
Smooth manifold reconstruction from point
clouds

Jean-Daniel Boissonnat
INRIA Sophia-Antipolis

Winter School on Algorithmic Geometry
ENS-Lyon

January 2010

Winter School on Algorithmic Geometry Smooth manifold reconstruction

From unorganized 3D point clouds to triangulated
surfaces : how to connect the dots ?

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Overview

I Preliminaries : normal estimation and poles
I Combinatorial methods
I Implicit methods
I Continuation methods
I Multi-scale approaches

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Estimating normal directions

Isosurfaces in 3D images

Voronoi-based interpolation

Surface reconstruction

Estimating the normal directions

Voronoi regions are elongated in

the normal direction

V (pi) contains the center mpi of

the medial ball tangent to S at pi

Tsinghua University, October 2005 Scattered data interpolation and surface reconstruction

Voronoi regions are elongated in
the normal direction

V (pi) contains the center mpi of
the medial ball tangent to S at pi

Pole of pi : vertex v of V (pi)
furthest from pi

‖v − pi‖ ≥ ‖pi −mpi‖ ≥ lfs(x)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Error bound on the normal direction

P = ε-sample

v pole of x : ‖v − x‖ ≥ lfs(x)

‖i − x‖ ≤ εlfs(i) ≤ ε
1−ε lfs(x)

(lfs 1-Lipschitz)

∠(~n(x), ~vx) = α + β
≤ 2 arcsin ε

1−ε
≈ 2 ε

lfs(X)

lfs(X)

X

θ

ε lfs(X)

V

α

β

I

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Orientation of the normals

orientation
may be given by the
scanning device

otherwise :

The Partitioner Has a Global View

Inside or outside?

I orient the normals at the vertices of conv(P) (easy)
I then propagate the labels coherently

I pi close to pj ⇒ npi · npj > 0

I heuristics : walk along the MST of P [Hoppe 92]

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Warning !

The problem is global : local methods are non robust in the
presence of

Slivers

I Crust and power crust [Amenta et al.]

Noise, sharp features and undersampling

I Spectral surface reconstruction [Kolluri et al. 2006]

I Voronoi PCA [Alliez et al. 2007]
[Mérigot 2009]

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Power crust algorithm
[Amenta et al.]

Identify non!ambiguous tetrahedra called ‘‘poles’’.

Form a graph whose vertices are the poles.

Assign edge weights based on geometry.

Stage 1:

Eigencrust Algorithm

Partition graph.

1. For each pi ∈ P, compute
I its pole mpi and wi = ‖mpi − pi‖
I the secondary pole :

m′pi
= arg minv∈V (pi)

(
(mpi − pi) · (m′pi

− pi)
)

and w ′i = ‖m′pi
− pi‖

2. Compute the weighted Voronoi (power) diagram
WVor(WP) where WP =

⋃
i=1..n{(mpi ,wi)}

⋃{(m′pi
,w ′i)}

3. Label the elements of WP as inside or outside
4. Output the facets of WVor(WP) incident to cells with

opposite labels

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Power crust algorithm [Amenta et al.]

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Global labelling of poles using a spectral approach

Kolluri, Shewchuk, O’Brien
Spectral surface reconstruction from noisy point clouds
Siggraph 2004

Winter School on Algorithmic Geometry Smooth manifold reconstruction

The Partitioner Has a Global View

Eigencrust

Powercrust

and can make better
sense of outliers.

This way please.

[Kolluri, Shewchuk, O’Brien]

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Surface reconstruction : the implicit approach

1. Compute a function over R3

whose zero-set Z either
interpolates or approximates E

2. mesh Z

Various implicit functions

I interpolation of the sign distance functions to the tangent planes
at the sample points [Hoppe 92], [B. & Cazals 00]

I moving least squares (MLS) [Levin 03]

I radial basis functions [Carr et al. 01]

I Poisson based approach [Khazdan et al. 06]

I spectral method [Alliez et al. 07]

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Interpolating distance functions

pi

x

ni

hi(x) = (x − pi) · ni

assuming we know or can estimate the
normals ni (direction and orientation) to S
at pi

Functional interpolant h(x) =
∑

i λi(x)hi(x)

where ∀x , ∑n
i=1 λi(x) = 1 (partition of unity)

Implicit surface h−1(0)

Properties

I λi(pj) = δij ⇒ h(pi) = hi(pi) = 0
I if the λi are Ck continuous, h−1(c) is a Ck surface for

almost all c (by Sard’s th.)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Interpolating distance functions

pi

x

ni

hi(x) = (x − pi) · ni

assuming we know or can estimate the
normals ni (direction and orientation) to S
at pi

Functional interpolant h(x) =
∑

i λi(x)hi(x)

where ∀x , ∑n
i=1 λi(x) = 1 (partition of unity)

Implicit surface h−1(0)

Properties

I λi(pj) = δij ⇒ h(pi) = hi(pi) = 0
I if the λi are Ck continuous, h−1(c) is a Ck surface for

almost all c (by Sard’s th.)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Interpolating distance functions

pi

x

ni

hi(x) = (x − pi) · ni

assuming we know or can estimate the
normals ni (direction and orientation) to S
at pi

Functional interpolant h(x) =
∑

i λi(x)hi(x)

where ∀x , ∑n
i=1 λi(x) = 1 (partition of unity)

Implicit surface h−1(0)

Properties

I λi(pj) = δij ⇒ h(pi) = hi(pi) = 0
I if the λi are Ck continuous, h−1(c) is a Ck surface for

almost all c (by Sard’s th.)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Interpolating distance functions

pi

x

ni

hi(x) = (x − pi) · ni

assuming we know or can estimate the
normals ni (direction and orientation) to S
at pi

Functional interpolant h(x) =
∑

i λi(x)hi(x)

where ∀x , ∑n
i=1 λi(x) = 1 (partition of unity)

Implicit surface h−1(0)

Properties

I λi(pj) = δij ⇒ h(pi) = hi(pi) = 0
I if the λi are Ck continuous, h−1(c) is a Ck surface for

almost all c (by Sard’s th.)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Choice of λi(x)

Some examples

I Nearest neighbor (NN) : λi(x) = 1, λj 6=i(x) = 0 if x ∈ V (pi)
Not continuous, support = V (pi)

I Radial basis function : λi(x) = exp−β‖x−pi‖2
, β > 0

C∞, non compact support
I Natural neighbor coordinates

C1-continuous, compact support

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Natural Neighbor Coordinates
[Sibson 80]

