt = max

x
min
j
xA.j and

I V m
+ = min

y
max
x

xAyt = min
y

max
i
Ai.y

t.
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The Minimax Theorem

Theorem 1: The Minimax Theorem.

In mixed strategies: V m
− = V m

+
def
= V m

Proof.

Lemma 1: Theorem of the Supporting Hyperplane.

Let B a closed and convex set of points in Rn and x /∈ B Then,

∃p1, ....pn, pn+1 :

n∑
i=1

xipi = pn+1 and ∀y ∈ B, pn+1 <

n∑
i=1

piyi.

Proof.

Consider z the point in B of minimum distance to x and consider

∀n, 1 ≤ i ≤ n, pi = zi − xi, pn+1 =
∑
i

zixi −
∑
i

xi
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The Minimax Theorem

Theorem 1: The Minimax Theorem.

In mixed strategies: V m
− = V m

+
def
= V m

Proof.

Lemma 1: Theorem of the Alternative for Matrices.

Let A = (aij)m×n Either (i) (0, ..., 0) is contained in the convex
hull of A.1, ..., A.n, e1, ...em. Or (ii) There exists x1, ..., xm s.t.

∀i, xi > 0,
m∑
i=1

xi = 1, ∀j ∈ 1, ..., n,

m∑
i=1

aijxi.

Lemma 2.

Lemma 3: Let A be a game and k ∈ R. Let B the game such that
∀i, j, bij = aij + k. Then V m

− (A) = V m
− (B) + k and

V m
+ (A) = V m

+ (B) + k.
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The Minimax Theorem

Theorem 1: The Minimax Theorem.

In mixed strategies: V m
− = V m

+
def
= V m

Proof.

From Lemma 2, we get that for any game, either (i) from lemma 2
and V m

+ ≤ 0 or (ii) and V m
− > 0. Hence, we cannot have

V m
− ≤ 0 < V m

+ . With Lemma 3 this implies that V m
− = V m

+ .
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The Minimax Theorem - Illustration

Example:

(
4 2
1 3

)
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A Note on Symmetric Games

Definition: Symmetric Game.

A game is symmetric if its matrix is skew-symmetric

Proposition:

The value of a symmetric game is 0 and any strategy optimal for
player 1 is also optimal for player 2.

Proof.

Note that xAxt = −xAtxt = −(xAxt)t = −xAxt = 0. Hence
∀x,min

y
xAyt ≤ 0 and max

y
yAxt ≥ 0 so V = 0.

If x is an optimal strategy for 1 then 0 ≤ xA = x(−At) = −xAt
and Axt ≤ 0.
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Game in Normal Form

Definition: (Finite or Matrix) Game.

I N players, finite number of actions

I Payoffs of players (depend of each other actions and) are real
valued

I Stable points are called Nash Equilibria

Definition: Nash Equilibrium.

In a NE, no player has incentive to unilaterally modify his strategy.

strategy payoff

s∗ is a Nash equilibrium iff:

∀p,∀ sp , up(s
∗
1, . . . , s∗p , . . . s∗n) ≥ up (s∗1, . . . , sp , . . . , s∗n)

In a compact form:
∀p,∀sp, up(s∗−p, s∗p) ≥ up(s∗−p, sp)

Corinne Touati (INRIA) Part I. Main Concepts Simple Games 20 / 66



Nash Equilibrium: Examples

Why are these games be called “matrix” games?

How many vector matrices (and of which size) need to be used to
represent a game with N players where each player has M

strategies?

Rock-Scisor-Paper

1/2 P R S

P (0, 0) (1,−1)(−1, 1)
R (−1, 1) (0, 0) (1,−1)
S (1,−1)(−1, 1) (0, 0)

⇒ No equilibrium
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Nash Equilibrium: Examples

Find the Nash equilibria of these games (with pure strategies)

The prisoner dilemma

collaborate deny

collaborate (1, 1) (3, 0)
deny (0, 3) (2, 2)

⇒ not efficient

Battle of the sexes

Paul / Claire Opera Foot

Opera (2, 1) (0, 0)
Foot (0, 0) (1, 2)

⇒ not unique

Rock-Scisor-Paper

1/2 P R S
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Mixed Nash Equilibria
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Definition: Mixed Strategy Nash Equilibria.

