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Overview

• Compressive sampling/imaging: recover a sparse signal x0 ∈ RN from
K � N incoherent measurements y = Φx0

• Recovery process consists of solving certain `1 and total-variation
minimization problems

• This talk: Algorithms for solving these optimization programs

• Programs fall into two classes:

– linear programs (LPs)

– second-order cone programs (SOCPs)

• Tremendous progress in the last decade in solving problems of this type

• We have implemented simple (but very effective) solvers,
code available at www.l1-magic.org



`1 minimization

• `1 with equality constraints (“Basis Pursuit”) can be recast as a
linear program (Chen, Donoho, Saunders 1995 and others)

min
x

‖x‖`1 subject to Φx = y

m

min
u,x

∑
t

u(t) subject to − u ≤ x ≤ u

Φx = y



Total-Variation Minimization

• The Total Variation functional is a “sum of norms”

TV(x) =
∑
i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

=
∑
i,j

‖Di,jx‖2 Di,jx =

 xi+1,j − xi,j

xi,j+1 − xi,j


• Total variation minimization can be written as a second-order cone program

(Boyd et. al, 1997, and others)

min
x

TV(x) :=
∑
i,j

‖Di,jx‖2 subject to ‖Φx − y‖2 ≤ ε

m

min
u,x

∑
i,j

ui,j subject to ‖Di,jx‖2 ≤ ui,j, ∀i, j

‖Φx − y‖2 ≤ ε



Other examples

• `1 minimization with complex coefficients (sum of norms)

min
x

‖x‖`1 := min
x

∑
t

√
Real(x(t))2 + Imag(x(t))2

s.t. Ax = b

⇒ SOCP

• Dantzig Selector

min
x

‖x‖`1 subject to ‖Φ∗(Φx − y)‖∞ ≤ ε

m

min
u,x

∑
t

u(t) subject to − u ≤ x ≤ u

−ε · 1 ≤ Φ∗(Φx − y) ≤ ε · 1

⇒ LP



Primal-Dual Algorithms for LP
• Standard LP:

min
x

〈c, x〉 subject to Ax = b, x ≤ 0

• Karush-Kuhn-Tucker (KKT) conditions for optimality:
Find x?, λ?, ν? such that

Ax? = b c + A∗ν? + λ? = 0 x?
i λ?

i = 0, ∀i

x? ≤ 0 λ? ≥ 0

• Primal-dual algorithm:

– Relax: use xiλi = 1/τ , increasing τ at each iteration

– Linearize system 
Ax − b

c + A∗ν + λ

xiλi

 =


0

0

1/τ


– Solve for step direction, adjust length to stay in interior (x ≤ 0, λ ≥ 0)



Newton Iterations

• Newton: solve f(x) = 0 iteratively by solving a series of linear problems

– At xk,
f(xk + ∆xk) ≈ f(xk) + ∆xkf ′(xk)

– Solve for ∆xk such that f(xk) + ∆xkf ′(xk) = 0

– Set xk+1 = xk + ∆xk

– Repeat

• Each Newton iteration requires solving a linear system of equations

• Bottleneck of the entire procedure:
We need to solve a series of K × K systems (K = # constraints)

• Each step is expensive, but we do not need many steps

– Theory: need O(
√

N) steps

– Practice: need ≈ 10–40 steps



Example

sparse signal measurements

100 200 300 400 500
−1

−0.5

0

0.5

1

0 20 40 60 80 100 120
−0.4

−0.2

0

0.2

0.4

0.6

• N = 512, K = 120

• Recover using `1 minimization with equality constraints

• Requires 12 iterations to get within 10−4 (4 digits)

• Takes about 0.33 seconds on high-end desktop Mac (Matlab code)



Large-Scale Systems of Equations
• The system we need to solve looks like

AΣA∗∆x = w

A : K × N

Σ : N × N diagonal matrix; changes at each iteration

• Computation: O(NK2) to construct, O(K3) to solve

• Large scale: we must use implicit algorithms (e.g. Conjugate Gradients)

– iterative

– requires an application of A and A∗ at each iteration

– number of iterations depends on condition number

• A = ΦΨ∗

Φ = K × N measurement matrix
Ψ = N × N sparsity basis

• For large-scale Compressive Sampling to be feasible,
we must be able to apply Φ and Ψ (and Φ∗, Ψ∗) quickly
(O(N) or O(N log N))