���

���

���

���

��	

��

�

Natural neighbors

For x ∈ conv(E)

Nat(x) = {pi : wi(x) 6= 0}

Laplace’s coordinates

λi (x) = vi (x)P
i vi (x) with vi (x) = vol(V +(x,pi))

‖x−pi‖ , λi (pi) = 1, λj (pi) = 0

Sibson’s coordinates

σi (x) = wi (x)P
i wi (x) with wi (x) = vol(V +(pi) ∩ V +(x))

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Natural Neighbor Coordinates
[Sibson 80]

���

���

���

���

��	

��

�

Natural neighbors

For x ∈ conv(E)

Nat(x) = {pi : wi(x) 6= 0}

Laplace’s coordinates

λi (x) = vi (x)P
i vi (x) with vi (x) = vol(V +(x,pi))

‖x−pi‖ , λi (pi) = 1, λj (pi) = 0

Sibson’s coordinates

σi (x) = wi (x)P
i wi (x) with wi (x) = vol(V +(pi) ∩ V +(x))

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Natural Neighbor Coordinates
[Sibson 80]

���

���

���

���

��	

��

�

Natural neighbors

For x ∈ conv(E)

Nat(x) = {pi : wi(x) 6= 0}

Laplace’s coordinates

λi (x) = vi (x)P
i vi (x) with vi (x) = vol(V +(x,pi))

‖x−pi‖ , λi (pi) = 1, λj (pi) = 0

Sibson’s coordinates

σi (x) = wi (x)P
i wi (x) with wi (x) = vol(V +(pi) ∩ V +(x))

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Equivalently Nat(x) = { vertices of star(x) in Del+(E) }
= { vertices of the Delaunay simplexes

whose circumscribing ball 3 x}

���

���

���

���

��	

��

�

Rd/Nat is the arrangement of the Delaunay spheres

Support of λi or σi = union of the Delaunay balls incident to pi

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Equivalently Nat(x) = { vertices of star(x) in Del+(E) }
= { vertices of the Delaunay simplexes

whose circumscribing ball 3 x}

���

���

���

���

��	

��

�

Rd/Nat is the arrangement of the Delaunay spheres

Support of λi or σi = union of the Delaunay balls incident to pi

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Equivalently Nat(x) = { vertices of star(x) in Del+(E) }
= { vertices of the Delaunay simplexes

whose circumscribing ball 3 x}

���

���

���

���

��	

��

�

Rd/Nat is the arrangement of the Delaunay spheres

Support of λi or σi = union of the Delaunay balls incident to pi

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Properties of the Laplace coordinates λi(x)

λi(x) = vi (x)P
i vi (x) with vi(x) = vol(V +(x ,pi))

‖x−pi‖

1. Trivially
∑

i λi(x) = 1

2. The λi are continuous

3. when x → pi , vi(x)→∞
vj(x) → cst <∞ (j 6= i)

⇒ λi(x))→ 1
λj(x))→ 0

4. x =
∑

i λi(x) pi ?

pi x

Winter School on Algorithmic Geometry Smooth manifold reconstruction

x =
∑

i λi(x) pi

Minkowski’s th.

nj

x

nj

cj

ci

d vol(P) =
∑

j∈J vol(fj) (x − pj) · nj

∇vol(P) = 0 ⇒∑
j∈J vol(fj) nj = 0

Applied to V +(x)

Hence
∑

i vi
x−pi
‖x−pi‖

= 0⇐⇒
(∑

i
vi

‖x−pi‖

)
x =

∑
i

vi
‖x−pi‖

pi

Winter School on Algorithmic Geometry Smooth manifold reconstruction

x =
∑

i λi(x) pi

Minkowski’s th.

nj

x

nj

cj

ci

d vol(P) =
∑

j∈J vol(fj) (x − pj) · nj

∇vol(P) = 0 ⇒∑
j∈J vol(fj) nj = 0

Applied to V +(x)

Hence
∑

i vi
x−pi
‖x−pi‖

= 0⇐⇒
(∑

i
vi

‖x−pi‖

)
x =

∑
i

vi
‖x−pi‖

pi

Winter School on Algorithmic Geometry Smooth manifold reconstruction

x =
∑

i λi(x) pi

Minkowski’s th.

nj

x

nj

cj

ci

d vol(P) =
∑

j∈J vol(fj) (x − pj) · nj

∇vol(P) = 0 ⇒∑
j∈J vol(fj) nj = 0

Applied to V +(x)

Hence
∑

i vi
x−pi
‖x−pi‖

= 0⇐⇒
(∑

i
vi

‖x−pi‖

)
x =

∑
i

vi
‖x−pi‖

pi

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Properties of the Sibson’s coordinates σi(x)

1. Trivially
∑

i σi(x) = 1

2. The σi are continuous

3. when x → pi , wi(x)→ C 6= 0
wj(x) → 0 (j 6= i)

⇒ σi(x))→ 1
σj(x))→ 0

4. x =
∑

i σi(x) pi

same proof as for the Laplace coord. but in the
space of spheres

pi x

Winter School on Algorithmic Geometry Smooth manifold reconstruction

x =
∑

i σi(x) pi
Minkowski’s th. applied to Vp = h−x ∩ {h+

i }

pi pj

x

ni

nx

nj

ni = (2 pi ,−1) ⊥ fi
np = (−2 x ,1) ⊥ fx∑

i vol(fi) ni
‖ni‖ + vol(fx) nx

‖nx‖ = 0

wi (x) = vol(V +(p) ∩ V (pi)) =

vol(fi) ni
‖ni‖ · (−id+1) = vol(fi)

‖ni‖

w(x) = vol(V +(x)) = vol(fx)
‖nx‖

∑
i

wi (x)ni + w(x)nx = 0 =⇒
∑

i

wi (x)pi − w(x)x = 0

Winter School on Algorithmic Geometry Smooth manifold reconstruction

x =
∑

i σi(x) pi
Minkowski’s th. applied to Vp = h−x ∩ {h+

i }

pi pj

x

ni

nx

nj

ni = (2 pi ,−1) ⊥ fi
np = (−2 x ,1) ⊥ fx∑

i vol(fi) ni
‖ni‖ + vol(fx) nx

‖nx‖ = 0

wi (x) = vol(V +(p) ∩ V (pi)) =

vol(fi) ni
‖ni‖ · (−id+1) = vol(fi)

