

Managing computational errors: approximation errors and roundoff errors

Interval arithmetic and arbitrary precision (MPFI)

returns guaranteed enclosures of the results

to refine the enclosures: contracting iterations Newton Taylor expansions retro-propagation interval bisection

arbitrary precision to contract intervals beyond the usual precision automatic adaptation of the computing precision

MEPLib machine–efficient polynomials lib. input: function *f*, domain [*a*,*b*]

output: "best" polyns s.t. approximation error is small coeff exactly representable in the target format other constraints on the coeff

GAPPA

automatic proof generation of arithmetic properties

in particular, bounds errors due to floating-point arithmetic

tools:

properties on the fp operations interval arithmetic to get bounds on the values on the rounding errors interval bisection expression rewriting

returns a formal proof (Coq)

CRlibm

elementary functions argument reduction before and reconstruction after the polynomial evaluation sometimes errorless and sometimes not

HOTBM Higher–Order Table–Based Methods

elementary functions in hardware with fixed-point formats

approximation error
 polynomial P given by a minimax
method error
 evaluation scheme
 (table-multiply-and-add)
 choice of the bitwidth
 of the datapath
 (choice of the coeff of P)
roundoff error
 fill the tables
exhaustive tests
 to check the total error

criteria for "best" polyns: approximation error

evaluation error speed of evaluation memory size for the coeff energy consumption

approximation error given by Maple given by exhaustive tests in double precision

use of

- IEEE–754 rounding
- exact IEEE–754 operations
- perf–oriented eval. scheme
- Gappa–assisted error bound
- with correct rounding

need up to 158 bits of precision double-double & triple-double rounding error of each op.

http://www.ens-lyon.fr/LIP/Arenaire/

Arenaire project