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From unorganized 3D point clouds to triangulated
surfaces : how to connect the dots ?
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Overview

Preliminaries : normal estimation and poles
Combinatorial methods

Implicit methods

Continuation methods

Multi-scale approaches

vV v v v .Y
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Estimating normal directions

Voronoi regions are elongated in
the normal direction

V(p;) contains the center mp, of
the medial ball tangent to S at p;

Pole of p; : vertex v of V(p;)
furthest from p;

v —pill = |lpi — mp,|| > Ifs(x)
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Error bound on the normal direction

P = e-sample
v pole of x : ||[v — x|| > Ifs(x)

i = x|| < elfs(i) < 5= 1fs(x)
(Ifs 1-Lipschitz)

- ~ S _8(Y)
Z(A(X), V&) = a + 3 L
< 2arcsin &

~2¢
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Orientation of the normals

orientation
may be given by the
scanning device

otherwise :

» orient the normals at the vertices of conv(P) (easy)
» then propagate the labels coherently

> pj close to p; = np, - Ny, >0

» heuristics : walk along the MST of P [Hoppe 92]
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Warning !

The problem is global : local methods are non robust in the
presence of

Slivers

» Crust and power crust [Amenta et al.]

Noise, sharp features and undersampling

» Spectral surface reconstruction [Kolluri et al. 2006]
» Voronoi PCA [Alliez et al. 2007]
[Mérigot 2009]
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Power crust algorithm

[Amenta et al.]

1. For each p; € P, compute
» its pole mp, and w; = ||mp, — pi|
» the secondary pole :
mp, = argminyey(p) ((Mp, = pi) - (M, — pi))
and w/ = ||m, — pi|
2. Compute the weighted Voronoi (power) diagram
WVor(WP) where WP = U,_y_p{(mp,, w;)} U{(mp,, w;)}
3. Label the elements of WP as inside or outside
4. Output the facets of WVor(WP) incident to cells with
opposite labels
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[Amenta et al.]

Power crust algorithm
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Global labelling of poles using a spectral approach

Kolluri, Shewchuk, O’Brien
Spectral surface reconstruction from noisy point clouds
Siggraph 2004
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The Partitioner Has a Global View

and can make better
sense of outliers.

[Kolluri, Shewchuk, O’Brien]

mic Geometry Smooth manifold reconstruction



Surface reconstruction : the implicit approach

1. Compute a function over R3
whose zero-set Z either
interpolates or approximates E

2. meshZ

Various implicit functions

» interpolation of the sign distance functions to the tangent planes

at the sample points [Hoppe 92], [B. & Cazals 00]
» moving least squares (MLS) [Levin 03]
» radial basis functions [Carr et al. 01]
» Poisson based approach [Khazdan et al. 06]
» spectral method [Alliez et al. 07]
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Interpolating distance functions

hi(x) = (x — pi) - n;

assuming we know or can estimate the
normals n; (direction and orientation) to S
atp;
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Interpolating distance functions

hi(x) = (x — pi) - n;

assuming we know or can estimate the
normals n; (direction and orientation) to S
atp;

Functional interpolant  h(x) = >, Ai(x)hi(x)
where Vx, Y7 \i(x) =1 (partition of unity)
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Interpolating distance functions

hi(x) = (x — pi) - n;

assuming we know or can estimate the
normals n; (direction and orientation) to S
atp;

Functional interpolant  h(x) = >, Ai(x)hi(x)
where Vx, Y7 \i(x) =1 (partition of unity)

Implicit surface h=1(0)
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Interpolating distance functions

hi(x) = (x — pi) - n;

assuming we know or can estimate the
normals n; (direction and orientation) to S
atp;

Functional interpolant  h(x) = >, Ai(x)hi(x)
where Vx, Y7 \i(x) =1 (partition of unity)

Implicit surface h=1(0)

Properties

> Ai(py) = 0 = h(p;) = hi(pi) =0
» if the \; are CX continuous, h~'(c) is a CX surface for
almost all ¢ (by Sard’s th.)
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Choice of \j(x)