‖ni‖

w(x) = vol(V +(x)) = vol(fx)
‖nx‖

∑
i

wi (x)ni + w(x)nx = 0 =⇒
∑

i

wi (x)pi − w(x)x = 0

Winter School on Algorithmic Geometry Smooth manifold reconstruction

x =
∑

i σi(x) pi
Minkowski’s th. applied to Vp = h−x ∩ {h+

i }

pi pj

x

ni

nx

nj

ni = (2 pi ,−1) ⊥ fi
np = (−2 x ,1) ⊥ fx∑

i vol(fi) ni
‖ni‖ + vol(fx) nx

‖nx‖ = 0

wi (x) = vol(V +(p) ∩ V (pi)) =

vol(fi) ni
‖ni‖ · (−id+1) = vol(fi)

‖ni‖

w(x) = vol(V +(x)) = vol(fx)
‖nx‖

∑
i

wi (x)ni + w(x)nx = 0 =⇒
∑

i

wi (x)pi − w(x)x = 0

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Strength of the implicit approach :
Refining the mesh allows to remove singularities

(Using Sibson’s interpolation)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Certified algorithms and codes

I Cocone algorithm [Dey & al.]

I Geomagic Studio
I Natural neighbor interpolation of distance functions (Catia)
I Numerical approaches [Kolluri & al., Khazdan & al., Alliez & al.]

I CGAL-3.5 :
Geometry Processing & Surface Reconstruction [Alliez & al.]

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Smooth submanifold
reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

I Motivation and difficulties

I Continuation approach and intrinsic complexity

I Dimension estimation and multi-scale reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Motivations

I Theoretical foundations and guarantees
(Sampling theory for geometric objects)

I Complexity issues and practical efficiency
I Higher dimensions

I Reconstruction in 3D+t space
I 6D phase space
I Configuration spaces of robots, molecules...
I Data analysis

Winter School on Algorithmic Geometry Smooth manifold reconstruction

The curses of Delaunay triangulations in higher
dimensions

I Subdividing the ambient space is very costly
? Can we store Del(P) in a more compact way?
? Can we construct more local data structures?

I The restricted Delaunay triangulation is no longer a good
approximation of the manifold even under strong sampling
conditions

? What else ?

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Is Delaunay triangulation of practical use

in high dimensional spaces?

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Combinatorial complexity of the Delaunay triangulation

I Worst-case: O(nd d
2 e)

I Uniform distribution in Rd : cdO(n) [Dwyer 1991]

0.01

0.1

1

10

100

1000

103 104 105 106

Time in seconds / Number of pointsTime in seconds / Number of points

2D
3D
4D
5D
6D 0.01

0.1

1

10

100

1000

103 104 105 106

Size in MB / Number of pointsSize in MB / Number of points

Figure 1: Timings (left) and space usage (right) of our New DT implementation (subsection 5.1). The ambient
dimension ranges from 2 to 6 and all axes are logarithmic.

in close agreement with the constants obtained theoretically
by Dwyer for points uniformly distributed in a ball [14] (he
obtains ≈ 158.9 while we measure 157 and growing). In
dimension 2 to 6, we do observe that the average simplex-
valence is indeed growing exponentially with the dimension
(see line 12 of Table 1).

These quickly raising valences are in sharp contrast with
the small number of simplices visited during the localization
procedure. For example, in our 6-dimensional experiments,
no more than 28 simplices on average are traversed during
the localization phase of the insertion procedure, please re-
fer to [16] for more details. We conclude that, as soon as
we reach dimension 4, the cost of computing and triangu-
lating the conflict zone is far more important than the cost
of localizing a first conflicting simplex, when the points are
uniformly distributed.

Spatial sorting is used to reduce the number of simplices
visited during the localization part of the insertion. We
find that it is extremely efficient in 2D and 3D, somewhat
efficient in 4D and 5D and that its efficiency is unclear in 6D,
as we didn’t see much improvement due to spatial sorting
in 6D. We do believe however that such an improvement
should be witnessed if one sharply increases the input size.

We have compared New DT with several other implemen-
tations presented in the introduction. As a rough summary,
we find that our implementation performs much better than
all the exact implementations (time-wise and memory-wise)
and compares very well to the fast non-exact Qhull imple-
mentation.9 For these comparisons and for a lengthier anal-
ysis of the effect of spatial sorting, we again refer the inter-
ested reader to [16] and proceed now to experiment with our
implementation of the Delaunay graph, Del graph.

5.2 Experiments with Del_graph
We have experimented with Del graph on input points uni-

formly distributed in a cube. We sum up some of the statis-
tics that we obtain in Table 1.

Each column of Table 1 corresponds to a single run of
our implementation in a different dimension, as shown in

9 In dimensions 2, 3 and 4, our implementation is faster that
Qhull when the number of (uniformly distributed) points exceeds
100K.

the first line. The second line displays the number of input
points (drawn at random from a uniform distribution in a
cube) and the third line indicates the size of the simplex-
cache that we chose. In dimension 5 and 6, we believe that
choosing a smaller cache size should not hamper the timings
too much.

Line 4 shows, in line with the measurements of line 12,
how quickly the average size of the conflict zone grows with
the dimension.

Line 5 shows the average number of calls to the neigh-
bor procedure during each exploration of the conflict zone.
These should be compared with the less than 30 visited sim-
plices in the localization procedure in 6D. Line 6 shows the
average number of candidate vertices for the completion of
the neighboring simplex: this is the average size of the inter-
section of the neighbor-lists of d vertices forming a Delaunay
(d− 1)-simplex.

Line 7, 8 and 9 show, respectively as a percentage of line 5,
the number of times a reference to a neighbor was readily
available in a cached-simplex, the number of times the neigh-
bor was present in the cache but had to be searched from
the list of candidates, and the number of times the neighbor
was not in the cache and had to be computed by sorting
the candidates with the in_sphere predicate. It is expected
that the “fast cache hit” (line 7) stays above 50% percent
since a simplex-simplex adjacency is most often visited twice
(in both directions), and at the second visit, we are guaran-
teed to get a “fast cache hit”. The low percentages of line 9,
however, suggest that our cache mechanism (together with
the spatial sorting) is quite effective.

Line 10 of Table 1 displays the ratio of the time taken by
Del graph to the time taken by New DT to complete their re-
spective computation. Considering the amount of additional
work that has to be done in the neighbor procedure, we are
quite pleased with these ratios. And we further believe that
further optimization should reduce them even more.