A mixed strategy for player i is a probability distribution over the set of
pure strategies of player i.
An equilibrium in mixed strategies is a strategy profile σ∗ of mixed
strategies such that: ∀p,∀σi, up(σ∗−p, σ∗p) ≥ up(σ∗−p, σp).

Theorem 2.

Any finite n-person noncooperative game has at least one equilibrium
n-tuple of mixed strategies.

Proof.

Kakutani fixed point theorem: Apply Kakutani to
f : σ 7→ ⊗i∈{1,N}Bi(σi) with Bi(σ) the best response of player i.
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Definition: Mixed Strategy Nash Equilibria.

A mixed strategy for player i is a probability distribution over the set of
pure strategies of player i.
An equilibrium in mixed strategies is a strategy profile σ∗ of mixed
strategies such that: ∀p,∀σi, up(σ∗−p, σ∗p) ≥ up(σ∗−p, σp).

Theorem 2.

Any finite n-person noncooperative game has at least one equilibrium
n-tuple of mixed strategies.

Proof.

Kakutani fixed point theorem: Apply Kakutani to
f : σ 7→ ⊗i∈{1,N}Bi(σi) with Bi(σ) the best response of player i.

Consequence:

I The players mixed strategies are independant randomizations.

I In a finite game, up(σ) =
∑
a

∏
p′

σp′(ap′)

ui(a).

I Function ui is multilinear

I In a finite game, σ∗ is a Nash equilibrium iff ∀ai in the support
of σi, ai is a best response to σ∗−i



Mixed Nash Equilibria: Examples

Find the Nash equilibria of these games (with mixed strategies)

The prisoner dilemma

collaborate deny

collaborate (1, 1) (3, 0)
deny (0, 3) (2, 2)

⇒ No strictly mixed equilibria

Battle of the sexes

Paul / Claire Opera Foot

Opera (2, 1) (0, 0)
Foot (0, 0) (1, 2)

σ1 = (2/3, 1/3), σ2 = (1/3, 2/3)

Rock-Scisor-Paper

1/2 P R S

P (0, 0) (1,−1)(−1, 1)
R (−1, 1) (0, 0) (1,−1)
S (1,−1)(−1, 1) (0, 0)

σ1 = σ2 = (1/3, 1/3, 1/3)
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The Prisoner Dilemma

Prisoner B stays Silent Prisoner B Betrays

A stays Silent Each serves 6 months
Prisoner A: 10 years
Prisoner B: goes free

A Betrays
Prisoner A goes free
Prisoner B: 10 years

Each serves 5 years

What is the best interest of each prisoner?

What is the output (Nash Equilibrium) of the game?
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The Prisoner Dilemma - Cost Space

Cost for Prisoner A

(S,S) (S,B)

(B,S)

(B,B)

Cost for Prisoner B

What are the
optimal points?

What is the
equilibrium?
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The Prisoner Dilemma - Cost Space

Optimal points

Equilibrium Point

(S,S) (S,B)

(B,S)

(B,B)

Cost for Prisoner B

Cost for Prisoner A

What are the
optimal points?

What is the
equilibrium?
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The Braess Paradox

Question: A flow of users goes from A to B, with rate of 6
(thousands of people / sec). Each driver has two possible routes to
go from A to B. Who takes which route?

y

BA

x

10.dc+ 50

10.a b+ 50

I 2 possibles routes

I the needed time is a function
of the number of cars on the
road (congestion)

Conclusion? What if everyone makes the same reasoning?
We get x = y = 3 and everyone receives 83
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The Braess Paradox

A new road is opened! What happens?