Some examples

» Nearest neighbor (NN) : A;(x) =1, Aii(x) = 0if x € V(p)
Not continuous, support = V(p;)

» Radial basis function : \;(x) = exp=?I*=Pil* 3> 0
C*°, non compact support

» Natural neighbor coordinates
C'-continuous, compact support
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Natural Neighbor Coordinates

[Sibson 80]

Natural neighbors

For x € conv(E)
Nat(x) = {p; : wi(x) # 0}
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Natural Neighbor Coordinates

[Sibson 80]

Natural neighbors

For x € conv(E)
Nat(x) = {p; : wi(x) # 0}

Laplace’s coordinates

M) = i with vi(x) = YAEELED. - (p) =1, (p) = 0
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Natural Neighbor Coordinates

[Sibson 80]

Natural neighbors

For x € conv(E)
Nat(x) = {p; : wi(x) # 0}

Laplace’s coordinates

M) = i with vi(x) = YAEELED. - (p) =1, (p) = 0

Sibson’s coordinates

0i(x) = s with wi(x) = vol(V*(pi) N V*(x))
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Equivalently Nat(x) = { vertices of star(x) in Del*(E) }
= { vertices of the Delaunay simplexes
whose circumscribing ball > x}

Pe
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Equivalently Nat(x) = { vertices of star(x) in Del*(E) }
= { vertices of the Delaunay simplexes
whose circumscribing ball > x}

Pe

RY/Nat is the arrangement of the Delaunay spheres
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Equivalently Nat(x) = { vertices of star(x) in Del*(E) }
= { vertices of the Delaunay simplexes
whose circumscribing ball > x}

Pe

RY/Nat is the arrangement of the Delaunay spheres

Support of A; or o; = union of the Delaunay balls incident to p;
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Properties of the Laplace coordinates \;(x)

. . Vol(V+(x,p;
N(xX) = 5 with vi(x) = YO

1. Trivially >, Ai(x) =1
2. The ); are continuous

3. whenx — p;, Vj(x) —
Vi(x) — cst<oo (f#I)

4. x =2 Ai(x) pi ?
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X = Mi(X) pi
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X =Y, Mi(x) p
Minkowski’s th.

dvol(P) =3 e, vol(f)) (x — pj) - 1y

Vvol(P) =0 =3 vol(fj) nj=0
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X =Y, Mi(x) p
Minkowski’s th.

dvol(P) =3 e, vol(f)) (x — pj) - 1y

Vvol(P) =0 =3 vol(fj) nj=0

Applied to V*(x)

Cx—p vi _ Vi .
Hence ) ; Vil=pll = 0<— (Z,- —”X_’p,.”) X=7> P
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Properties of the Sibson’s coordinates o;(x)

1.

Trivially >, oi(x) =1

. The o} are continuous
. when x — p;,  w(x)
w;(x)
= ai(x))
oj(x))

- x=32i0i(X) pi

— C#0
— 0
— 1

0

U#9

same proof as for the Laplace coord. but in the

space of spheres
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X =)_;0i(X) pi
Minkowski’s th. applied to V, = hy N {h;}
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X = Ziai(x) Pi

Minkowski’s th. applied to V, = hy N {h;}

ni=(2p;,—1) Lf
n,=(-2x,1) Lk

32 vol(f) 1l + vol(f) 12 =0

[Tl

wi(x) = vol(V*(p) N V(pi)) =

vol(£) 12 - (—ias1) = YO
w(x) = vol(V*(x)) = Y%
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X = Ziai(x) Pi

Minkowski’s th. applied to V, = hy N {h;}

ni=(2p;,—1) Lf
n,=(-2x,1) Lk

32 vol(f) 1l + vol(f) 12 =0

[Tl

wi(x) = vol(V*(p) N V(p;)) =
vol(£) 12 - (—ias1) = YO

w(x) = vol(V*(x)) = YOI

llnxll

Zw, i+ w(x)ne =0 = > w(x)p — w(x)x =0
i
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Strength of the implicit approach :
Refining the mesh allows to remove singularities

(Using Sibson'’s interpolation)
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Certified algorithms and codes

» Cocone algorithm [Dey & al.]
» Geomagic Studio

» Natural neighbor interpolation of distance functions (Catia)
» Numerical approaches [Kolluri & al., Khazdan & al., Alliez & al.]

