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(distributed) Routing in the Internet

Routing Scheme protocol that directs the traffic in a network
pre-requisite: computation of Routing Tables (RT)
kortﬁnumberl
pl
MESSAGE
HEADER P2
destination name D NODE V
useful information hd (pi,hd')=f(D,hd,RT)

Routing Table RT
pi
P pk

DATA
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Border Gateway Protocol (BGP): (AS network)

RT's of size O(nlog n) bits
problem to compute/update

“almost” the full topology
= How to reduce their size?
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Border Gateway Protocol (BGP): (AS network)

RT's of size O(nlog n) bits
problem to compute/update

Routing Table RT
pi
Pi pk

“almost” the full topology
= How to reduce their size?

|

Compact routing along shortest paths

General graphs

Q(nlog n) bits required [FG'97]
= need of structural properties
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Properties of large scale networks Chordality

Well known properties graph parameters
small diameter (logarithmic) (= small hyperbolicity)
power law degree distribution

high clustering coefficient = few long induced cycles
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Properties of large scale networks Chordality

Well known properties

graph parameters

small diameter (logarithmic) (= small hyperbolicity)
power law degree distribution
high clustering coefficient = few long induced cycles

Chordality of a graph G: length of greatest induced cycle in G

not 1nduced cycle (chords)

MMM\ ‘mmm induced cycle (chordless)
| ANAVANANANAVANEED |

chordality =7
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Brief related work on chordality

Complexity chordality < k?
NP-complete easy reduction from hamiltonian cycle
not FPT [CF'07] no algorithm f(k).poly(n) (unless P = NP)
FPT in planar graphs [KK'09] Graph Minor Theory

chordality < k = treewidth < O(AK)  [Bodlaender, Thilikos'97]

Compact routing schemes in graphs with chordality < k

stretch RT’s size | computation time
k+1 O(k |0g2 n) poly(n) [Dourisboure’05]
header never changes
k—1 | O(Alogn) | Oo(D) | INRS'09]
distributed protocol to compute RT's / no header
O(k log A) ‘ O(k log n) ‘ O(m2) ‘ [this paper]
Names and Headers (if any) are of polylogarithmic size 415
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k—chordal graphs
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From Cops and robber to Routing via Treewidth

decomposition algorithm
related to tree—decompositions

for graphs with particular structure

(including k—chordal graphs)

Compact routing scheme

using structure of k—chordal graphs
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From Cops and robber to Routing via Treewidth

Study of Cops and Robber games
in k—chordal graphs

design of a strategy to capture a robber

derived into a graph decomposition

decomposition algorithm
related to tree—decompositions

for graphs with particular structure

(including k—chordal graphs)

Compact routing scheme

using structure of k—chordal graphs

5/15




Our results

Theorem 1: Cops and Robber games
k — 1 cops are sufficient to capture a robber in k-chordal graphs

Theorem 2: main result

There is a O(m?)-algorithm that, in any m-edge graph G,
@ either returns an induced cycle larger than k,

@ or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length < k — 1.

(= treewidth < O(A.k) and treelength < k)

Theorem 3: for any graph admitting such a tree-decomposition

there is a compact routing scheme using RT's of size O(k log n)

bits, and achieving additive stretch O(k log A).
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Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
© C places the cops;
@ R places the robber.
Step-by-step:

@ each cop traverses
at most 1 edge;

@ the robber traverses
at most 1 edge.

Robber captured:

A cop occupies the same vertex as the

robber.
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minimum number of cops to capture any robber

Determine cn(G) for the following graph G?




minimum number of cops to capture any robber

Determine cn(G) for the following graph G? <3

cn(G) < 3 for any planar graph G [Aigner, Fromme, 84]  8/15

Kosowski, Li, , and Suchan k-Chordal Graphs



& robber games: the graph structure helps!!