x

y

BA

z

10.a b+ 50

10.dc+ 50

e+ 10

If noone takes it, it cost is 70! so
rational users will take it... ,
Cost of route“north”:
10 ∗ (x+ z) + (x+ 50) =
11 ∗ x+ 50 + 10 ∗ z
Cost of route “south”:
11 ∗ y + 50 + 10 ∗ z
Cost of “new” route:
10 ∗ x+ 10 ∗ y + 21 ∗ z + 10

Conclusion?
We get x = y = z = 2 and
everyone gets a cost of 92!
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The Braess Paradox

In le New York Times, 25 Dec., 1990, Page 38, What if They
Closed 42d Street and Nobody Noticed?, By GINA KOLATA:

ON Earth Day this year, New York City’s Transportation
Commissioner decided to close 42d Street, which as every New
Yorker knows is always congested. ”Many predicted it would be
doomsday,” said the Commissioner, Lucius J. Riccio. ”You didn’t
need to be a rocket scientist or have a sophisticated computer
queuing model to see that this could have been a major problem.”
But to everyone’s surprise, Earth Day generated no historic traffic
jam. Traffic flow actually improved when 42d Street was closed.
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Braess Paradox: Definition

Definition: Braess-paradox.

A Braess-paradoxes is a situation where exists two configurations
S1 and S2 corresponding to utility sets U(S1) and U(S2) such that

U(S1) ⊂ U(S2) and ∀k, αk(S1) > αk(S2)

with α(S) being the utility vector at equilibrium point for utility
set S.

I In other words, in a Braess paradox, adding resource to the
system decreases the utility of all players.

I Note that in systems where the equilibria are (Pareto)
optimal, Braess paradoxes cannot occur.
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Efficiency versus (Individual) Stability

Prisoner Dilemma / Braess paradox show:

I Inherent conflict between individual interest and global interest

I Inherent conflict between stability and optimality

Typical problem in economy: free-market economy versus
regulated economy.
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Efficiency versus (Individual) Stability

Free-Market:
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Efficiency versus (Individual) Stability

Regulated Market
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Outline

1 ”Simple” Games and their solutions: One Round, Simultaneous
plays, Perfect Information

Zero-Sum Games
General Case

2 Two Inspiring Examples

3 Optimality

4 Bargaining Concepts

5 Measuring the Inefficiency of a Policy

6 Application: Multiple Bag-of-Task Applications in Distributed
Platforms
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Defining Optimality in Multi-User Sytems

I Optimality for a single user

Parameter

Utility Optimal point
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Defining Optimality in Multi-User Sytems

I Situation with multiple users

Good for user 1

Utility of user 2

Utility of user 1

Good for user 2

Analogy with: multi-criteria, hierarchical, zenith optimization.
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Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 2

Utility of user 1

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 1

Utility of user 2

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 2

Utility of user 1

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 1

Utility of user 2

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 2

Utility of user 1

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 2

Utility of user 1

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 1

Utility of user 2

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 2

Utility of user 1

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 2

Utility of user 1

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Pareto Optimality.

A point is said Pareto optimal if it cannot be strictly dominated by
another.

Utility of user 2

Utility of user 1

Corinne Touati (INRIA) Part I. Main Concepts Optimality 33 / 66



Defining Optimality in Multi-User Sytems

Definition: Canonical order.

We define the strict partial order � on Rn+, namely the strict
Pareto-superiority, by u� v ⇔ ∀k : uk ≤ vk and ∃`, u` < v`.

Definition: Pareto optimality.

A choice u ∈ U is said to be Pareto optimal if it is maximal in U
for the canonical partial order on Rn+.
A policy function α is said to be Pareto-optimal if ∀U ∈ U , α(U) is
Pareto-optimal.
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Bargaining Theory

I Aims at predicting the outcome of a bargain between 2 (or
more) players

I The players are bargaining over a set of goods

I To each good is associated for each player a utility (for
instance real valued)

Assumptions:

I Players have identical bargaining power

I Players have identical bargaining skills

Then, players will eventually agree on an point considered as “fair”
for both of them.
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The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Let S be a feasible set, closed, convex, (u∗, v∗) a point in this set,
enforced if no agreement is reached.
A fair solution is a point φ(S, u∗, v∗) satisfying the set of axioms:

