Large-Scale Convex Optimization for Sparse Recovery

Justin Romberg, California Institute of Technology

Collaborators: Emmanuel Candes, Michael Slomka



Overview

Compressive sampling/imaging: recover a sparse signal zo € R from
K < N incoherent measurements y = ®x

Recovery process consists of solving certain £, and total-variation
minimization problems

This talk: Algorithms for solving these optimization programs

Programs fall into two classes:
— linear programs (LPs)

- second-order cone programs (SOCPs)
Tremendous progress in the last decade in solving problems of this type

We have implemented simple (but very effective) solvers,
code available at www.1l1l-magic.org



£1 minimization

e /1 with equality constraints (“Basis Pursuit”) can be recast as a
linear program (Chen, Donoho, Saunders 1995 and others)

min ||z||,, sSubjectto Pz =1y

o

min Zu(t) subjectto —u < =z < w
’ t br =1y



Total-Variation Minimization

e The Total Variation functional is a “sum of norms”
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e Total variation minimization can be written as a second-order cone program
(Boyd et. al, 1997, and others)
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Other examples

e /1 minimization with complex coefficients (sum of norms)

min ||z||g, := min Z v Real(z(t))2? + Imag(x(t))?2
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Primal-Dual Algorithms for LP
e Standard LP:

min (c,x) subjectto Ax=0b, =<0

e Karush-Kuhn-Tucker (KKT) conditions for optimality:
Find *, A\*, v* such that
Ax* = b c+ AV + X\ =0 rIA; =0, Vi
z* <0 A >0

e Primal-dual algorithm:

- Relax: use z;\; = 1/7, increasing T at each iteration
— Linearize system

Ax — b 0
c+Av+ A | = 0
ZBZ)\z 1/’7‘

— Solve for step direction, adjust length to stay in interior (x < 0, A > 0)



Newton lterations

Newton: solve f(x) = O iteratively by solving a series of linear problems
- At xg,
f(zr + Azk) = f(zr) + Azp f'(zk)
- Solve for Axy such that f(xx) + Axr f'(xx) =0
- Setxp11 = T + Axg
— Repeat

Each Newton iteration requires solving a linear system of equations

Bottleneck of the entire procedure:
We need to solve a series of K X K systems (K = # constraints)

Each step is expensive, but we do not need many steps
— Theory: need O(v/ N) steps

— Practice: need =~ 10—40 steps



Example

sparse signal measurements
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N =512, K =120
Recover using £; minimization with equality constraints
Requires 12 iterations to get within 10— (4 digits)

Takes about 0.33 seconds on high-end desktop Mac (Matlab code)
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Large-Scale Systems of Equations

The system we need to solve looks like
A A Ax = w

A: K xXx N
3 : N x N diagonal matrix; changes at each iteration

Computation: O(IN K?) to construct, O(K?) to solve

Large scale: we must use implicit algorithms (e.g. Conjugate Gradients)
— iterative

— requires an application of A and A* at each iteration

— number of iterations depends on condition number

A=dU*

¢ = K x NN measurement matrix

¥ = NN X N sparsity basis

For large-scale Compressive Sampling to be feasible,
we must be able to apply & and ¥ (and ®*, ¥*) quickly
(O(N) or O(N log N))



Fast Measurements

Say we want to take 20, 000 measurements of a 512 x 512 image
(N = 262, 144)

If & is Gaussian, with each entry a float, it would take more than an entire
DVD just to hold ®

Need fast, implicit, noise-like measurement systems to make recovery
feasible

Partial Fourier ensemble is O(IV log N ) (FFT and subsample)

Tomography: many fast unequispaced Fourier transforms,
Dutt and Rohklin, Pseudopolar FFT of Averbuch et. al
Noiselet system of Coifman and Meyer

— perfectly incoherent with Haar system

- performs the same as Gaussian (in numerical experiments) for
recovering spikes and sparse Haar signals

- O(N)



Large Scale Example

measure quantize

recover

N = 256 x 256, K = 25000

Measure using “scrambled Fourier ensemble”
(randomly permute the columns of the FFT)

Recover using TV-minimization with relaxed constraints
Recovery takes =~ 5 minutes on high-end desktop Mac
Vanilla log barrier SOCP solver (in Matlab)

Note: Noise and approximate sparsity help us here




Conditioning

AXA*Ax = w

When recovering a truly sparse signal, the system above becomes very
ll-conditioned as we approach the solution

o = diag(X)

o(t) — 1, fort € supp x¢
o(t) — 0, fort & supp xg
= AX A* becomes low-rank

Small scale: even with exact inversion, we can only get within 4 or 5 digits
Large scale: many CG iterations are needed to find a good step direction

Common problem in interior point methods for LP
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Conditioning Example
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lteration | PDGap | Cond #
7 2.9e0 1.5e4
8 3.2e-1 6.5e5
9 3.5e-2 | 2.1e6
10 3.8e-3 | 1.4e8
11 4.2e-4 | 1.2e10
12 4.5e-5 | 9.6e11
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Basis Pursuit as Decoding

It is possible to reformulate BP in such a way that this conditioning problem
disappears

min ||z, & min ||Qh + zolle,

st. Ax =0»b

Columns of @ span the nullspace of A: AQ =0
Q:N X (N —K)

xg is any feasible point
Eliminate equality constraints by restricting search to nullspace
If A = Fourier transform on 2, Q* = Fourier transform on Q¢

Same form as “Decoding by Linear Programming” (Candes and Tao, 2004)



Conditioning of £; Approximation

Q*SQAh = w

e We know havea (N — K) X (N — K) system instead of K X K
(inconsequential for things like partial Fourier ensembles)

e o = diag(X)
o(t) — 1, fort & supp x¢
o(t) — 0, fort € supp xg
= Q*XQ remains full rank

e In fact, the Uniform Uncertainty Principle implies that close to the solution

N
cond(Q*XQ) ~ %

e All of the conditioning problems disappear



Conditioning Example, I
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Recovery via the £;-approximation reformulation

lteration | PDGap | Cond #
7 5.3e-1 129
8 5.8e-2 73
9 6.3e-3 71
10 6.8e-4 70
11 7.5e-5 70
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Large Scale Example

o N = 10242 =~ 10°%, K = 96, 000
e Perfectly sparse image (in wavelet domain), S = 25, 000

e Recovered to 4 digits in 50 iterations
(5 digits in 52 iterations, 6 digits in 54 iterations,. . .)

e Recovery time was less than 40 minutes on high-end desktop Mac



Summary

e Compressive sampling recovery programs (£, and TV minimization) can
be recast as linear programs or second-order cone programs

e Efficiently implemented using standard interior point methods

e For sparse recovery, removing the equality constraints makes the
procedure incredibly well-conditioned numerically

e Recovering megapixel images is computationally feasible

e Current work:
- Showing that the Newton system is well-conditioned everywhere
— Similar conditioning techniques for the relaxed problems

— More sophisticated SOCP solvers (e.g. a primal-dual algorithm similar
to LP)

— More sophisticated SOCP models for images (cleaner recovery in the
noisy/non-sparse cases)

e Code atwww.ll-magic.org



