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Outline 

Part I - Camera geometry – image formation 
•  Perspective projection 
•  Affine projection 
•  Projection of planes 

Part II - Image matching and recognition with local features 
•  Correspondence 
•  Semi-local and global geometric relations 
•  Robust estimation – RANSAC and Hough Transform 



Motivation: Stitching panoramas 



Feature-based alignment outline 
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Feature-based alignment outline 

Extract features 
Compute putative matches 
Loop: 

•  Hypothesize transformation T (small group of putative 
matches that are related by T) 

•  Verify transformation (search for other matches 
consistent with T) 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 

Affine 

Projective 
(homography) 

Why these transformations ??? 



Camera geometry 



Images are two-dimensional patterns of brightness values. 

They are formed by the projection of 3D objects. 



Animal eye: a looonnng time ago. 

Pinhole perspective projection: Brunelleschi, XVth Century. 
Camera obscura: XVIth Century. 

Photographic camera: 
Niepce, 1816. 





Massaccio’s Trinity, 1425 

Pompei painting, 2000 years ago. 

Van Eyk, XIVth Century 

Brunelleschi, 1415 



Pinhole Perspective Equation 

NOTE: z is always negative.. 

Camera center 

Image plane 
(retina) 

Principal axis 

Camera co-
ordinate system 
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Affine projection models: Weak perspective projection 

is the magnification. 

When the scene relief is small compared its distance from the 
Camera, m can be taken constant: weak perspective projection. 



Affine projection models: Orthographic projection 

When the camera is at a 
(roughly constant) distance 
from the scene, take m=1. 



Strong perspective:  
Angles are not preserved 
The projections of parallel lines intersect at one point 



From Zisserman & Hartley 



Strong perspective:  
Angles are not preserved 
The projections of parallel 
lines intersect at one point 

Weak perspective:  
Angles are better preserved 
The projections of parallel lines 
are (almost) parallel 



Beyond pinhole camera model: Geometric Distortion 



Rectification 



Radial Distortion Model 



Perspective 
Projection 

x,y: World coordinates 
x’,y’: Image coordinates 
f: pinhole-to-retina distance 

Weak-Perspective 
Projection (Affine) 

x,y: World coordinates 
x’,y’: Image coordinates 
m: magnification 

Orthographic 
Projection (Affine) 

x,y: World coordinates 
x’,y’: Image coordinates 

Common distortion 
model 

x’,y’: Ideal image 
coordinates 
x’’,y’’: Actual image 
coordinates 



Cameras and their parameters 

Images from M. Pollefeys 



The Intrinsic Parameters of a Camera 

Normalized Image 
Coordinates 

Physical Image Coordinates  

Units: 
k,l : pixel/m 
f  : m 
α,β : pixel



The Intrinsic Parameters of a Camera 

Calibration Matrix 

The Perspective 
Projection Equation 



Notation 

Euclidean Geometry 



Recall:  
Coordinate Changes and Rigid Transformations 



The Extrinsic Parameters of a Camera 
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Explicit Form of the Projection Matrix 

Note: 

M is only defined up to scale in this setting!! 



Weak perspective (affine) camera 
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Re-cap: imaging and camera geometry 
(with a slight change of notation) 

•   perspective projection 

•   camera centre, image point and 
scene point are collinear 

•   an image point back projects to a 
ray in 3-space 

•   depth of the scene point is 
unknown camera 

centre image plane 

image 
point 

scene 
point 

C 

X 
x 

Slide credit: A. Zisserman 



Slide credit: A. Zisserman 



How a “scene plane” projects into an image? 



Plane projective transformations 

Slide credit: A. Zisserman 



Projective transformations continued 

•  This is the most general transformation between the world 
and image plane under imaging by a perspective camera. 

•  It is often only the 3 x 3 form of the matrix that is important in 
establishing properties of this transformation. 

•  A projective transformation is also called a ``homography'' 
and a ``collineation''. 

•   H has 8 degrees of freedom. 

Slide credit: A. Zisserman 



Planes under affine projection 
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Points on a world plane map with a 2D affine geometric 
transformation (6 parameters) 



•  Affine projections induce affine 
transformations from planes  
onto their images. 

•  Perspective projections 
induce projective 
transformations from planes 
onto their images. 

Summary 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 

Affine 

Projective 
(homography) 



When is homography a valid transformation 
model? 