@ G with girth g (min induced cycle) and min degree d: cn(G) > d& [Frankl 87]
@ 3 n-node graphs G (projective plane): cn(G) = ©(y/n) [Frankl 87]
@ G with dominating set k: cn(G) < k [folklore]
@ Planar graph G: cn(G) <3 [Aigner, Fromme, 84]
@ Minor free graph G excluding a minor H: ¢cn(G) < |E(H)| [Andreae, 86]
@ G with genus g: cn(G) < 3/2g+3 [Schrader, 01]
@ G with treewidth t: cn(G) < t/2+1 [Joret, Kaminsk, Theis 09]
@ G random graph (Erdds Reyni): cn(G) = O(v/n) [Bollobas et al. 08]
@ any n-node graph G: ¢cn(G) = O(=~—--———) [Lu,Peng 09, Scott,Sudakov 10]

RN

G with chordality k: cn(G) < k — 1.

9/15
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Worm's strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }
invariant: Cops always occupy an induced path P = {vy, -, v;}

10/15
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Worm's strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }
invariant: Cops always occupy an induced path P = {vy, -, v;}
algorithm:

extension: if w € N(vi) U N(v;), Pw induced and N(w) N Cropper 7 0

10/15

Kosowski, Li, , and Suchan k-Chordal Graphs



Worm's strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }
invariant: Cops always occupy an induced path P = {vy, -, v;}
algorithm:

extension: if w € N(vi) U N(v;), Pw induced and N(w) N Cropper 7 0

10/15

Kosowski, Li, , and Suchan k-Chordal Graphs



Worm's strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }
invariant: Cops always occupy an induced path P = {vy, -, v;}
algorithm:

extension: if w € N(vi) U N(v;), Pw induced and N(w) N Cropper 7 0

10/15

Kosowski, Li, , and Suchan k-Chordal Graphs



Worm's strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }
invariant: Cops always occupy an induced path P = {vy, -, v;}
algorithm:

extension: if w € N(vi) U N(v;), Pw induced and N(w) N Cropper 7 0

Separator
induced path <k+1
and its neighborhood
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Worm's strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }

invariant: Cops always occupy an induced path P = {vy, -, v;}

algorithm: retraction: if vi or v; cannot be extended, else
extension: if w € N(vi) U N(v;), Pw induced and N(w) N Cropper 7 0
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Capture in k-chordal graphs: worm's strategy

{v1,---,vj} occupied: if no retraction = induced cycle > i +1

Theorem 1 greedy algorithm

worw's strategy uses < k — 1 cops in k-chordal graphs 11/15
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Tree-decomposition /treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

OO

Tree—decomposition

12/15
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Tree-decomposition /treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)
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Tree-decomposition with k-induced paths

From k-worm's strategy




Tree-decomposition with k-induced paths

k-worm strategy = decomposition with separator= k-caterpillar

Theorem 2: main result

There is a O(m?)-algorithm that, in any m-edge graph G,
@ either returns an induced cycle larger than k,

@ or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length < k — 1.

4

In case of k-chordal graphs:

= treewidth < O(A.k) (improves [Bodlaender, Thilikos'97] result)
= treelength < k

= hyperbolicity < 3k/2

13/15
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Application to compact routing

stretch O(k log A) with RT's of size O(k log n) bits

BFS-tree T, tree-decomposition D with k-caterpillar separators

r

From s to d

@ follow the path to rin T
until find x such that
B, is an ancestor of By in D
stretch: +k

BFS tree T

@ in By, find y an ancestor of
dinT
stretch: +klog A
© follow the pathto din T
stretch: +k

shortest s—d path
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Further work

Routing

improve the stretch of our routing scheme
implementation in graphs with “few” long induced cycles

Decompositions

@ complexity of computing decomposition with k-induced path,
minimizing k

@ algorithmic uses of such decompositions

@ other structures of bags

| \

Cops and robber

Conjecture: For any connected n-node graph G, cn(G) = O(y/n).
[Meyniel 87] 15/15
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