1 (Individual Rationality) φ(S, u∗, v∗) ≥ (u∗, v∗)
(componentwise)

2 (Feasibility) φ(S, u∗, v∗) ∈ S
3 (Pareto-Optimality)
∀(u, v) ∈ S, (u, v) ≥ φ(S, u∗, v∗)→ (u, v) = φ(S, u∗, v∗)

4 (Independence of Irrelevant Alternatives)
φ(S, u∗, v∗) ∈ T ⊂ S ⇒ φ(S, u∗, v∗) = φ(T, u∗, v∗)

5 (Independence of Linear Transformations) Let
F (u, v) = (α1u+ β1, α2v + β2), T = F (S), then
φ(T, F (u∗, v∗)) = F (φ(S, u∗, v∗))

6 (Symmetry) If S is such that (u, v) ∈ S ⇔ (v, u) ∈ S and

u∗ = v∗ then φ(S, u∗, v∗)
def
= (a, b) is such that a = b



The Nash Solution
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Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Feasability



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Pareto

Feasability



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Pareto

Feasability

Symmetry



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Pareto

Feasability

Symmetry



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Pareto

Feasability

Symmetry

(u∗, v∗)



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Pareto

Feasability

Symmetry

Rationality

(u∗, v∗)



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Pareto

Feasability

Symmetry

Rationality

(u∗, v∗)



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v

(u− u∗)(v − v∗)

Proof.

First case: Positive quadrant
right isosceles triangle

Second Case: General case

Pareto

Feasability

Symmetry

Ind. to Lin. Transf.

(u∗, v∗)



The Nash Solution

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 36 / 66

Proposition: Nash Bargaining Solution

There is a unique solution function φ satisfying all axioms:

φ(S, u∗, v∗) = max
u,v
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The Nash Solution
Example
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Example (The Rich and the Poor Man)

I A rich man, a wealth of $1.000.000

I A poor man, with a wealth of $100

I A sum of $100 to be shared between them. If they can’t agree,
none of them gets anything

I The utility to get some amount of money is the logarithm of the
wealth growth

I How much should each one gets?

Let x be the sum going to the rich man.

u(x) = log

(
1000000 + x

1000000

)
∼ x

1000000
and v(x) = log

(
200− x

100

)
.

The NBS is the solution of: maxx log

(
200− x

100

)
, i.e.

x = $54.5 and $45.5
the rich gets more! ,



Axiomatic Definition VS Optimization Problem

1 Individual Rationality

2 Feasibility

3 Pareto-Optimality

5 Independence of
Linear
Transformations

6 Symmetry

+



4 Independant to irrelevant
alternatives Nash (NBS) /

Proportional Fairness
∏

(ui − udi )
4 Monotony

Raiffa-Kalai-Smorodinsky /
max-min
Recursively max{ui|∀j, ui ≤ uj}

4 Inverse Monotony
Thomson / global Optimum
(Social welfare)

max
∑

ui
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Example: The Flow Control Problem (1)
4 connections / 3 links.

x3

x0

x1 x2 
x1 + x0 ≤ 1,
x2 + x0 ≤ 1,
x3 + x0 ≤ 1.

⇒ 4 variables and 3
(in)equalities.

x0

xi

How to choose x0 among the Pareto
optimal points?

{
x0 = 0.5,
x1 = x2 = x3 = 0.5

Max-Min fairness{
x0 = 0,
x1 = x2 = x3 = 1

Social Optimum{
x0 = 0.25,
x1 = x2 = x3 = 0.75

Proportionnal Fairness

(Nota: in this case the utility set is the same as the strategy set)
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4 connections / 3 links.

x3

x0

x1 x2 
x1 + x0 ≤ 1,
x2 + x0 ≤ 1,
x3 + x0 ≤ 1.

⇒ 4 variables and 3
(in)equalities.