» CGAL-3.5:
Geometry Processing & Surface Reconstruction [Alliez & al]
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Smooth submanifold
reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction



» Motivation and difficulties
» Continuation approach and intrinsic complexity

» Dimension estimation and multi-scale reconstruction
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Motivations

» Theoretical foundations and guarantees
(Sampling theory for geometric objects)

» Complexity issues and practical efficiency

» Higher dimensions

» Reconstruction in 3D+t space

» 6D phase space

» Configuration spaces of robots, molecules...
» Data analysis
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The curses of Delaunay triangulations in higher
dimensions

» Subdividing the ambient space is very costly
? Can we store Del(P) in a more compact way?
? Can we construct more local data structures?

» The restricted Delaunay triangulation is no longer a good
approximation of the manifold even under strong sampling
conditions

? What else ?
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Is Delaunay triangulation of practical use

in high dimensional spaces?
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Combinatorial complexity of the Delaunay triangulation

d
2

» Worst-case: O(n[ 1)
» Uniform distribution in RY: ch(n) [Dwyer 1991]

1000
100 E
10

01 [

F d=2..6
0.01 PR L

10° 10 10° 10°
Size in MB / Number of points
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Algebraic issues

Deciding whether x € B(py, ..., pg) reduces to evaluating the

sign of
1 .1 1
o(Pos--sPasX) = | Po . Pg X
P .. p7 Xx°

o is a polynomial of degree d + 2 in the input variables
(its exact evaluation would require (d + 2)-fold precision)
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Implementation of the incremental algorithm  (Hornus 2009]

» explicit storage of the d-simplices
» and of their adjacency graph

1000

0.01 s T

104 10° 109

Time in seconds / Number of points Size in MB / Number of points

» Exact computing
» To come in CGAL 3.6

Winter School on Algorithmic Geometry Smooth manifold reconstruction



CompaC’[ represen’[ation [B., Devillers, Hornus 2009]

Delaunay graph

» Store only the Delaunay graph (edges + vertices)
+ 1 d-simplex per vertex o(p)

» insert(x):
1. locate the vertex of Del(P) nearest to x
2. remove all d-simplices whose circ. ball > x
by walking from neighbor to neighbor in Del(P)
3. update the Delaunay graph by joining x to the vertices of
the removed simplices
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get_neighbor

Input: the vertex-set of a Del-simplex O ___.
and a vertex v of O. e
Output: the unique vertex w opposite to .

Compute: ﬂ Neighbors(p)
pEo\fv}

Remove: vertices on the wrong side.
- . .

Use in_circle() predicate: to select
the correct opposite vertex.
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Performances of the Delaunay graph construction

‘ 1 ‘ Dimension H 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘
2 | Number of input points 1024K | 1024K 1024K 256K 32K
3 | Size of the simplex-cache 1K 1K 10K 300K 1000K
4 | Size of the conflict zone 4.1 21 134 940 6145
5 | Calls to neighbor(,) 12.2 84.6 671.2 5631 43021
6 | Number of candidates 2 2.6 4 6.7 11.6
7 | Fast cache hit (non-null pointer) || 56.6% | 57.5% 54.6 % 55.5% 54.3%
8 | Cache hit 37% 39.6 % 40.1% 42.3% 43.1%
9 | Cache miss 6.4% 2.9% 5.3% 2.2% 2.6%
10 | Time ratio (Del_graph/New_DT) 6.1 5.7 6.0 6.5 8.1
11 | Space ratio (Del_graph/New_DT) 2.7 1.7 0.6 0.2 0.1
12 | Number of simplices per vertex 6 27(xa.5) 157(x5.8) | 1043(xe6.7) | 7T111(xe6.8)
13 | Number of edges per vertex 6 15.5(x2.6) | 36.5(x2.4) T3(x2) 164.6(x2.25)

Current best: 100K 6D vertices: 105 millions simplices.
15 hours for the graph (approx 2:30 hours for full-D).

