Large-Scale Convex Optimization for Sparse Recovery

Justin Romberg, California Institute of Technology

Collaborators: *Emmanuel Candès*, *Michael Slomka*

Overview

- Compressive sampling/imaging: recover a sparse signal $x_0 \in \mathbb{R}^N$ from $K \ll N$ incoherent measurements $y = \Phi x_0$
- Recovery process consists of solving certain ℓ_1 and total-variation minimization problems
- This talk: Algorithms for solving these optimization programs
- Programs fall into two classes:
 - linear programs (LPs)
 - second-order cone programs (SOCPs)
- Tremendous progress in the last decade in solving problems of this type
- We have implemented simple (but very effective) solvers, code available at www.ll-magic.org

ℓ_1 minimization

• ℓ_1 with equality constraints ("Basis Pursuit") can be recast as a linear program (Chen, Donoho, Saunders 1995 and others)

Total-Variation Minimization

• The Total Variation functional is a "sum of norms"

$$egin{array}{rll} {f TV}(x) &=& \displaystyle{\sum_{i,j} \sqrt{(x_{i+1,j}-x_{i,j})^2+(x_{i,j+1}-x_{i,j})^2}} \ &=& \displaystyle{\sum_{i,j} \|D_{i,j}x\|_2} & D_{i,j}x = \left[egin{array}{c} x_{i+1,j}-x_{i,j} \ x_{i,j+1}-x_{i,j} \end{array}
ight] \end{array}$$

• Total variation minimization can be written as a second-order cone program (Boyd et. al, 1997, and others)

$$\min_x \operatorname{TV}(x) := \sum_{i,j} \|D_{i,j}x\|_2$$
 subject to $\|\Phi x - y\|_2 \leq \epsilon$

1

$$\min_{u,x} \sum_{i,j} u_{i,j}$$
 subject to $\|D_{i,j}x\|_2 \leq u_{i,j}, \quad orall i,j \ \|\Phi x - y\|_2 \leq \epsilon$

Other examples

• ℓ_1 minimization with complex coefficients (sum of norms)

$$\min_{x} \|x\|_{\ell_1} := \min_{x} \sum_{t} \sqrt{\operatorname{Real}(x(t))^2 + \operatorname{Imag}(x(t))^2}$$
s.t. $Ax = b$

 \Rightarrow SOCP

• Dantzig Selector

 $\Rightarrow \mathsf{LP}$

Primal-Dual Algorithms for LP

• Standard LP:

$$\min_x \ \langle c,x
angle$$
 subject to $Ax=b, \ x\leq 0$

 Karush-Kuhn-Tucker (KKT) conditions for optimality: Find x^{*}, λ^{*}, ν^{*} such that

$$egin{aligned} Ax^{\star} &= b & c + A^{*}
u^{\star} + \lambda^{\star} &= 0 & x_{i}^{\star} \lambda_{i}^{\star} &= 0, \quad orall i \ x^{\star} &\leq 0 & \lambda^{\star} &\geq 0 \end{aligned}$$

- Primal-dual algorithm:
 - Relax: use $x_i\lambda_i=1/ au$, increasing au at each iteration
 - Linearize system

$$egin{pmatrix} Ax-b\ c+A^*
u+\lambda\ x_i\lambda_i \end{pmatrix} = egin{pmatrix} 0\ 0\ 1/ au \end{pmatrix}$$

– Solve for step direction, adjust length to stay in interior ($x \le 0, \ \lambda \ge 0$)

Newton Iterations

- Newton: solve f(x) = 0 iteratively by solving a series of linear problems
 - At x_k ,

$$f(x_k + \Delta x_k) \approx f(x_k) + \Delta x_k f'(x_k)$$

- Solve for Δx_k such that $f(x_k) + \Delta x_k f'(x_k) = 0$
- Set $x_{k+1} = x_k + \Delta x_k$
- Repeat
- Each Newton iteration requires solving a linear system of equations
- Bottleneck of the entire procedure: We need to solve a series of $K \times K$ systems (K = # constraints)
- Each step is expensive, but we do not need many steps
 - Theory: need $O(\sqrt{N})$ steps
 - Practice: need \approx 10–40 steps

Example

• N = 512, K = 120

- Recover using ℓ_1 minimization with equality constraints
- Requires 12 iterations to get within 10^{-4} (4 digits)
- Takes about 0.33 seconds on high-end desktop Mac (Matlab code)

Large-Scale Systems of Equations

• The system we need to solve looks like

 $A\Sigma A^* \Delta x = w$

A:K imes N

 $\Sigma:N imes N$ diagonal matrix; changes at each iteration

- Computation: $O(NK^2)$ to construct, $O(K^3)$ to solve
- Large scale: we must use implicit algorithms (e.g. Conjugate Gradients)
 - iterative
 - requires an application of A and A^* at each iteration
 - number of iterations depends on condition number
- $A = \Phi \Psi^*$
 - $\Phi = K imes N$ measurement matrix
 - $\Psi = N imes N$ sparsity basis
- For large-scale Compressive Sampling to be feasible, we must be able to apply Φ and Ψ (and Φ^*, Ψ^*) quickly $(O(N) \text{ or } O(N \log N))$

