Streaming sparse recovery: /; filtering

@ Solving an optimization program like
. 1 2
min 7|zl + S|Pz -yl
T 2
can be costly

@ We want to update the solution when

© the underlying signal changes slightly, or
@ we add measurements



Duality and optimality conditions

Most of the work is done by deriving optimality conditions (a version of
KKT) for the solution.

We can show that a vector z* supported on I' is the unique solution to

) 1
min 7z + ||z — yli3
T 2

ol (y — ®2*) = Tsgn(zf) onT
[@Fc(y — ®2*)||oo < T on T°

(Show this on the board ...)



Variable 7

Given the support I', the non-zero components of the solution x* obey
i = (B Pr) ' Ofy — 7(PLPr) ' sgn(af)

If we were to nudge 7 just a little, the solution would move like

9 — (@%@p)’l sgn(zf) onT
on I'®

This direction holds until a component disappears, or a new dual
constraint becomes active.

= as we change 7, the path of solutions is piecewise linear



Time-varying sparse signals

@ Initial measurements. Observe
Yo = Pz + €
@ Initial reconstruction. Solve
1
: 2
min 7|z, + 5Pz — yollz
x 2
@ A new set of measurements arrives:
y1 =Pz + e
@ Reconstruct again using £1-min:
1
2
@ We can gradually move from the first solution to the second solution
using homotopy

min 7|zle, + 5 l|®2 - yll3

) 1
min 7z]e, + 5@z — (1= Jyo — ey 3

Take e from 0 — 1



Update direction

) 1
min 7|z]le, + 5182 = (1= )goia — Ynew|2
@ Path from old solution to new solution is piecewise linear
@ Optimality conditions for fixed e:
dL(®z — (1 — €)yold — €Ynew) = —T sign ap
HCI)%:C((I)'x - (1 - 6)yold - 6ynew)Hoo <T

I' = active support

@ Update direction:

Or = _(®%¢F)_l®%(yold - ynew) onT
0 off I



Experiments

Sparse signal example, with update. n=1024, m=512, T=m/5, k < [0, T/20]
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Experiments

Piecewise constant signal [adapted from WaveLab]
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Experiments

Piecewise polynomial signal (cubic) [adapted from WaveLab]
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Experiments

Wavelet coefficients (zoom in)
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Experiments

) LASSO
. DynamicX* GPSR-BB FPC AS
Signal type homotopy —

(nProdAtA, CPU) (nProdAtA, CPU) (nProdAtA, CPU) | (nProdAtA, CPU)
N =1024
M =512 (23.72,0.132) (235, 0.924) (104.5,0.18) | (148.65,0.177)
T=m/5, k~T/20 e T D B
Values = +/- 1
Blocks (2.7, 0.028) (76.8, 0.490) (17, 0.133) (53.5, 0.196)
Pcw. Poly. (13.83,0.151) | (150.2,1.096) | (26.05,0.212) | (66.89, 0.25)
House slices (26.2,0.011) (53.4,0.019) (92.24,0.012) | (90.9, 0.036)

7 =0.01|| ATy oo

nProdAtA: roughly the avg. no. of matrix vector products with A and AT
CPU: average cputime to solve




Adding a measurement: Recursive least-squares

o Classical least-squares:
solve a system of linear eqns y = Ax + e
min energy solution min, ||Az — yl|3
analytical solution &= (ATA)~1ATy

@ Suppose we add new measurements w = BTz

t0=(ATA+ BTB)"1(ATy + BTw)

@ Recursive Least-Squares (RLS): easy low-rank update

&1 =20+ (I + B(ATA)7'BT) "1 (AT A)~' BT (w — Biy)



Adding a measurement: Dynamic /4

@ We want the analog of RLS for the LASSO. Adding one measurement

y| | e . 1 e 1 By
[w] N [b} T+ [d] — min 7l|xle, + 2||<I>m yllz+ 2||b3: wl|3
o Challenges:

» not as smooth as least-squares update
» solution can change drastically with just one new measurement
> need to move slowly, use a homotopy method

(see also work by Garrigues et al. 08)



Dynamic /¢; update

o Work in the new measurement slowly

. 1
min 7|zl + 5 (@2 = y3 + el|bz — w]3)

Again, the solution path is piecewise linear in €

@ Optimality conditions

dL(dx —y) + bl (br — w) = —7signar
|@Fe (P — y) + ebfoe(br — w)|oo < T

@ From critical point %, update direction is

9 — (@%@p + eobgbp))*lbg(w —bz®) onT
off I



Number of steps per update

Average number of iterations per new measurement
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Summary of ¢y filtering

@ Instead of solving new programs from scratch, work the new data in
slowly using homotopy continuation

@ Proper homotopy formulation allows us to (easily) use optimality
conditions to “hop” along the path of solutions

@ Each "hop" costs O(mn) — a few matrix-vector multiplies

@ Small number of “hops” if the solutions are closely related