For example, we have found experimentally that storing
the lists of neighbors in sorted arrays (C++ std::vector)
decreases the running time of Del graph by 5 to 10%, when
compared to using the tree-structured std::set.

Line 11 is the reason why we wanted to implement the
Delaunay graph in the first place: to reduce memory usage.
On the one hand, the results that we obtain are convincing

d = 2..6

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Algebraic issues

Deciding whether x ∈ B(p0, ...,pd) reduces to evaluating the
sign of

σ(p0, ...,pd , x) =

∣∣∣∣∣∣
1 ... 1 1
p0 ... pd x
p2

0 ... p2
d x2

∣∣∣∣∣∣
σ is a polynomial of degree d + 2 in the input variables
(its exact evaluation would require (d + 2)-fold precision)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Implementation of the incremental algorithm [Hornus 2009]

I explicit storage of the d-simplices
I and of their adjacency graph

0.01

0.1

1

10

100

1000

103 104 105 106

Time in seconds / Number of pointsTime in seconds / Number of points

2D
3D
4D
5D
6D 0.01

0.1

1

10

100

1000

103 104 105 106

Size in MB / Number of pointsSize in MB / Number of points

Figure 1: Timings (left) and space usage (right) of our New DT implementation (subsection 5.1). The ambient
dimension ranges from 2 to 6 and all axes are logarithmic.

in close agreement with the constants obtained theoretically
by Dwyer for points uniformly distributed in a ball [14] (he
obtains ≈ 158.9 while we measure 157 and growing). In
dimension 2 to 6, we do observe that the average simplex-
valence is indeed growing exponentially with the dimension
(see line 12 of Table 1).

These quickly raising valences are in sharp contrast with
the small number of simplices visited during the localization
procedure. For example, in our 6-dimensional experiments,
no more than 28 simplices on average are traversed during
the localization phase of the insertion procedure, please re-
fer to [16] for more details. We conclude that, as soon as
we reach dimension 4, the cost of computing and triangu-
lating the conflict zone is far more important than the cost
of localizing a first conflicting simplex, when the points are
uniformly distributed.

Spatial sorting is used to reduce the number of simplices
visited during the localization part of the insertion. We
find that it is extremely efficient in 2D and 3D, somewhat
efficient in 4D and 5D and that its efficiency is unclear in 6D,
as we didn’t see much improvement due to spatial sorting
in 6D. We do believe however that such an improvement
should be witnessed if one sharply increases the input size.

We have compared New DT with several other implemen-
tations presented in the introduction. As a rough summary,
we find that our implementation performs much better than
all the exact implementations (time-wise and memory-wise)
and compares very well to the fast non-exact Qhull imple-
mentation.9 For these comparisons and for a lengthier anal-
ysis of the effect of spatial sorting, we again refer the inter-
ested reader to [16] and proceed now to experiment with our
implementation of the Delaunay graph, Del graph.

5.2 Experiments with Del_graph
We have experimented with Del graph on input points uni-

formly distributed in a cube. We sum up some of the statis-
tics that we obtain in Table 1.

Each column of Table 1 corresponds to a single run of
our implementation in a different dimension, as shown in

9 In dimensions 2, 3 and 4, our implementation is faster that
Qhull when the number of (uniformly distributed) points exceeds
100K.

the first line. The second line displays the number of input
points (drawn at random from a uniform distribution in a
cube) and the third line indicates the size of the simplex-
cache that we chose. In dimension 5 and 6, we believe that
choosing a smaller cache size should not hamper the timings
too much.

Line 4 shows, in line with the measurements of line 12,
how quickly the average size of the conflict zone grows with
the dimension.

Line 5 shows the average number of calls to the neigh-
bor procedure during each exploration of the conflict zone.
These should be compared with the less than 30 visited sim-
plices in the localization procedure in 6D. Line 6 shows the
average number of candidate vertices for the completion of
the neighboring simplex: this is the average size of the inter-
section of the neighbor-lists of d vertices forming a Delaunay
(d− 1)-simplex.

Line 7, 8 and 9 show, respectively as a percentage of line 5,
the number of times a reference to a neighbor was readily
available in a cached-simplex, the number of times the neigh-
bor was present in the cache but had to be searched from
the list of candidates, and the number of times the neighbor
was not in the cache and had to be computed by sorting
the candidates with the in_sphere predicate. It is expected
that the “fast cache hit” (line 7) stays above 50% percent
since a simplex-simplex adjacency is most often visited twice
(in both directions), and at the second visit, we are guaran-
teed to get a “fast cache hit”. The low percentages of line 9,
however, suggest that our cache mechanism (together with
the spatial sorting) is quite effective.

Line 10 of Table 1 displays the ratio of the time taken by
Del graph to the time taken by New DT to complete their re-
spective computation. Considering the amount of additional
work that has to be done in the neighbor procedure, we are
quite pleased with these ratios. And we further believe that
further optimization should reduce them even more.

For example, we have found experimentally that storing
the lists of neighbors in sorted arrays (C++ std::vector)
decreases the running time of Del graph by 5 to 10%, when
compared to using the tree-structured std::set.

Line 11 is the reason why we wanted to implement the
Delaunay graph in the first place: to reduce memory usage.
On the one hand, the results that we obtain are convincing

I Exact computing
I To come in CGAL 3.6

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Compact representation [B., Devillers, Hornus 2009]

Delaunay graph

I Store only the Delaunay graph (edges + vertices)
+ 1 d-simplex per vertex σ(p)

I insert(x) :
1. locate the vertex of Del(P) nearest to x
2. remove all d-simplices whose circ. ball 3 x

by walking from neighbor to neighbor in Del(P)
3. update the Delaunay graph by joining x to the vertices of

the removed simplices

Winter School on Algorithmic Geometry Smooth manifold reconstruction

get_neighbor!"

Compute:
⋂

p∈σ\

Neighbors(p)
!"#

Remove: vertices on the wrong side.

Use in_circle!" predicate: to select
the correct opposite vertex.

"

$

Input: the vertex#set of a Del#simplex
and a vertex " of .
Output: the unique vertex $ opposite to ".