Fast Measurements

- Say we want to take 20,000 measurements of a 512×512 image (N=262,144)
- If Φ is Gaussian, with each entry a float, it would take more than an entire DVD just to hold Φ
- Need fast, implicit, noise-like measurement systems to make recovery feasible
- Partial Fourier ensemble is $O(N \log N)$ (FFT and subsample)
- Tomography: many fast unequispaced Fourier transforms, Dutt and Rohklin, Pseudopolar FFT of Averbuch et. al
- Noiselet system of Coifman and Meyer
 - perfectly incoherent with Haar system
 - performs the same as Gaussian (in numerical experiments) for recovering spikes and sparse Haar signals
 - O(N)

Large Scale Example

- $N = 256 \times 256, K = 25000$
- Measure using "scrambled Fourier ensemble" (randomly permute the columns of the FFT)
- Recover using $\mathbf{T}\mathbf{V}\text{-minimization}$ with relaxed constraints
- Recovery takes ≈ 5 minutes on high-end desktop Mac
- Vanilla log barrier SOCP solver (in Matlab)
- Note: Noise and approximate sparsity help us here

Conditioning

 $A\Sigma A^*\Delta x = w$

- When recovering a truly sparse signal, the system above becomes very ill-conditioned as we approach the solution
- $\sigma = \operatorname{diag}(\Sigma)$ $\sigma(t) \to 1$, for $t \in \operatorname{supp} x_0$ $\sigma(t) \to 0$, for $t \not\in \operatorname{supp} x_0$ $\Rightarrow A\Sigma A^*$ becomes low-rank
- Small scale: even with exact inversion, we can only get within 4 or 5 digits
- Large scale: many CG iterations are needed to find a good step direction
- Common problem in interior point methods for LP

Conditioning Example

Iteration	PDGap	Cond #
7	2.9e0	1.5e4
8	3.2e-1	6.5e5
9	3.5e-2	2.1e6
10	3.8e-3	1.4e8
11	4.2e-4	1.2e10
12	4.5e-5	9.6e11

Basis Pursuit as Decoding

• It is possible to reformulate BP in such a way that this conditioning problem disappears

$$\min_{x} \|x\|_{\ell_{1}} \quad \Leftrightarrow \quad \min_{h} \|Qh + x_{0}\|_{\ell_{1}}$$
s.t. $Ax = b$

- Columns of Q span the nullspace of A: AQ = 0 $Q: N \times (N - K)$
- x_0 is any feasible point
- Eliminate equality constraints by restricting search to nullspace
- If A = Fourier transform on Ω , Q^* = Fourier transform on Ω^c
- Same form as "Decoding by Linear Programming" (Candès and Tao, 2004)

Conditioning of ℓ_1 Approximation

 $Q^*\Sigma Q\Delta h = w$

- We know have a $(N K) \times (N K)$ system instead of $K \times K$ (inconsequential for things like partial Fourier ensembles)
- $\sigma = \operatorname{diag}(\Sigma)$ $\sigma(t) \to 1$, for $t \not\in \operatorname{supp} x_0$ $\sigma(t) \to 0$, for $t \in \operatorname{supp} x_0$ $\Rightarrow Q^* \Sigma Q$ remains full rank
- In fact, the Uniform Uncertainty Principle implies that close to the solution

$$\mathrm{cond}(Q^*\Sigma Q)\sim rac{N}{K}$$

• All of the conditioning problems disappear

Conditioning Example, II

Recovery via the ℓ_1 -approximation reformulation

Iteration	PDGap	Cond #
7	5.3e-1	129
8	5.8e-2	73
9	6.3e-3	71
10	6.8e-4	70
11	7.5e-5	70

Large Scale Example

- $N = 1024^2 \approx 10^6$, K = 96,000
- Perfectly sparse image (in wavelet domain), S=25,000
- Recovered to 4 digits in 50 iterations
 (5 digits in 52 iterations, 6 digits in 54 iterations,...)
- Recovery time was less than 40 minutes on high-end desktop Mac

Summary

- Compressive sampling recovery programs (*l*₁ and TV minimization) can be recast as linear programs or second-order cone programs
- Efficiently implemented using standard interior point methods
- For sparse recovery, removing the equality constraints makes the procedure incredibly well-conditioned numerically
- Recovering megapixel images is computationally feasible
- Current work:
 - Showing that the Newton system is well-conditioned everywhere
 - Similar conditioning techniques for the relaxed problems
 - More sophisticated SOCP solvers (e.g. a primal-dual algorithm similar to LP)
 - More sophisticated SOCP models for images (cleaner recovery in the noisy/non-sparse cases)
- Code at www.ll-magic.org