Case I: Plane projective transformations 

Slide credit: A. Zisserman 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 

•  The two image planes are related by a homography H 

•  H depends only on the relation between the image 
planes and camera centre, C, not on the 3D structure  

P = K [ I | 0 ]   P’ = K’ [ R | 0 ] 

H = K’ R K^(-1) 

Slide credit: A. Zisserman 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 
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Slide credit: A. Zisserman 





Outline – the rest of the lecture 

Part 2. Image matching and recognition with local features 
 Correspondence 
 Semi-local and global geometric relations 
 Robust estimation – RANSAC and Hough Transform 



Image matching and recognition with local features 

The goal: establish correspondence between two or more 
images 

Image points x and x’ are in correspondence if they are 
projections of the same 3D scene point X. 

Images courtesy A. Zisserman 
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Example I: Wide baseline matching 
Establish correspondence between two (or more) images. 

Useful in visual geometry: Camera calibration, 3D 
reconstruction, Structure and motion estimation, … 

Scale/affine – invariant regions: SIFT, Harris-Laplace, etc. 



Example II: Object recognition 

[D. Lowe, 1999] 

Establish correspondence between the target image and 
(multiple) images in the model database. 

Target 
image 

Model 
database 



Find these landmarks  ...in these images and 1M more 

Example III: Visual search 

Given a query image, find images depicting the same place / 
object in a large unordered image collection. 



Establish correspondence between the query image and all 
images from the database depicting the same object / scene. 

Query image 

Database image(s) 



Why is it difficult? 
Want to establish correspondence despite possibly large 
changes in scale, viewpoint, lighting and partial occlusion 

Viewpoint Scale 

Lighting Occlusion 

… and the image collection can be very large (e.g. 1M images) 



Approach 

Pre-processing (last lecture): 
•  Detect local features. 
•  Extract descriptor for each feature. 

Matching: 
1. Establish tentative (putative) correspondences based on 

local appearance of individual features (their descriptors).  

2. Verify matches based on semi-local / global geometric 
relations. 



Example I: Two images -“Where is the Graffiti?” 

object 



Step 1. Establish tentative correspondence 

Establish tentative correspondences between object model image and target 
image by nearest neighbour matching on SIFT vectors 

128D descriptor 
space 

Model (query) image  Target image  

Need to solve some variant of the “nearest neighbor problem” for all feature 
vectors,                     , in the query image: 

where,                      ,  are features in the target image. 

Can take a long time if many target images are considered. 



Problem with matching on local descriptors alone 

•  too much individual invariance 

•  each region can affine deform independently (by different amounts) 

•  Locally appearance can be ambiguous 

Solution: use semi-local and global spatial relations to verify matches. 



Initial matches 

Nearest-neighbor 
search based on 
appearance descriptors 
alone. 

After spatial 
verification 

Example I: Two images -“Where is the Graffiti?” 



Step 2: Spatial verification (now) 

a. Semi-local constraints 
 Constraints on spatially close-by matches 

b. Global geometric relations 
 Require a consistent global relationship between all 
matches  



Semi-local constraints: Example I. – neighbourhood consensus 

[Schmid&Mohr, PAMI 1997] 



Semi-local constraints: 
Example I. – 
neighbourhood 
consensus 

[Schaffalitzky & 
Zisserman, CIVR 
2004] 

Original images 

Tentative matches 

After neighbourhood consensus 



Semi-local constraints: Example II.  

[Ferrari et al., IJCV 2005] 

Model image 

Matched image 

Matched image 



Geometric verification with global constraints 

•  All matches must be consistent with a global geometric 
relation / transformation. 

•  Need to simultaneously (i) estimate the geometric 
relation / transformation and (ii) the set of consistent 
matches 

Tentative matches Matches consistent with an affine 
transformation 



Epipolar geometry (not considered here) 

In general, two views of a 3D scene are related by the epipolar 
constraint. 

•  A point in one view “generates” an epipolar line in the other view 
•  The corresponding point lies on this line. 

Slide credit: A. Zisserman 

? 

baseline 
epipole C  / C 



Epipolar geometry is a consequence of the coplanarity of the camera 
centres and scene point 

x x  / 

X

C C  / 

The camera centres, corresponding points and scene point lie 
in a single plane, known as the epipolar plane 

Epipolar geometry (not considered here) 

Slide credit: A. Zisserman 



Epipolar geometry (not considered here) 

Algebraically, the epipolar constraint can be expressed as 

where 
•   x, x’ are homogeneous coordinates (3-vectors) of 

corresponding image points. 

•  F is a 3x3, rank 2 homogeneous matrix with 7 degrees of 
freedom, called the fundamental matrix. 

Slide credit: A. Zisserman 
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3D constraint: example (not considered here) 
•  Matches must be consistent with a 3D model 

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03] 

3 (out of 20) images 
used to build the 3D 

model 

Recovered 3D model 

Recovered pose Object recognized in a previously 
unseen pose 



With a given 3D model (set of known X’s) and a set of 
measured image points x, the goal is to find find camera 
matrix P and a set of geometrically consistent 
correspondences  x    X. 