Mm

PF

SO

x0

xi

How to choose x0 among the Pareto
optimal points?{

x0 = 0.5,
x1 = x2 = x3 = 0.5

Max-Min fairness{
x0 = 0,
x1 = x2 = x3 = 1

Social Optimum{
x0 = 0.25,
x1 = x2 = x3 = 0.75

Proportionnal Fairness

(Nota: in this case the utility set is the same as the strategy set)

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 39 / 66



Example: The Flow Control Problem (2)

Fairness family proposed by Mo and Walrand:

allocation fairness

max
x∈S

∑
n ∈N

xn
1−α

1− α

player

Global

Optimization

Proportional

Fairness Fairness

Max−min

TCP Vegas ATM (ABR)

∞
α

0 1
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Example: The Flow Control Problem (3)
The COST network (Prop. Fairness.)

Copenhagen

Prague

BerlinAmsterdam

Luxembourg

Paris

London

Zurich

Brussels

Milano

Vienna

...

80

25
20
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Example: The Flow Control Problem (3)
The COST network (Prop. Fairness.)

Milano

Copenhagen

Vienna

Prague

BerlinAmsterdam

Luxembourg

Paris

London

Zurich

Brussels

80

25
20

...

Paris−Vienna

55.06

19.46

25.48

London−Vienna

Zurich−Vienna
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Example: The Flow Control Problem (4)

Problem is to maximize:

max
x

∑
n

fn(xn) s.t. ∀`, (Ax)` ≤ Cl and x ≥ 0

fairness aggregation function system constraints

How to (efficiently and in a distributed manner) solve this?

Answers in lecture 2 and 3 ,
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Time-Restricted Bargaining (Binmore & Rubinstein)

Corinne Touati (INRIA) Part I. Main Concepts Bargaining Concepts 43 / 66

Context

I Feasible S, closed, convex.

I The bargaining process consists of rounds
(1 round = 1 offer + 1 counter-offer)

I If the two players can never agree, they receive a payoff (0, 0)

I Each player has a discount factor (impatience) δi = e−aiT

Solution

I A strategy for a player is a pair (a∗, b∗∗): he offers a∗ to the other
player and would accept any offer greater than b∗∗.

I A stationary equilibrium is a pair of strategies ((v∗, u∗∗), (u∗, v∗∗))
such that both (u∗, v∗) and (u∗∗, v∗∗) are Pareto-optimal and
u∗∗ = δ1u

∗ and v∗ = δ2v
∗∗.

I The stationary equilibrium exists and is unique.

I In the limit case T → 0, then (u∗, v∗) = (u∗∗, v∗∗) = max
(u,v)∈S

uva1/a2 .



Note: Properties of the Fairness Family (1)

Theorem 3: Fairness and Optimality.

Let α be an f -optimizing policy. If f is strictly monotone then α is
Pareto-optimal.

⇒ All Walrand & Mo family policies are Pareto

Let α be an f -optimizing policy. If α is Pareto-optimal then f is
monotone.

Theorem 4: Continuity.

There exists continuous and
non-continuous convex
Pareto-optimal policy
functions.

Example

Sum-optimizing is
discontinuous, but
the geometric
mean-optimizing
policy is continuous.
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Note: Properties of the Fairness Family (2)

Theorem 5: To have one’s cake and eat it, too.

A policy optimizing an index f is always non-monotone for a
distinct index g.

⇒ allocations that are efficient (optimizing the arithmetic mean)
cannot (in general) also be fair (optimizing the geometric mean).

Theorem 6: Monotonicity.

U3

U2

U1

Even in convex sets, policy functions
cannot be monotone.

⇒ even in Braess-free systems, an increase in the resource can be
detrimental to some users.

[See. A. Legrand and C. Touati “How to measure efficiency?”

Game-Comm’07, 2007 for details and proofs]
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Outline

1 ”Simple” Games and their solutions: One Round, Simultaneous
plays, Perfect Information

Zero-Sum Games
General Case

2 Two Inspiring Examples

3 Optimality

4 Bargaining Concepts

5 Measuring the Inefficiency of a Policy

6 Application: Multiple Bag-of-Task Applications in Distributed
Platforms
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Why is is important to develop inefficiency measures?
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Why is is important to develop inefficiency measures?