σ
σ

σ

mardi 29 septembre 2009

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Performances of the Delaunay graph constructionOn uniformly distributed points...
1 Dimension 2 3 4 5 6
2 Number of input points 1024K 1024K 1024K 256K 32K
3 Size of the simplex-cache 1K 1K 10K 300K 1000K
4 Size of the conflict zone 4.1 21 134 940 6145
5 Calls to neighbor(,) 12.2 84.6 671.2 5631 43021
6 Number of candidates 2 2.6 4 6.7 11.6
7 Fast cache hit (non-null pointer) 56.6 % 57.5 % 54.6 % 55.5 % 54.3 %
8 Cache hit 37 % 39.6 % 40.1 % 42.3 % 43.1 %
9 Cache miss 6.4 % 2.9 % 5.3 % 2.2 % 2.6 %

10 Time ratio (Del graph/New DT) 6.1 5.7 6.0 6.5 8.1
11 Space ratio (Del graph/New DT) 2.7 1.7 0.6 0.2 0.1
12 Number of simplices per vertex 6 27(×4.5) 157(×5.8) 1043(×6.7) 7111(×6.8)

13 Number of edges per vertex 6 15.5(×2.6) 36.5(×2.4) 73(×2) 164.6(×2.25)

Table 1: Statistics for Del graph. In rows 12 and 13, the parenthesized multiplicand is the ratio
of the current column value with the previous one.

The spatial sorting is used to reduce the number of simplices visited during the localization
part of the insertion. We find that it is extremely efficient in 2D and 3D. Somewhat efficient in
4D and 5D, and that it’s efficiency is unclear in 6D, as we didn’t see much improvement due to
spatial sorting in 6D. We do believe however that such an improvement should be witnessed if
one sharply increases the number of input points.

We have compared New DT with several other implementations presented in the introduction.
As a rough summary, we find that our implementation performs better that all of them (time-
wise and memory-wise). For these comparisons and for a lengthier analysis of the effect of
spatial sorting, we again refer the interested reader to [16] and proceed now to experiment with
our implementation of the Delaunay graph, Del graph.

5.2 Experiments with Del graph, the simplex based representation

We have experimented with Del graph on input points uniformly distributed in a cube. To
keep the discussion short in this extended abstract, we sum up some of the statistics that we
obtain in Table 1.

Each column of Table 1 corresponds to an experiment in a different dimension, as shown in
the first line. The second line displays the number of input points (drawn at random from a
uniform distribution in a cube) and the third line indicates the size of the simplex-cache that we
chose. In dimension 5 and 6, we believe that choosing a smaller cache size should not hampers
the timings too much.

Line 4 shows, in line with the measurements of line 12, how quickly the average size of the
conflict zone grows with the dimension.

Line 5 shows the average number of calls to the neighbor(,) procedure during each explo-
ration of the conflict zone. These should be compared with the less than 30 visited simplices
in the localization procedure in 6D. Line 6 shows the average number of candidate vertices for
the completion of the neighboring simplex: this is the average size of the intersection of the
neighbor-lists of d vertices forming a Delaunay (d− 1)-simplex.

Line 7, 8 and 9 show, respectively, in percent with respect to line 5 of the table, the number
of times a reference to a neighbor was readily available in a cached-simplex, the number of times
the neighbor was present in the cache but had to be searched from the list of candidates, and
the number of times the neighbor was not in the cache and had to be computed by sorting the

9

Current best: 100K 6D vertices: 105 millions simplices.
15 hours for the graph !approx 2:30 hours for full"D#.

mardi 29 septembre 2009Space can be further improved using a compact representation of graphs
[Blandford et al 2003]

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Is the restricted Delaunay triangulation a good

approximation

in high dimensional spaces?

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Tangent space approximation
M is a smooth k -dimensional manifold embedded in Rd

Bad news

The Delaunay triangulation restricted to M may be a bad
approximation of the manifold even if the sample is dense

u

vw

p0 c0

t = ∆

x

y

z

t

p

t = ∆ + δ/2

c

x

y

z

t

Figure 3: Left: tetrahedron [u, v, w, p0] and its dual Voronoi edge. Right: after perturbation of S.

c0 is the center of a Delaunay ball of radius greater than 1, we can assume that δ is small enough
for the points of L0 to remain on S. Let c = (1

2 , 1
2 , δ

2 , ∆ + δ
2) be at the top of the bump. Since

the points of L0 are located in hyperplane t = ∆ in the vicinity of [u, v, w, p0], c is equidistant to
u, v, w, p0, and closer to these points than to any other point of L0. This implies that the open ball
Bc = B(c, ‖c− u‖) contains no point of L0 and has u, v, w, p0 on its bounding sphere. Hence, Bc is
a Delaunay ball circumscribing [u, v, w, p0], and c belongs to the Voronoi edge dual to [u, v, w, p0].
Moreover, since u, v, w and (0, 0, 0, ∆) are cocircular, ∂Bc passes also through (0, 0, 0, ∆).

We deform S further by creating another small bump, at point (0, 0, 0, ∆) this time, so as to
move this point by δ into the t-dimension, outward the hypercube. Let p = (0, 0, 0, ∆ + δ) be the
top of the bump — see Figure 3 (right). A quick computation shows that ‖c− p‖ = ‖c− u‖, which
implies that p ∈ ∂Bc. Here again, by choosing δ sufficiently small, we can make sure that the radius
of curvature of the bump is at least ∆

2 , which means that the reach of the deformed hypersurface
is still ∆

2 = 1
µ . We can also make sure that the bump of p is disjoint from the bump of c since

‖c− p‖ > 1√
2
, and that the points of L0 \ {p0} remain3 on S. It follows that Bc is empty of points

of L, where L is defined by L = L0 ∪{p}\{p0}. Since ∂Bc contains u, v, w, p, Bc is a Delaunay ball
circumscribing [u, v, w, p]. Equivalently, c belongs to the Voronoi edge e dual to [u, v, w, p]. Note
also that L is an (ε − δ)-sparse (2ε + δ)-sample of S.