3D constraint: example (not considered here) 

x

X

C 

P 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 

Affine 

Projective 
(homography) 



Example: estimating 2D affine transformation 

•  Simple fitting procedure (linear least squares) 
•  Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 
•  Can be used to initialize fitting for more complex models 



Example: estimating 2D affine transformation 

•  Simple fitting procedure (linear least squares) 
•  Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 
•  Can be used to initialize fitting for more complex models 

Matches consistent with an affine transformation 



Fitting an affine transformation 

Assume we know the correspondences, how do we get the 
transformation? 



Fitting an affine transformation 

Linear system with six unknowns 
Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters 
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Dealing with outliers 

The set of putative matches may contain a high percentage 
(e.g. 90%) of outliers 

How do we fit a geometric transformation to a small subset 
of all possible matches? 

Possible strategies: 
•  RANSAC 
•  Hough transform 



Strategy 1: RANSAC 
RANSAC loop (Fischler & Bolles, 1981): 

•  Randomly select a seed group of matches 

•  Compute transformation from seed group 

•  Find inliers to this transformation 

•  If the number of inliers is sufficiently large, re-compute 
least-squares estimate of transformation on all of the 
inliers 

•  Keep the transformation with the largest number of 
inliers 



Example: Robust line estimation - RANSAC 

Fit a line to 2D data containing outliers 

There are two problems 

1.  a line fit which minimizes perpendicular distance 

2.  a classification into inliers (valid points)  and outliers 
Solution: use robust statistical estimation algorithm RANSAC 

(RANdom Sample Consensus) [Fishler & Bolles, 1981] 
Slide credit: A. Zisserman 



Repeat 
1.  Select random sample of 2 points 
2.  Compute the line through these points 
3.  Measure support (number of points within threshold 

distance of the line) 

Choose the line with the largest number of inliers 
•  Compute least squares fit of line to inliers (regression) 

RANSAC robust line estimation 

Slide credit: A. Zisserman 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Repeat 
1.  Select 3 point to point correspondences 
2.  Compute H (2x2 matrix) + t (2x1) vector for translation  
3.  Measure support (number of inliers within threshold 

distance, i.e. d2
transfer < t) 

Choose the (H,t) with the largest number of inliers 

(Re-estimate (H,t) from all inliers) 

Algorithm summary – RANSAC robust estimation of 
2D affine transformation 



How many samples? 

 Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers  
•  e.g.:  

>  p=0.99  
>  outlier ratio: e 

Source: M. Pollefeys 

Probability a randomly picked 
point is an inlier 

Probability of all points in a 
sample (of size s) are inliers  



How many samples? 

 Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers  
•  e.g.:  

>  p=0.99  
>  outlier ratio: e 

proportion of outliers e 
s 5% 10% 20% 30% 40% 50% 90% 
1 2 2 3 4 5 6 43 
2 2 3 5 7 11 17 458 
3 3 4 7 11 19 35 4603 
4 3 5 9 17 34 72 4.6e4 
5 4 6 12 26 57 146 4.6e5 
6 4 7 16 37 97 293 4.6e6 
7 4 8 20 54 163 588 4.6e7 
8 5 9 26 78 272 1177 4.6e8 

Source: M. Pollefeys 

Probability that all N samples (of 
size s) are corrupted (contain an 
outlier) 

Probability of at least one point 
in a sample (of size s) is an 
outlier 



Example: line fitting 

p = 0.99 
s = ?  
e = ? 

N = ? 

Source: M. Pollefeys 



Example: line fitting 

p = 0.99 
s = 2  
e = 2/10 = 0.2 

N = 5 

proportion of outliers e 
s 5% 10% 20% 30% 40% 50% 90% 
1 2 2 3 4 5 6 43 
2 2 3 5 7 11 17 458 
3 3 4 7 11 19 35 4603 
4 3 5 9 17 34 72 4.6e4 
5 4 6 12 26 57 146 4.6e5 
6 4 7 16 37 97 293 4.6e6 
7 4 8 20 54 163 588 4.6e7 
8 5 9 26 78 272 1177 4.6e8 

Source: M. Pollefeys 

Compare with 
exhaustively trying 
all point pairs: 

= 10*9 / 2 = 45 10 
 2 



1. Reduce the proportion of outliers. 
2. Reduce the sample size  

•  use simpler model (e.g. similarity instead of affine tnf.) 
•  use local information (e.g. a region to region 

correspondence is equivalent to (up to) 3 point to point 
correspondences). 