Suppose that you are a network operator.
The different users compete to access the different system
resources
Should you intervene?

I NO if the Nash Equilibria exhibit good performance

I YES otherwise

The question of “how” to intervene is the object of lecture 4 ,
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Why is is important to develop inefficiency measures?

Example: traffic lights would be useful ,
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Price of anarchy

For a given index f , let us consider α(f) an f -optimizing policy
function. We define the inefficiency If (β, U) of the allocation
β(U) for f as

If (β, U) =
f(α

(f)
(,U ))

f(β(U))
= max

u∈U

f(u)

f(β(U))
≥ 1

Papadimitriou focuses on the arithmetic mean Σ defined by

Σ(u1, . . . , uk) =
K∑
k=1

uk

The price of anarchy φΣ is thus defined as the largest inefficiency:

φΣ(β) = sup
U∈U

If (β, U) = sup
U∈U

∑
k α

(Σ)
(,U )k∑

k β(U)k

In other words, φΣ(β) is the approximation ratio of β for the
objective function Σ.
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Price of Anarchy: Example of Application

A routing problem is a triplet:

I A graph G = (N,A) (the network)

I A set of flows dk, k ∈ K and K ⊂ N ×N (user demands)

I latency funtions `a for each link

x

y

BA

z

10.a b+ 50

10.dc+ 50

e+ 10

Theorem 7.

In networks with affine costs
[Roughgarden & Tardos,
2002],

CWE ≤ 4

3
CSO.

⇒ In affine routing,
selfishness leads to a near
optimal point.
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Price of anarchy: does it really reflects inefficiencies?

Consider the utility set SM,N = {u ∈ RN+ |
u1

M
+

N∑
k=1

uk ≤ 1}. As

the roles of the uk, k ≥ 2 are symmetric, we can freely assume
that u2 = · · · = uN for index-optimizing policies ([Legrand et al,
Infocom’07]).

Nash Equilibrium

Utility Set

Profit Allocation

Max-min Allocation

α1

00

1

K − 1
αk

M

1

Utility set and allocations
for SM,N (N = 3,M = 2),
with u2 = · · · = uN .

IΣ(αNBS, SM,N ) −−−−→
M→∞

N

IΣ(αMax-Min, SM,N ) ∼M→∞ M

These are due to the fact that a policy optimizing an index f is
always non-monotone for a distinct index g.
; Pareto inefficiency should be measured as the distance to the
Pareto border and not to a specific point.
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Selfish Degradation Factor: A Definition

I The distance from β(U) to the closure of the Pareto set P(U)
in the log-space is equal to:

d∞(log(β(U), log(P(U))) = min
u∈P(u)

max
k
| log(β(U)k)−log(uk)|

Therefore, we can define

Ĩ∞(β, U) = exp(d∞(log(β(U), log(P(U)))

= min
u∈P(u)

max
k

max

(
β(U)k
uk

,
uk

β(U)k

)

[See A. Legrand, C. Touati, How to measure efficiency? Gamecom 2007,

for a more detailed description and a topological discussion.]
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Outline

1 ”Simple” Games and their solutions: One Round, Simultaneous
plays, Perfect Information

Zero-Sum Games
General Case

2 Two Inspiring Examples

3 Optimality

4 Bargaining Concepts

5 Measuring the Inefficiency of a Policy

6 Application: Multiple Bag-of-Task Applications in Distributed
Platforms
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Application: Multiple Bag-of-Task Applications in
Distributed Platforms

A number of concepts have been introduced to measure both
efficiency and optimality of resource allocation. Yet, distributed
platforms result from the collaboration of many users:

I Multiple applications execute concurrently on heterogeneous
platforms and compete for CPU and network resources.

I Sharing resources amongst users should somehow be fair. In a
grid context, this sharing is generally done in the “low” layers
(network, OS).