Since [u, v, w, p] is included in hyperplane z = 0, its dual Voronoi edge e is aligned with (0, 0, 1, 0),
as illustrated in Figure 3 (right). This edge is incident to four Voronoi 2-faces, which are dual to the
four facets of [u, v, w, p]. These 2-faces can be seen as extrusions, into the z-dimension (0, 0, 1, 0),
of the edges of the Voronoi diagram of {u, v, w, p} inside hyperplane z = 0. Among these Voronoi
edges, two lie above the plane t = ∆ + δ

2 , and two lie below. As a result, in R4, two Voronoi

2-faces incident to e lie above hyperplane t = ∆ + δ
2 . These two Voronoi 2-faces do not intersect

S, except at c and possibly at the bump of p. Now, the circumradii of the facets of [u, v, w, p] are

at most ‖c − u‖ =
√

1+δ2√
2

< µ rch(S), thus, inside hyperplane z = 0, Amenta and Bern’s normal

lemma [1, Lemma 7] states that the edges of the Voronoi diagram of {u, v, w, p} make angles of at

most arcsin µ
√

3
1−µ < π

3 with vector (0, 0, 0, 1). As a consequence, any Voronoi 2-face f incident to e

3They lie at least ε away from p0, and hence at least ε − δ away from (0, 0, 0, ∆).

9

Good news [Cheng et al. 2005]

If τ nor its faces are slivers, there exist a constant ak
(depending on σ0) s. t. sin ∠(aff(τ),Tp) ≤ akε

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Tangent space approximation
M is a smooth k -dimensional manifold embedded in Rd

Bad news

The Delaunay triangulation restricted to M may be a bad
approximation of the manifold even if the sample is dense

u

vw

p0 c0

t = ∆

x

y

z

t

p

t = ∆ + δ/2

c

x

y

z

t

Figure 3: Left: tetrahedron [u, v, w, p0] and its dual Voronoi edge. Right: after perturbation of S.

c0 is the center of a Delaunay ball of radius greater than 1, we can assume that δ is small enough
for the points of L0 to remain on S. Let c = (1

2 , 1
2 , δ

2 , ∆ + δ
2) be at the top of the bump. Since

the points of L0 are located in hyperplane t = ∆ in the vicinity of [u, v, w, p0], c is equidistant to
u, v, w, p0, and closer to these points than to any other point of L0. This implies that the open ball
Bc = B(c, ‖c− u‖) contains no point of L0 and has u, v, w, p0 on its bounding sphere. Hence, Bc is
a Delaunay ball circumscribing [u, v, w, p0], and c belongs to the Voronoi edge dual to [u, v, w, p0].
Moreover, since u, v, w and (0, 0, 0, ∆) are cocircular, ∂Bc passes also through (0, 0, 0, ∆).

We deform S further by creating another small bump, at point (0, 0, 0, ∆) this time, so as to
move this point by δ into the t-dimension, outward the hypercube. Let p = (0, 0, 0, ∆ + δ) be the
top of the bump — see Figure 3 (right). A quick computation shows that ‖c− p‖ = ‖c− u‖, which
implies that p ∈ ∂Bc. Here again, by choosing δ sufficiently small, we can make sure that the radius
of curvature of the bump is at least ∆

2 , which means that the reach of the deformed hypersurface
is still ∆

2 = 1
µ . We can also make sure that the bump of p is disjoint from the bump of c since

‖c− p‖ > 1√
2
, and that the points of L0 \ {p0} remain3 on S. It follows that Bc is empty of points

of L, where L is defined by L = L0 ∪{p}\{p0}. Since ∂Bc contains u, v, w, p, Bc is a Delaunay ball
circumscribing [u, v, w, p]. Equivalently, c belongs to the Voronoi edge e dual to [u, v, w, p]. Note
also that L is an (ε − δ)-sparse (2ε + δ)-sample of S.

Since [u, v, w, p] is included in hyperplane z = 0, its dual Voronoi edge e is aligned with (0, 0, 1, 0),
as illustrated in Figure 3 (right). This edge is incident to four Voronoi 2-faces, which are dual to the
four facets of [u, v, w, p]. These 2-faces can be seen as extrusions, into the z-dimension (0, 0, 1, 0),
of the edges of the Voronoi diagram of {u, v, w, p} inside hyperplane z = 0. Among these Voronoi
edges, two lie above the plane t = ∆ + δ

2 , and two lie below. As a result, in R4, two Voronoi

2-faces incident to e lie above hyperplane t = ∆ + δ
2 . These two Voronoi 2-faces do not intersect

S, except at c and possibly at the bump of p. Now, the circumradii of the facets of [u, v, w, p] are

at most ‖c − u‖ =
√

1+δ2√
2

< µ rch(S), thus, inside hyperplane z = 0, Amenta and Bern’s normal

lemma [1, Lemma 7] states that the edges of the Voronoi diagram of {u, v, w, p} make angles of at

most arcsin µ
√

3
1−µ < π

3 with vector (0, 0, 0, 1). As a consequence, any Voronoi 2-face f incident to e

3They lie at least ε away from p0, and hence at least ε − δ away from (0, 0, 0, ∆).

9

Good news [Cheng et al. 2005]

If τ nor its faces are slivers, there exist a constant ak
(depending on σ0) s. t. sin ∠(aff(τ),Tp) ≤ akε

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Slivers in higher dimensions

Sliver
Given constants ρ0 and σ0,
a j-simplex τ is called a sliver if

1. j > 2
2. ρτ = Rτ

Lτ ≤ ρ0

3. στ = vol(τ)/Lj
τ < σ0

4. ∀σ ⊂ τ , ρσ ≤ ρ0 and σσ ≥ σ0

Rτ = radius of the circ. ball
Lτ = length of the shortest edge of τ

RτLτ

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Slivers are fragile

A small perturbation of one of its vertices may lead to

I a negative volume vol(τ) is small

I a big circumscribing sphere

In both cases, the sliver is removed from DT

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Two certified techniques to remove slivers

I Weight the vertices, replace the Delaunay triangulation by
the regular triangulation of the WP [Cheng et al. 2000]

I the points are not moved
I must be used as a postprocessing step on the mesh

I Perturbe the vertices [Li 2001]

I can be used during Delaunay refinement

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Weighted Delaunay triangulation
Weight assignment

pi → ω(pi), ω = (ω(p1), ..., ω(pn))

Weighted Voronoi diagram

Vω(pi) = {x : ‖x − pi‖2 − ω2(pi) ≤ ‖x − pj‖2 − ω2(pj)}

Weighting a vertex

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Weighted Delaunay triangulation
Weight assignment

pi → ω(pi), ω = (ω(p1), ..., ω(pn))

Weighted Voronoi diagram

Vω(pi) = {x : ‖x − pi‖2 − ω2(pi) ≤ ‖x − pj‖2 − ω2(pj)}

Weighting a vertex

Winter School on Algorithmic Geometry Smooth manifold reconstruction

A continuation approach to
manifold reconstruction

I Can we compute Delω|S(P) without computing Del(P) ?

