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Discretizing linear inverse problems

In many real-world applications, the signal or image we are measur-
ing is a function of a continuous variable (or variables for images).
Of course, if we are going to reconstruct the signal/image on a
computer, our answer will ultimately be discrete. In this module,
we discuss a general way to discretize linear inverse problems using
a basis representation. We will start with the particular example
of 2D tomography (“reconstruction from projections”), but the
framework will be easy to generalize.

The Radon Transform

In the 2D tomographic reconstruction problem, the image f (s, t)
we wish to acquire is sampled using line integrals. We can param-
eterize a line ~̀ using an offset r and an angle θ as shown below:
The line ~̀ is the set of points obeying a linear constraint:

~̀= {(s, t) : s cos θ + t sin θ = r}

The integral of f (s, t) along ~̀ is given by

Rr,θ[f ] =

{∫
f
(
r−t sin θ

cos θ
, t
)
dt |θ| ≤ π/4∫

f
(
s, r−s cos θ

sin θ

)
ds π/4 < |θ| ≤ π/2

Of course, these expressions are equal to one another except when
θ = 0, π/2. Note also that the measurements are unique only over
a range of π, as Rr,θ+π[f ] = R−r,θ[f ]. It is sometimes convenient
to write the line integral as a 2D integral of f (s, t) against a delta
ridge:

Rr,θ[f ] =

∫ ∫
f (s, t)δ(s cos θ + t sin θ − r) ds dt, (1)

where δ(·) is the Dirac delta function.
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The collection of all such line integrals {Rr,θ[x], θ ∈ [0, π], r ∈ R}
is called the Radon transform of f (s, t). The radon transform is
itself a continuous function of two variables. The figure below show
an illustrative example: on the left, we see Rr,θ of a test image as
a function of r for two different fixed values of θ. On the right is
the collection Rr,θ as a function of both r and θ.
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Figure 1: Left: Rr,π/4[f ] and Rr,π[f ] as a function of r, where f(s, t) is
the Shepp-Logan phantom. Right: The Radon transform of
the phantom. The rows are indexed by r and the columns by
θ (in degrees).
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Reconstruction from a discrete set of line integrals

Given measurements ym, m = 1, . . . ,M corresponding to line
integrals at different different offsets rm and angles θm (i.e. a finite
set of samples of the Radon transform), which have possibly been
corrupted by noise, we would like to estimate the underlying image
f (s, t). If the measurements are dense in (r, θ) space, the natural
approach to this problem is to use filtered backprojection. Our
focus here will be setting this problem up as finite linear inverse
problem

y = Ax + noise, y ∈ RM ,x ∈ RN

so that it can be attacked with the general set of tools for solving
such problems (e.g. least-squares).

We start by choosing a finite-dimensional space V in which to
perform the reconstruction that comes equipped with a set of N
basis vectors {ψγ(s, t)}. We will use the general index γ ∈ Γ
where Γ is a set of size N as, depending on the basis, it may
be convenient to index the basis in different ways (i.e. by integers,
pairs of integers over the same range, pairs of integers over different
ranges, etc.).

For example, if f (s, t) is non-zero only for (s, t) ∈ [0, 1]2, we might
take our reconstruction space V to be the set of all “pixellated”
images — images that are piecewise-constant on squares of side
length 1/n for some integer n. A natural basis for this space is the
set of indicator functions on these squares:

ψj,k(s, t) =

{
1 s ∈ [j/n, (j + 1)/n], t ∈ [k/n, (k + 1)/n]

0 otherwise

Using our general index notation, we can write any f (s, t) ∈ V as

f (s, t) =
∑
γ∈Γ

xγψγ(s, t),
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where Γ = {(j, k) : j, k = 0, 1, . . . , n − 1} with size N = n2,
and the xγ ∈ R are the basis expansion coefficients, which are,
in this case, the pixel values. (Another natural basis for V would
be the two-dimensional Haar basis we encountered earlier). The
point is that knowing the discrete set of coefficients xγ is the same
as knowing the continuous-space function f (s, t).

We can also write the measurements of an f (s, t) ∈ V in terms of
the basis functions:

ym = Rrm,θm

∑
γ∈Γ

xγψγ(s, t)


=
∑
γ∈Γ

xγRrm,θm [ψγ(s, t)] (since Rr,θ[·] is linear)

=
∑
γ∈Γ

Am,γxγ where Am,γ = Rrm,θm [ψγ(s, t)] ,

which can be written in more compact form as

y = Ax. (2)

The entries of the M ×N matrix A contain the results of each of
the M measurements functionals Rrm,θm[·] applied to each of the
N basis functions ψγ(s, t), the N -vector x contains the expansion
coefficients for f (s, t) in the basis {ψγ}, and y contains the M
measurements. This is illustrated in the figure below. As we can
see, not too many of the ~̀m pass through a given pixel, meaning
that the matrix A will be very sparsely populated.

Of course, the true underlying image will in general not lie in the
chosen finite-dimensional subspace V . This means that even when
there is no measurement noise, there will still be some inherent er-
ror in our calculations. But solving (2) will in some sense find
the member of V that best explains the measurements that have
been observed. If the true image can be closely approximated by a
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Figure 2: Left: A sketch of one of the basis functions ψγ(s, t) from the
discussion above. Right: The entries of A in the column in-
dexed by γ will be the result of measuring the basis function
ψγ(s, t): Am,γ = Rrm,θm[ψγ].

member of V , then we will not lose much through this discretiza-
tion. A major consideration in choosing the space V is how well
we can use it to approximate images we expect to encounter.
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General linear operators

The technique above can be very naturally generalized to different
kinds of measurement operators that map signals of a continuous
variable(s) into RM . In general, the measurements ym will con-
sist of inner products of f (s, t) against different “test functions”
φm(s, t):

ym = 〈f, φm〉 =

∫ ∫
f (s, t)φm(s, t) ds dt.

In the tomography example above, we took

φm(s, t) = δ(s cos θm + t sin θm − rm)

(see (1) above). Just as before, for f (s, t) ∈ V we can write

ym = 〈
∑
γ∈Γ

xγψγ, φm〉

=
∑
γ∈Γ

xγ〈ψγ, φm〉,

and so
y = Ax,

where the M ×N matrix A has entries

Am,γ = 〈ψγ, φm〉 =

∫ ∫
ψγ(s, t)φm(s, t) ds dt.

It is worth noting that since the entries of A do not depend on f ,
they can be pre-computed.
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