

Vehicular mobility in a large scale urban environment

Sandesh Uppoor^{2,1}, Marco Fiore¹

Outline

- Motivation
- **7** Tools
- Trace generation
- Resulting trace
- Connectivity analysis
- Conclusions and future work

- Networking solutions for vehicular environments require car mobility information
 - Cellular networks
 - Infrastructure planning
 - Resource allocation
 - Hand-off management
 - Green networking
 - Autonomous networks (e.g., DSRC-based)
 - Roadside infrastructure planning (V2I communication)
 - Protocol design and performance evaluation (V2I + V2V)

- Trivial solution: collect and use real-world traffic data
- Possible sources
 - Transportation departments (vehicular mobility only)

Time	Road ID	Coords	In-flow	Out-flow
3:30pm	29834AC	(x,y) (x,y)	26 veh/min	10 veh/min

Telecom service providers (vehicular + pedestrian mobility)

Time	User ID	Cell ID	Previous cell ID	Network
5:50pm	063149***	ladoua_01	villeurbanne_06	3G

- However, real-world mobility traces are not publicly available
 - Public security, privacy, industrial competition, expensive access

- Resort to **synthetic traces** of vehicular mobility
- State-of-art mobility traces freely available
 - Canton of Zurich (CS Dept., ETH Zurich, Switzerland)
 - Downtown Zurich (Telecom Dept., ETH Zurich, Switzerland)
 - **Downtown Turin** (CS Dept., Politecnico di Torino, Italy)

However existing traces have major limitations

Datasets	Canton of Zurich	Downtown Zurich	Downtown Turin	Koln New
Area	10000 km ²	12 km ²	20 km ²	400km ²
Road topology	Highways + major roads	Major + minor roads	Major + minor roads	Highways + major + minor roads
Trace length	24 hours	20 minutes	1 hour	24 hours
Microscopic simulation	Low detail (MMTS)	Medium detail (GMSF)	High detail (SUMO)	High detail (SUMO)
O/D matrix	Low detail	Low detail	Observation	Survey

Trace generation tools

Required components

Realistic road topology

Accurate map of street layout including road properties

Microscopic simulator

Representation of individual driving behavior

Macroscopic model

Identification of trips travelled by drivers

■ Traffic demand: origin-destination (O/D) matrix

Traffic assignment: route calculation

Trace generation tools

- Required components
 - **Realistic road topology** → OpenStreetMap
 - Accurate map of street layout including road properties
 - Microscopic simulator → SUMO
 - Representation of individual driving behavior
 - Macroscopic model
 - Identification of trips travelled by drivers
 - \nearrow Traffic demand: origin-destination (O/D) matrix \rightarrow TAPAS
 - → Traffic assignment: route calculation → Gawron's algorithm

OpenStreetMap

- World map database
 - Open-source
 - Road topology quality closely matches that of Google Maps, Mappy
- Includes additional information
 - **Traffic lights**, AOI, buildings
- Dedicated editing tools
 - Osmosis: database information filtering
 - JOSM: road information editing

Simulation of Urban Mobility

- Microscopic vehicular mobility simulator
 - Open-source
 - Imports different maps formats
 - OSM, GDF, US Census TIGER database
- Featured models
 - Krauss' car-following model
 - Controls driver acceleration/deceleration based on car-to-car distance and velocity
 - Krajzewicz's lane-changing model
 - Overtaking decisions

Travel and Activity Pattern Simulation

- Macroscopic traffic flow dataset
 - Provided by Institute of Transportation Systems at the German Aerospace center (ITS-DLR)
 - 24-hour O/D matrix of a typical day in Koln, Germany
- Based on TAPAS methodology
 - Exploits a survey by German Federal Statistical Office
 - **30,700** daily activity reports
 - **7000** households
 - **1.2 million** trips

Trace generation

- Integrating the tools as they are leads to a plain unusable trace
 - **Pervasive traffic congestion** early in the simulation
 - Impossibility to recover from above condition

Vehicle position and speed at 7 am

60

50

Travel time Speed

Resulting trace

60

50

40

Before

Repairing all flaws provides expected road traffic behavior

Heavy

Moderate

Fluid

Resulting trace

The Traffic Comparison: our trace vs. ViaMichelin

Koln trace – 5pm

Connectivity analysis

- Impact of car traffic realism on vehicular network connectivity
 - Comparison with canton of Zurich trace (only large-scale trace available)
 - Metrics: clustering and degree distribution
- Realism of Zurich trace
 - Incomplete road topology
 - Low microscopic detail (queuing approach)
 - Approximate macroscopic model

Connectivity analysis

- Cluster analysis
 - Many more clusters
 - Clusters are much smaller in size
 - No giant components
- Degree distribution
 - 60% vehicles have less than 5neighbors
- Significantly reduced connectivity w.r.t. Zurich trace

Conclusions

- Large-scale vehicular mobility trace
 - **400 km²** around the city of Koln, Germany
 - **24 hours** of car traffic, involving **700,000 trips**
 - Generated with state-of-art tools
 - Closely matches live traffic
- Comparison with existing traces
 - Simplistic macroscopic and microscopic modeling results in exceedingly good network connectivity
 - Using current traces may cause over-optimistic protocol performance evaluation
- Availability: last week of November
 - http://kolntrace.project.citi-lab.fr and http://sumo.sourceforge.net

S.Uppoor, M.Fiore 14/11/11

Recent and Future direction

- ▼ EURECOM's OpenAirInterface (LTE Emulator) uses Koln vehicular mobility through SUMO.
- Demo in bell labs Open days 2012
- http://www.openairinterface.org

Mobility Simulator

LTE Emulator

S.Uppoor, M.Fiore 14/11/11

Future direction

- Further mobility analysis using Voronoi tessellations
- Mobility prediction on macroscopic flows
- Exploit the signal propagation in outdoor urban environment using WiPLAN

Thank you

Question?

SUMO simulation

Appendix 1: Gawron's algorithm

TAPASCologne O/D matrix

Simple **iterative process** for better route calculation which is more knowledgeable about congestion

Traffic Equilibrium requires repeated simulations

OSM map

Gawron's algorithm

Appendix 2: Few more results

Vehicles activities during simulation

public

bicycle

car

transport

passenger

Trace generation

Traffic demand

Restricting the dataset to car traffic

Reduction of bursts of vehicle in-flow to the simulation

Highway traffic is introduced

0.8

0.7

0.6

0.5

0.4

0.3

mode [share of trips]

14/11/11

Trace generation

Properties: 9 / Memberships: 3

Troperties. 3 / Mein	ibersiiips. 5
Key	Value
cycleway	<different></different>
highway	<different></different>
lanes	<different></different>
maxspeed	<different></different>
name	<different></different>
oneway	<different></different>
ref	<different></different>
source	<different></different>
surveillance	<different></different>

	Posit
om	1
differ	1-3
	39
	differ

Trace generation

OSM conversion

- Un-built road
- Complex junctions