Space can be further improved using a compact representation of graphs
[Blandford et al 2003]
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Is the restricted Delaunay triangulation a good
approximation

in high dimensional spaces?
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Tangent space approximation
M is a smooth k-dimensional manifold embedded in R

Bad news

The Delaunay triangulation restricted to Ml may be a bad
approximation of the manifold even if the sample is dense
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Tangent space approximation
M is a smooth k-dimensional manifold embedded in R

Bad news

The Delaunay triangulation restricted to Ml may be a bad
approximation of the manifold even if the sample is dense

Good news [Cheng et al. 2005]

If 7 nor its faces are slivers, there exist a constant a,
(depending on oy) s. t. sin Z(aff(7), Tp) < axe
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Slivers in higher dimensions

Sliver
Given constants pg and og,

a j-simplex 7 is called a sliver if N

1./j>2
2. pr =1 < po
3. o, = vol(r)/LL < g

4. Yo C T, ps < po and o, > oy ‘

R, = radius of the circ. ball
L. = length of the shortest edge of =

N
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Slivers are fragile

A small perturbation of one of its vertices may lead to

» a negative volume vol(7) is small
» a big circumscribing sphere

In both cases, the sliver is removed from DT
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Two certified techniques to remove slivers

» Weight the vertices, replace the Delaunay triangulation by
the regular triangulation of the WP [Cheng et al. 2000]

» the points are not moved
» must be used as a postprocessing step on the mesh

» Perturbe the vertices [Li 2001]

» can be used during Delaunay refinement
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Weighted Delaunay triangulation
Weight assignment

pi — w(pi),  w=(w(p1),-..,w(Pn))
Weighted Voronoi diagram

Ve (pr) = {x : Ix — pill* — w?(py) < IIx — pjlI? — w?(py)}
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Weighted Delaunay triangulation
Weight assignment

pi — w(pi),  w=(w(p1),-..,w(Pn))
Weighted Voronoi diagram
Ve(pi) = {x : Ix = pill® = w?(pi) < Ix = pilI* = w?(y)}

Weighting a vertex
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A continuation approach to
manifold reconstruction

» Can we compute Dels(P) without computing Del(P) ?

» Can we avoid subdividing the embedding space and
obtained an intrinsic complexity ?
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Intrinsic complexity

Basic assumption in manifold learning

Data live in a low-dimensional manifold embedded in a
high-dimensional space
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Example 1 : human face images
=

head = sphere
camera : 3 dof
light source : 2 dof

An image with N pixels — a point in RN
It is impossible to triangulate points in such a huge space !
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Example 1 : human face images
=

head = sphere
camera : 3 dof
light source : 2 dof

An image with N pixels — a point in RN
It is impossible to triangulate points in such a huge space !
Example 2 : points with unit normals
> (pi,n;) €N =R3 x §?
» The surface to be reconstructed is a 2-manifold embedded
in A/



The tangential Delaunay complex
[Freedman 2002], [B.& Flottoto 2004], [B.& Ghosh 2009]

[Cheng, Dey, Ramos 2005]

1. Construct the star of p € P in the
Delaunay triangulation Del7,(7P) of
P restricted to Tp

2. Delry(P) : the set of stars of p,
peP

+ DCITM(P) C DCI(P)

+ star(p), Delr,(P) and therefore Delr(P) can be computed
without computing Del(P)

— Delry(P) is not necessarily a triangulated manifold
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Construction of Delr, (P)

Given a k-flat H, Vor(P) N H is a weighted Voronoi diagram

I# < lx = pill?

