
What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!
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For any fixed x ∈ RN , we have

E[�Φx�22] = �x�22

the mean of the measurement energy is exactly �x�22
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What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!
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For all 2S-sparse x ∈ RN , we have

P
�
max
x

���Φx�22 − �x�22
�� < δ�x�22

�
≥ 1− ec·S log(N/S)e−Mδ2/4

So we can make this probability close to 1 by taking

M � S log(N/S)



What other types of matrices are restricted isometries?

Four general frameworks:

Random matrices (iid entries)

Random subsampling

Random convolution

Randomly modulated integration

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated



Random matrices (iid entries)
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Random matrices are provably efficient

We can recover S-sparse x from

M � S · log(N/S)

measurements



Rice single pixel cameraRice Single-Pixel CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk ’08)



Georgia Tech analog imager
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Georgia Tech Analog Imager

• Bottleneck in imager arrays is data readout

• Instead of quantizing pixel values, take CS 
inner products in analog

• Potential for tremendous (factor of 10000) 
power savings



Compressive sensing acquisition
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10k DCT measurements 10k random measurements

(Robucci, Chiu, Gray, R, Hasler ’09)



Random matrices

Example: Φ consists of random rows from an orthobasis U

Can recover S-sparse x from (Rudelson and Vershynin ’06, Candès and R ’07)

M � µ2 S · log4N

measurements, where

µ =
√
N max

i,j
|(UTΨ)ij |

is the coherence



Examples of incoherence

Signal is sparse in time domain, sampled in Fourier domain

time domain x(t) freq domain x̂(ω)

S nonzero components measure m samples

Signal is sparse in wavelet domain, measured with noiselets
(Coifman et al ’01)

example noiselet wavelet domain noiselet domain



Accelerated MRI
SPIR-iT with Wavelet CS

ARC SPIR-iT

(Lustig et al. ’08)



Empirical processes and structured random matrices

For matrices with this type of structured randomness, we simply
do not have enough concentration to establish

(1− δ)�x�22 ≤ �Φx�22 ≤ (1 + δ)�x�22

“the easy way”

Re-write the RIP as a the supremum of a random process

sup
x

|G(x)| = sup
x

|x∗Φ∗Φx− x∗x| ≤ δ

where the sup is taken over all 2S-sparse signals

Estimate this sup using tools from probability theory
(e.g. the Dudley inequality) — approach pioneered by Rudelson and
Vershynin



Random convolution

Many active imaging systems measure a pulse convolved with a
reflectivity profile (Green’s function)

pulse 

(known)  
rcvr  

txmt  

profile 

(unknown)  

return 

(sample this)  

Applications include:
� radar imaging
� sonar imaging
� seismic exploration
� channel estimation for communications
� super-resolved imaging

Using a random pulse = compressive sampling
(Tropp et al. ’06, R ’08, Herman et al. ’08, Haupt et al. ’09, Rauhut ’09)



Coded aperture imaging



Random convolution for CS, theory

Signal model: sparsity in any orthobasis Ψ

Acquisition model:
generate a “pulse” whose FFT is a sequence of random phases (unit
magnitude),
convolve with signal,
sample result at M random locations Ω

Φ = RΩF∗ΣF , Σ = diag({σω})

The RIP holds for (R ’08)

M � S log5N

Note that this result is universal

Both the random sampling and the flat Fourier transform are needed
for universality



Randomizing the phase

local in time local in freq not local in M

sample here



Why is random convolution + subsampling universal?
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ψ̂1(ω) ψ̂2(ω) · · · ψ̂n(ω)





One entry of Φ� = ΦΨ̂ = FΣΨ̂:

Φ�
t,s =

�

ω

ej2πωtσωψ̂s(ω)

=
�

ω

σ�
ωψ̂s(ω)

Size of each entry will be concentrated around �ψ̂s(ω)�2 = 1
does not depend on the “shape” of ψ̂s(ω)



Super-resolved imaging

!"#$%&'("$()'

*+',-.#%/("$.0#%'

*#&-&'#1/-"230#%'

45657'3/'83%9':;<-=/>'

?%.#&-&'#1/-"230#%'

45657'3/'83%9':;<-=/>' ,-.#%/("$.0#%'

(Marcia and Willet ’08)



Seismic forward modeling

Run a single simulation with all of the sources activated
simultaneously with random waveforms
The channel responses interfere with one another, but the randomness
“codes” them in such a way that they can be separated later
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Related work: Herrmann et. al ’09



Restricted isometries for multichannel systems

G1 G2 · · · Gp

...
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With each of the pulses as iid Gaussian sequences,
Φ obeys

(1− δ)�h�2 ≤ �Φh�22 ≤ (1 + δ)�h�22 ∀s-sparse h ∈ RNC

when (R and Neelamani ’09)

M � S · log5(NC) + N

Consequence: we can separate the channels using short random
pulses (using �1 min or other sparse recovery algorithms)