I We analyze the behavior of K non-cooperative schedulers
that use the optimal strategy to maximize their own utility
while fair sharing is ensured at a system level ignoring
applications characteristics.

Reference: A. Legrand, C. Touati, “Non-cooperative scheduling of

multiple bag-of-task applications”, Infocom 2007.
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Master-Worker Platform

P0

PNP1 Pn

BN

Bn

B1

W1 Wn WN

I N processors with processing
capabilities Wn (in Mflop.s−1)

I using links with capacity Bn (in
Mb.s−1)

Hypotheses :

I Multi-port

I No admission policy
but an ideal local fair
sharing of resources
among the various
requests
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P0

PNP1 Pn

BN

Bn

B1

W1 Wn WN

I N processors with processing
capabilities Wn (in Mflop.s−1)

I using links with capacity Bn (in
Mb.s−1)

Hypotheses :

I Multi-port

I No admission policy
but an ideal local fair
sharing of resources
among the various
requests

Communications to Pi do not interfere
with communications to Pj .
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P0

PNP1 Pn

BN

Bn

B1
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I N processors with processing
capabilities Wn (in Mflop.s−1)

I using links with capacity Bn (in
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Hypotheses :

I Multi-port
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sharing of resources
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requests

time

Resource Usage

10
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Master-Worker Platform

P0

PNP1 Pn

BN

Bn

B1

W1 Wn WN

I N processors with processing
capabilities Wn (in Mflop.s−1)

I using links with capacity Bn (in
Mb.s−1)

Hypotheses :

I Multi-port

I No admission policy
but an ideal local fair
sharing of resources
among the various
requests

Definition.

We denote by physical-system a triplet (N,B,W ) where N is the
number of machines, and B and W the vectors of size N
containing the link capacities and the computational powers of the
machines.
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Applications

I Multiple applications (A1, . . . , AK):

A1 A3A2

I each consisting in a large number of same-size independent
tasks

I Different communication and computation demands for
different applications. For each task of Ak:

I processing cost wk (MFlops)
I communication cost bk (MBytes)

I Master holds all tasks initially, communication for input data
only (no result message).

I Such applications are typical desktop grid applications
(SETI@home, Einstein@Home, . . . )
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I Multiple applications (A1, . . . , AK):

A1 A3A2

I each consisting in a large number of same-size independent
tasks

I Different communication and computation demands for
different applications. For each task of Ak:

I processing cost wk (MFlops)
I communication cost bk (MBytes)

I Master holds all tasks initially, communication for input data
only (no result message).

I Such applications are typical desktop grid applications
(SETI@home, Einstein@Home, . . . )

Definition.

We define an application-system as a triplet (K, b, w) where K is
the number of applications, and b and w the vectors of size K
representing the size and the amount of computation associated to
the different applications.
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Steady-State scheduling

In the following our K applications run on our N workers and
compete for network and CPU access:

Definition.

A system S is a sextuplet (K, b, w,N,B,W ), with K,b,w,N ,B,W
defined as for a user-system and a physical-system.

I Task regularity ; steady-state scheduling.
I Maximize throughput (average number of tasks processed per

unit of time)

αk = lim
t→∞

donek(t)

t
.

Similarly: αn,k is the average number of tasks of type k
performed per time-unit on the processor Pn.

αk =
∑
n

αn,k.

I αk is the utility of application k.
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Constraints

The scheduler of each application thus aims at maximizing its own
throughput, i.e. αk.

However, as applications use the same set of resources, we have
the following general constraints:

Computation ∀n ∈ J0, NK :

K∑
k=1

αn,k · wk ≤Wn

Communication ∀n ∈ J1, NK :

K∑
k=1

αn,k · bk ≤ Bn

Applications should decide when to send data from the master to a
worker and when to use a worker for computation.
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Optimal strategy for a single application

Single application

This problem reduces to maximizing
N∑
n=1

αn,1 while:
∀n ∈ JA,NK : αn,1 · w1 ≤Wn

∀n ∈ J1, NK : αn,1 · b1 ≤ Bn
∀n, αn,1 ≥ 0.