12— llpi = pilI? < |Ix — p}

Ix — pi

& x—p I

— o — pj11?
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Construction of Delr, (P)

Given a k-flat H, Vor(P) N H is a weighted Voronoi diagram

I# < lx = pill?

12— llpi = pilI? < |Ix — p}

Ix — pi

& x—p I

— o — pj11?

Corollary: construction of Dely,

1. project P onto T, which requires O(dn) time
2. construct star(p?) in Del“(p}) C T, where w(p;) = ||pi — P/

3. star(p;) P star(p})
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Inconsistent configurations ¢ = [py, ..., Pk 2]

Definition
3pi, pj. b1 € ¢ St
1. 7=9¢\{p} € star(p))
# star(p))
2. 7 nor its faces are slivers

3. Vor(py) is the first Voronoi cell
intersected by ci¢;
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Inconsistent configurations ¢ = [py, ..., Pk 2]

Definition
3pi, pj. b1 € ¢ St
1. 7=9¢\{p} € star(p))
# star(p))
2. 7 nor its faces are slivers

3. Vor(py) is the first Voronoi cell
intersected by ci¢;

Observations
» ¢; and ¢; are close if p; is close to p; and N(7) ~ N(p;)
= ¢isa (k+ 1)-sliver
> ¢ € Del(P)
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Inconsistency removal by weighting P

w = weight assignment

IF¥ : set of faces of the inconsistent configurations

1. Forj=1.k,fori=1..n

weight p; so as to remove all slivers incident to p;
that are in Del%,(P) and IF*

2. fori=1..n

weight p; so as to remove all inconsistent configurations
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Basic operations

» Compute the tangent space at a point of M

» Project a point on a k-flat

» Maintain the star of a point when varying its weight
» No d-dimensional data structure
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Basic operations

» Compute the tangent space at a point of M

» Project a point on a k-flat

» Maintain the star of a point when varying its weight
» No d-dimensional data structure

Properties of the output

If P is a sparse (not necessarily uniform) e-sample, upon
termination, the stars are coherent, the simplices are small and
they locally approximate the tangent space of M

» Delry(P) is a PL simplicial k-manifold
» isotopic and close to M
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Dimension of S?
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Witness complex and multiscale reconstruction
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Relaxing the definition of restricted Delaunay
triangulation [Carisson & de Silva 2004]

e witnesses : W C M (not necessarily finite)
e landmarks : a finite set of points L ¢ W

» 7 is a weak Delaunay simplex iff

» 7CL
» Yo C7,3we Wclosertoothanto L\ o,
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Weak Delaunay (witness) complex Wit(L, W)

the collection of all weak Delaunay simplices o,
i.e. o and all its faces have a witness in W with respect to L
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Weak Delaunay (witness) complex Wit(L, W)

the collection of all weak Delaunay simplices o,
i.e. o and all its faces have a witness in W with respect to L

Easy to compute (only distance comparisons)

Clearly, Del(L) ¢ Wit(L, RY)
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Weak Delaunay (witness) complex Wit(L, W)

the collection of all weak Delaunay simplices o,
i.e. o and all its faces have a witness in W with respect to L

Easy to compute (only distance comparisons)

Clearly, Del(L) ¢ Wit(L, RY)
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Weak-witness theorem [de Silva 2008]

WW-Theorem : ¥Q c RY,  Wit(L, Q) c Wit(L,R?) C Del(L)
Corollaries

» Wit(L, RY) = Del(L)
» Wit(L, Q) is embedded in RY
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Proof of the Weak Witness theorem

T = [P0, -, Pk] is @ k-simplex of Wit(L)
witnessed by aball W, i.e. W, NnL=71

We prove that 7 € Del(L) by a double induction on

> k
> |S N7 (S, =o0W,)

Clearly true for k =0and |S; N 7| = k + 1
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Proof of the weak witness theorem
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Case of sampled domains : bad news