Fast Measurements

• Say we want to take 20, 000 measurements of a 512 × 512 image
(N = 262, 144)

• If Φ is Gaussian, with each entry a float, it would take more than an entire
DVD just to hold Φ

• Need fast, implicit, noise-like measurement systems to make recovery
feasible

• Partial Fourier ensemble is O(N log N) (FFT and subsample)

• Tomography: many fast unequispaced Fourier transforms,
Dutt and Rohklin, Pseudopolar FFT of Averbuch et. al

• Noiselet system of Coifman and Meyer

– perfectly incoherent with Haar system

– performs the same as Gaussian (in numerical experiments) for
recovering spikes and sparse Haar signals

– O(N)



Large Scale Example

image measure quantize recover

0.5 1 1.5 2 2.5

x 10
4

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

• N = 256 × 256, K = 25000

• Measure using “scrambled Fourier ensemble”
(randomly permute the columns of the FFT)

• Recover using TV-minimization with relaxed constraints

• Recovery takes ≈ 5 minutes on high-end desktop Mac

• Vanilla log barrier SOCP solver (in Matlab)

• Note: Noise and approximate sparsity help us here



Conditioning

AΣA∗∆x = w

• When recovering a truly sparse signal, the system above becomes very
ill-conditioned as we approach the solution

• σ = diag(Σ)
σ(t) → 1, for t ∈ supp x0

σ(t) → 0, for t 6∈ supp x0

⇒ AΣA∗ becomes low-rank

• Small scale: even with exact inversion, we can only get within 4 or 5 digits

• Large scale: many CG iterations are needed to find a good step direction

• Common problem in interior point methods for LP



Conditioning Example

sparse signal measurements
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Iteration PDGap Cond #

7 2.9e0 1.5e4

8 3.2e-1 6.5e5

9 3.5e-2 2.1e6

10 3.8e-3 1.4e8

11 4.2e-4 1.2e10

12 4.5e-5 9.6e11



Basis Pursuit as Decoding

• It is possible to reformulate BP in such a way that this conditioning problem
disappears

min
x

‖x‖`1 ⇔ min
h

‖Qh + x0‖`1

s.t. Ax = b

• Columns of Q span the nullspace of A: AQ = 0
Q : N × (N − K)

• x0 is any feasible point

• Eliminate equality constraints by restricting search to nullspace

• If A = Fourier transform on Ω, Q∗ = Fourier transform on Ωc

• Same form as “Decoding by Linear Programming” (Candès and Tao, 2004)



Conditioning of `1 Approximation

Q∗ΣQ∆h = w

• We know have a (N − K) × (N − K) system instead of K × K

(inconsequential for things like partial Fourier ensembles)

• σ = diag(Σ)
σ(t) → 1, for t 6∈ supp x0

σ(t) → 0, for t ∈ supp x0

⇒ Q∗ΣQ remains full rank

• In fact, the Uniform Uncertainty Principle implies that close to the solution

cond(Q∗ΣQ) ∼
N

K

• All of the conditioning problems disappear



Conditioning Example, II

sparse signal measurements
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Recovery via the `1-approximation reformulation

Iteration PDGap Cond #

7 5.3e-1 129

8 5.8e-2 73

9 6.3e-3 71

10 6.8e-4 70

11 7.5e-5 70



Large Scale Example

• N = 10242 ≈ 106, K = 96, 000

• Perfectly sparse image (in wavelet domain), S = 25, 000

• Recovered to 4 digits in 50 iterations
(5 digits in 52 iterations, 6 digits in 54 iterations,. . .)

• Recovery time was less than 40 minutes on high-end desktop Mac



Summary

• Compressive sampling recovery programs (`1 and TV minimization) can
be recast as linear programs or second-order cone programs

• Efficiently implemented using standard interior point methods

• For sparse recovery, removing the equality constraints makes the
procedure incredibly well-conditioned numerically

• Recovering megapixel images is computationally feasible

• Current work:

– Showing that the Newton system is well-conditioned everywhere

– Similar conditioning techniques for the relaxed problems

– More sophisticated SOCP solvers (e.g. a primal-dual algorithm similar
to LP)

– More sophisticated SOCP models for images (cleaner recovery in the
noisy/non-sparse cases)

• Code at www.l1-magic.org