I Can we avoid subdividing the embedding space and
obtained an intrinsic complexity ?

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Intrinsic complexity

Basic assumption in manifold learning

Data live in a low-dimensional manifold embedded in a
high-dimensional space

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Example 1 : human face images

head = sphere
camera : 3 dof
light source : 2 dof

An image with N pixels→ a point in RN

It is impossible to triangulate points in such a huge space !

Example 2 : points with unit normals

I (pi ,ni) ∈ N = R3 × S2

I The surface to be reconstructed is a 2-manifold embedded
in N

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Example 1 : human face images

head = sphere
camera : 3 dof
light source : 2 dof

An image with N pixels→ a point in RN

It is impossible to triangulate points in such a huge space !

Example 2 : points with unit normals

I (pi ,ni) ∈ N = R3 × S2

I The surface to be reconstructed is a 2-manifold embedded
in N

Winter School on Algorithmic Geometry Smooth manifold reconstruction

The tangential Delaunay complex
[Freedman 2002], [B.& Flottoto 2004], [B.& Ghosh 2009]

[Cheng, Dey, Ramos 2005]

p

Tp

M

star(p)

1. Construct the star of p ∈ P in the
Delaunay triangulation DelTp(P) of
P restricted to Tp

2. DelTM(P) : the set of stars of p,
p ∈ P

+ DelTM(P) ⊂ Del(P)

+ star(p), DelTp (P) and therefore DelTM(P) can be computed
without computing Del(P)

– DelTM(P) is not necessarily a triangulated manifold

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Construction of DelTp(P)

Given a k -flat H, Vor(P) ∩ H is a weighted Voronoi diagram

pi

pj

x

p′
i

p′
j

H

‖x − pi‖2 ≤ ‖x − pj‖2

⇔ ‖x −p′
i ‖2−‖pi −p′

i ‖2 ≤ ‖x −p′
i ‖2−‖pj −p′

j ‖2

Corollary: construction of DelTp

1. project P onto Tp which requires O(dn) time
2. construct star(p′i) in Delω(p′i) ⊂ Tpi where ω(pi) = ‖pi − p′i‖
3. star(pi)

1−1↔ star(p′i)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Construction of DelTp(P)

Given a k -flat H, Vor(P) ∩ H is a weighted Voronoi diagram

pi

pj

x

p′
i

p′
j

H

‖x − pi‖2 ≤ ‖x − pj‖2

⇔ ‖x −p′
i ‖2−‖pi −p′

i ‖2 ≤ ‖x −p′
i ‖2−‖pj −p′

j ‖2

Corollary: construction of DelTp

1. project P onto Tp which requires O(dn) time
2. construct star(p′i) in Delω(p′i) ⊂ Tpi where ω(pi) = ‖pi − p′i‖
3. star(pi)

1−1↔ star(p′i)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Inconsistent configurations φ = [p1, ...,pk+2]

Definition
∃pi ,pj ,pl ∈ φ s.t.

1. τ = φ \ {pl} ∈ star(pi)
6∈ star(pj)

2. τ nor its faces are slivers

3. Vor(pl) is the first Voronoi cell
intersected by ~cicj

pi

cpi

cpj

pj

Tpi

Tpj

c

∈ Vor(pl)

∈ Vor(pipj)

M

∈ Vor(pipjpl)

Observations

I ci and cj are close if pi is close to pj and N(τ) ≈ N(pi)
⇒ φ is a (k + 1)-sliver

I φ ∈ Del(P)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Inconsistent configurations φ = [p1, ...,pk+2]

Definition
∃pi ,pj ,pl ∈ φ s.t.

1. τ = φ \ {pl} ∈ star(pi)
6∈ star(pj)

2. τ nor its faces are slivers

3. Vor(pl) is the first Voronoi cell
intersected by ~cicj

pi

cpi

cpj

pj

Tpi

Tpj

c

∈ Vor(pl)

∈ Vor(pipj)

M

∈ Vor(pipjpl)

Observations

I ci and cj are close if pi is close to pj and N(τ) ≈ N(pi)
⇒ φ is a (k + 1)-sliver

I φ ∈ Del(P)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Inconsistency removal by weighting P

ω = weight assignment

IFω : set of faces of the inconsistent configurations

1. For j = 1..k , for i = 1..n

weight pi so as to remove all slivers incident to pi
that are in DelωTM(P) and IFω

2. for i = 1..n

weight pi so as to remove all inconsistent configurations

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Basic operations

I Compute the tangent space at a point of M
I Project a point on a k -flat
I Maintain the star of a point when varying its weight
I No d-dimensional data structure

Properties of the output

If P is a sparse (not necessarily uniform) ε-sample, upon
termination, the stars are coherent, the simplices are small and
they locally approximate the tangent space of M

I DelTM(P) is a PL simplicial k -manifold
I isotopic and close to M

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Basic operations

I Compute the tangent space at a point of M
I Project a point on a k -flat
I Maintain the star of a point when varying its weight
I No d-dimensional data structure

Properties of the output

If P is a sparse (not necessarily uniform) ε-sample, upon
termination, the stars are coherent, the simplices are small and
they locally approximate the tangent space of M

I DelTM(P) is a PL simplicial k -manifold
I isotopic and close to M

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Dimension of S?

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Witness complex and multiscale reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Relaxing the definition of restricted Delaunay
triangulation [Carlsson & de Silva 2004]

• witnesses : W ⊂M (not necessarily finite)
• landmarks : a finite set of points L ⊂W

I τ is a weak Delaunay simplex iff
I τ ⊂ L
I ∀σ ⊆ τ , ∃ w ∈W closer to σ than to L \ σ,

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Weak Delaunay (witness) complex Wit(L,W)

the collection of all weak Delaunay simplices σ,
i.e. σ and all its faces have a witness in W with respect to L

Easy to compute (only distance comparisons)

Clearly, Del(L) ⊂Wit(L,Rd)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Weak Delaunay (witness) complex Wit(L,W)

the collection of all weak Delaunay simplices σ,
i.e. σ and all its faces have a witness in W with respect to L

Easy to compute (only distance comparisons)

Clearly, Del(L) ⊂Wit(L,Rd)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Weak Delaunay (witness) complex Wit(L,W)

the collection of all weak Delaunay simplices σ,
i.e. σ and all its faces have a witness in W with respect to L

Easy to compute (only distance comparisons)