The optimal solution to this linear program is obtained by setting

∀n, αn,1 = min

(
Wn

w1
,
Bn
b1

)
In other words

The master process should saturate each worker by sending it as
many tasks as possible.
A simple acknowledgment mechanism enables the master process
to ensure that it is not over-flooding the workers, while always
converging to the optimal throughput.
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A simple example

Two computers 1 and 2: B1 = 1,
W1 = 2, B2 = 2, W2 = 1.
Two applications: b1 = 1,
w1 = 2, b2 = 2 and w2 = 1.

1

2

M

1

2

12

b1 = 1

b2 = 2

w1 = 2

w2 = 1

Cooperative Approach:
Application 1 is processed
exclusively on computer 1 and
application 2 on computer 2.
The respective throughput is

α
(coop)
1 = α

(coop)
2 = 1.

Computation

time

time

time

time

S
la
ve

1
S
la
ve

2

Communication

Non-Cooperative Approach:

α
(nc)
1 = α

(nc)
2 =

3

4

Computation

time

time

time

time

S
la
ve

1
S
la
ve

2

Communication
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Nota: The “Divide and Conquer” philosophy does not apply to the
definition of Pareto optimality

Even in systems consisting of independent elements, optimality
cannot be determined on each independent subsystem!!!



Characterizing the Nash Equilibrium

Theorem 8.

For a given system (N,B,W,K, b, w) there exists exactly one
Nash Equilibrium and it can be analytically computed.

Proof.

Under the non-cooperative assumption, on a given worker, an
application is either communication-saturated or
computation-saturated.
Putting schedules in some canonical form enables to determine for
each processor, which applications are communication-saturated
and which ones are computation-saturated and then to derive the
corresponding rates.
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Pareto Optimality

When is our Nash Equilibrium Pareto-optimal ?

Theorem 9.

The allocation at the Nash equilibrium is Pareto inefficient if and
only if there exists two workers, namely n1 and n2 such that all
applications are communication-saturated on n1 and

computation-saturated on n2 (i.e.
∑
k

Bn1

Wn1

wk
bk
≤ K and∑

k

bk
wk

Wn2

Bn2

≤ K).

Corollary: on a single-processor system, the allocation at the Nash
equilibrium is Pareto optimal.
Here Selfishness Degradation Factor is at least 2.
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Pareto Optimality
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Braess-like Paradox

Pareto-inefficient equilibria can exhibit unexpected behavior.

Definition: Braess Paradox.

There is a Braess Paradox if there exists two systems ini and aug
such that

ini < aug and α(nc)(ini) > α(nc)(aug).

Theorem 10.

In the non-cooperative multi-port scheduling problem, Braess like
paradoxes cannot occur.

Proof.

I Defining an equivalence relation on sub-systems.

I Defining an order relation on equivalent sub-systems.
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Pareto optimality and monotonicity of performance
measures

Numerical example with a single slave and K = 4 applications.
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Most classical performance measures decrease with resource
augmentation!
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Conclusion

Conclusion I Applying fair and optimal sharing on each
resource does not ensure any fairness nor efficiency when
users do not cooperate.

; either applications cooperate or new complex and global
access policies should be designed

Future Work I Measuring Pareto-inefficiency is an open
question under investigation.
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Lecture’s Summary

In one-shot, simultanous move, perfect information games:
I Equilibria (solution points, Nash Equilibria) are defined as being

stable to users’ selfish interests

I Pure strategies are equivalent to actions

I Mixed strategies are prob. distributions over the set of actions

I In mixed strategies, equilibria always exist for finite games
(whether in zero-sum or not)

I In zero-sum games, equilibria (if they exist) are always unique

Additionally:
I Nash equilibria are generally not Pareto efficient

I One can define fairness criteria through a set of axioms or global
objective function

I Fair points are unique (in convex set) and Pareto efficient

I A key issue for operators is to assess the efficiency of equilibria in
systems they are managing to decide whether to meddle or not.
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