P afinite setof points € Q2, LCP

Wit(L, P) # Del(L,2), even if P is a dense sample of Q

Wi

v
v

9

[ab] € Wit(L,P) < 3dpeP, Vorz(a,b)NP #0

Winter School on Algorithmic Geometry Smooth manifold reconstruction



Case of sampled surfaces : good news
P a uniform e-sample of a surface S ¢ R®

P¢ the set of balls B(p, £ Ifs(S)), p € P
L C P a uniform A-sample of P (landmarks)

fé¢>e, ScP¢ and

Del(L,S) <  Wit(L, P*) C Del(L)

E>e¢ WW-Th

Although Wit(L, P¢) may not be a triangulated surface, all its
facets are close (both in position and orientation) to S, which
makes surface extraction easy
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Case of sampled manifolds : good news
[B.,Guibas, Oudot 2008]

P a uniform e-sample of a surface S ¢ R3
P¢ the set of balls B(p, £1fs(S)), p € P

L C P a uniform A-sample of P (landmarks)

3 &4, & and a weight assignment w s.t.

Del“(L,8) C Wit“(L,P%) c Cocon“(P) C  Wit“(L, P%)
II' (i no siiven

Del“(L,S) [Cheng et al. 2005]

By weighting the points of L, we can remove slivers from
Wit(L, P¢) and obtain a triangulated manifold ~ S

Winter School on Algorithmic Geometry Smooth manifold reconstruction



Theorem [B., Guibas, Oudot 2007]

If &4 > e and 30e < )\ <« Ifs(S), one can compute a weight
assignment w s.t.  Wit“(L, P¢) = Del“(L,S) ~ S
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Theorem [B., Guibas, Oudot 2007]

If &4 > e and 30e < )\ <« Ifs(S), one can compute a weight
assignment w s.t.  Wit“(L, P¢) = Del“(L,S) ~ S

Multiscale reconstruction
» In practice, € and Ifs(S) are unknown

» There may exist Si...S; s.t. Wis an
gi-sample of S;
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Theorem [B., Guibas, Oudot 2007]

If &4 > e and 30e < )\ <« Ifs(S), one can compute a weight
assignment w s.t.  Wit“(L, P¢) = Del“(L,S) ~ S

Multiscale reconstruction
» In practice, € and Ifs(S) are unknown

» There may exist Si...S; s.t. Wis an
gi-sample of S;

» Generate a monotonic sequence of samples L C W
» Aslong as 30s; < A\ < 1fs(Siiq), Wit“(L, P8) = S;

» This can be detected by looking for plateaus in the diagram of
Betti numbers of Wit (L, W¢)
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Manifold reconstruction algorithm

Greedy max min algorithm
maintain Wit* (L, P*1) and Wit (L, P*2)
& = A/30,& = 3\
INIT L :=a point of P
REPEAT L «— p = the point of P\ L furthest
from L
compute w(p) so as to remove slivers
in Wit” (L, P%2)
update Wit(L, P*) and Wit(L, P*2)
UNTIL L="P
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Manifold reconstruction algorithm

Greedy max min algorithm
maintain Wit* (L, P*1) and Wit (L, P*2)
& = A/30,& = 3\
INIT L :=a point of P
REPEAT L «— p = the point of P\ L furthest
from L
compute w(p) so as to remove slivers
in Wit” (L, P%2)
update Wit(L, P*) and Wit(L, P*2)
UNTIL L="P

Update Wit(L, p*)
maintain the k-order Vor(L), k < d + 1 (The curse of dim. is back)

[p1..ox] € Wit(L, P*) & 3w € P, Vork(p1..px) N B(p, &) # 0
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Multi-scale reconstruction

» maintain the Betti numbers of S on the fly
» detect the plateaus

» return the corresponding S that are valid approximations of
S (given the sample P) at different scales
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Multi-scale reconstruction

» maintain the Betti numbers of S on the fly
» detect the plateaus

» return the corresponding S that are valid approximations of
S (given the sample P) at different scales

Remarks

» P is not required to be sparse
» 1fs(S) needs not to be known
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