Clearly, Del(L) ⊂Wit(L,Rd)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Weak-witness theorem [de Silva 2008]

WW-Theorem : ∀Ω ⊂ Rd , Wit(L,Ω) ⊂Wit(L,Rd) ⊂ Del(L)

Corollaries

I Wit(L,Rd) = Del(L)

I Wit(L,Ω) is embedded in Rd

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Proof of the Weak Witness theorem

τ = [p0, ...,pk] is a k -simplex of Wit(L)
witnessed by a ball Wτ , i.e. Wτ ∩ L = τ

We prove that τ ∈ Del(L) by a double induction on

I k
I |Sτ ∩ τ | (Sτ = ∂Wτ)

Clearly true for k = 0 and |Sτ ∩ τ | = k + 1

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Proof of the weak witness theorem

Wτ

Dτ

τ

σ Wτ

Dτ

τ

σ

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Case of sampled domains : bad news
P a finite set of points ⊂ Ω, L ⊂ P

Wit(L,P) 6= Del(L,Ω), even if P is a dense sample of Ω

a
b

Vor(a, b)

[ab] ∈Wit(L,P) ⇔ ∃p ∈ P, Vor2(a,b) ∩ P 6= ∅

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Case of sampled surfaces : good news
P a uniform ε-sample of a surface S ⊂ R3

Pξ the set of balls B(p, ξ lfs(S)), p ∈ P
L ⊂ P a uniform λ-sample of P (landmarks)

if ξ ≥ ε, S ⊂ Pξ and

Del(L,S) ⊂ Wit(L,Pξ) ⊂ Del(L)
⇑ ⇑

ξ ≥ ε WW-Th

Although Wit(L,Pξ) may not be a triangulated surface, all its
facets are close (both in position and orientation) to S, which
makes surface extraction easy

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Case of sampled manifolds : good news
[B.,Guibas, Oudot 2008]

P a uniform ε-sample of a surface S ⊂ R3

Pξ the set of balls B(p, ξ lfs(S)), p ∈ P
L ⊂ P a uniform λ-sample of P (landmarks)

∃ ξ1, ξ2 and a weight assignment ω s.t.

Delω(L,S) ⊂ Witω(L,Pξ1) ⊂ Coconω(P) ⊂ Witω(L,Pξ2)
‖ (if no sliver)

Delω(L,S) [Cheng et al. 2005]

By weighting the points of L, we can remove slivers from
Wit(L,Pξ2) and obtain a triangulated manifold ≈ S

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Theorem [B., Guibas, Oudot 2007]

If ξ1 ≥ ε and 30ε ≤ λ� lfs(S), one can compute a weight
assignment ω s.t. Witω(L,Pξ1) = Delω(L,S) ≈ S

Multiscale reconstruction
I In practice, ε and lfs(S) are unknown

I There may exist S1...Sl s.t. W is an
εi -sample of Si

I Generate a monotonic sequence of samples L ⊆W

I As long as 30εi ≤ λ ≤ lfs(Si+1), Witω(L,Pξ) ≈ Si

I This can be detected by looking for plateaus in the diagram of
Betti numbers of Witω(L,W ξ)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Theorem [B., Guibas, Oudot 2007]

If ξ1 ≥ ε and 30ε ≤ λ� lfs(S), one can compute a weight
assignment ω s.t. Witω(L,Pξ1) = Delω(L,S) ≈ S

Multiscale reconstruction
I In practice, ε and lfs(S) are unknown

I There may exist S1...Sl s.t. W is an
εi -sample of Si

I Generate a monotonic sequence of samples L ⊆W

I As long as 30εi ≤ λ ≤ lfs(Si+1), Witω(L,Pξ) ≈ Si

I This can be detected by looking for plateaus in the diagram of
Betti numbers of Witω(L,W ξ)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Theorem [B., Guibas, Oudot 2007]

If ξ1 ≥ ε and 30ε ≤ λ� lfs(S), one can compute a weight
assignment ω s.t. Witω(L,Pξ1) = Delω(L,S) ≈ S

Multiscale reconstruction
I In practice, ε and lfs(S) are unknown

I There may exist S1...Sl s.t. W is an
εi -sample of Si

I Generate a monotonic sequence of samples L ⊆W

I As long as 30εi ≤ λ ≤ lfs(Si+1), Witω(L,Pξ) ≈ Si

I This can be detected by looking for plateaus in the diagram of
Betti numbers of Witω(L,W ξ)

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Manifold reconstruction algorithm
Greedy max min algorithm
maintain Witω(L,Pξ1) and Witω(L,Pξ2)
ξ1 = λ/30, ξ2 = 3λ

INIT L := a point of P
REPEAT L← p = the point of P \ L furthest

from L
compute ω(p) so as to remove slivers
in Witω(L,Pξ2)
update Wit(L,Pξ1) and Wit(L,Pξ2)

UNTIL L = P

Update Wit(L,pξ)
maintain the k -order Vor(L), k ≤ d + 1 (The curse of dim. is back)

[p1...pk] ∈ Wit(L,Pξ)⇔ ∃w ∈ P, Vork (p1...pk) ∩ B(p, ξ) 6= ∅

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Manifold reconstruction algorithm
Greedy max min algorithm
maintain Witω(L,Pξ1) and Witω(L,Pξ2)
ξ1 = λ/30, ξ2 = 3λ

INIT L := a point of P
REPEAT L← p = the point of P \ L furthest

from L
compute ω(p) so as to remove slivers
in Witω(L,Pξ2)
update Wit(L,Pξ1) and Wit(L,Pξ2)

UNTIL L = P

Update Wit(L,pξ)
maintain the k -order Vor(L), k ≤ d + 1 (The curse of dim. is back)

[p1...pk] ∈ Wit(L,Pξ)⇔ ∃w ∈ P, Vork (p1...pk) ∩ B(p, ξ) 6= ∅

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Multi-scale reconstruction

I maintain the Betti numbers of Ŝ on the fly
I detect the plateaus
I return the corresponding Ŝ that are valid approximations of
S (given the sample P) at different scales

Remarks

I P is not required to be sparse
I lfs(S) needs not to be known

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Multi-scale reconstruction

I maintain the Betti numbers of Ŝ on the fly
I detect the plateaus
I return the corresponding Ŝ that are valid approximations of
S (given the sample P) at different scales

Remarks

I P is not required to be sparse
I lfs(S) needs not to be known

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

Winter School on Algorithmic Geometry Smooth manifold reconstruction