How to reduce the number of samples needed? 

proportion of outliers e 
s 5% 10% 20% 30% 40% 50% 90% 
1 2 2 3 4 5 6 43 
2 2 3 5 7 11 17 458 
3 3 4 7 11 19 35 4603 
4 3 5 9 17 34 72 4.6e4 
5 4 6 12 26 57 146 4.6e5 
6 4 7 16 37 97 293 4.6e6 
7 4 8 20 54 163 588 4.6e7 
8 5 9 26 78 272 1177 4.6e8 

Number of samples N 

Region to region 
correspondence 



RANSAC (references) 

M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting 
with Applications to Image Analysis and Automated Cartography,” Comm. ACM, 1981 

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., 2004. 

Extensions: 

B. Tordoff and D. Murray, “Guided Sampling and Consensus for Motion Estimation, 
ECCV’03 

D. Nister, “Preemptive RANSAC for Live Structure and Motion Estimation, ICCV’03  

Chum, O.; Matas, J. and Obdrzalek, S.: Enhancing RANSAC by Generalized Model 
Optimization, ACCV’04 

Chum, O.; and Matas, J.: Matching with PROSAC - Progressive Sample Consensus , 
CVPR 2005 

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A.: Object retrieval with large 
vocabularies and fast spatial matching, CVPR’07 

Chum, O. and Matas. J.: Optimal Randomized RANSAC, PAMI’08 



Strategy 2: Hough Transform 

•  Origin: Detection of straight lines in cluttered images 

•  Can be generalized to arbitrary shapes 

•  Can extract feature groupings from cluttered images in 
linear time. 

•  Illustrate on extracting sets of local features consistent 
with a similarity transformation. 



Hough transform for object recognition 
Suppose our features are scale- and rotation-covariant 

•  Then a single feature match provides an alignment hypothesis 
(translation, scale, orientation) 

David G. Lowe. “Distinctive image features from scale-
invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.  

model 
Target image 



Hough transform for object recognition 
Suppose our features are scale- and rotation-covariant 

•  Then a single feature match provides an alignment hypothesis 
(translation, scale, orientation) 

•  Of course, a hypothesis obtained from a single match is unreliable 
•  Solution: Coarsely quantize the transformation space. Let each 

match vote for its hypothesis in the quantized space. 

model 

David G. Lowe. “Distinctive image features from scale-
invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.  



Basic algorithm outline 
1.  Initialize accumulator H  

to all zeros 
2.  For each tentative match  

     compute transformation  
           hypothesis: tx, ty, s, θ  
     H(tx,ty,s,θ) = H(tx,ty,s,θ) + 1 

    end 
end 

3.  Find all bins (tx,ty,s,θ) where H(tx,ty,s,θ) has at least 
three votes 

•  Correct matches will consistently vote for the same 
transformation while mismatches will spread votes. 

•  Cost: Linear scan through the matches (step 2), 
followed by a linear scan through the accumulator 
(step 3). 

tx 

ty  

H: 4D-accumulator array 
(only 2-d shown here) 



Hough transform details (D. Lowe’s system) 

Training phase: For each model feature, record 2D 
location, scale, and orientation of model (relative to 
normalized feature frame) 

Test phase: Let each match between a test and a model 
feature vote in a 4D Hough space 
•  Use broad bin sizes of 30 degrees for orientation, a factor 

of 2 for scale, and 0.25 times image size for location 
•  Vote for two closest bins in each dimension 

Find all bins with at least three votes and perform 
geometric verification  
•  Estimate least squares affine transformation  
•  Use stricter thresholds on transformation residual 
•  Search for additional features that agree with the 

alignment 



Hough transform in object recognition (references) 

 P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 

D. Lowe, “Distinctive image features from scale-invariant keypoints”, IJCV 60 (2), 2004. 

H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency 
for large scale image search, ECCV’2008 

Extensions (object category detection): 

B. Leibe, A. Leonardis, and B. Schiele., Combined Object Categorization and 
Segmentation with an Implicit Shape Model, in ECCV'04 Workshop on Statistical 
Learning in Computer Vision, Prague, May 2004. 

S. Maji and J. Malik, Object Detection Using a Max-Margin Hough Tranform, CVPR’2009 

A.  Lehmann, B. Leibe, L. Van Gool. Fast PRISM: Branch and Bound Hough Transform  
for Object Class Detection, IJCV (to appear), 2010. 

O. Barinova, V. Lempitsky, P. Kohli, On the Detection of Multiple Object Instances using 
Hough Transforms, CVPR, 2010 



Slide credit: K. Grauman, B. Leibe 

Comparison 

Hough Transform 
Advantages 

•  Can handle high percentage of 
outliers (>95%) 

•  Extracts groupings from clutter in 
linear time 

Disadvantages 
•  Quantization issues 
•  Only practical for small number of 

dimensions (up to 4) 

Improvements available 
•  Probabilistic Extensions 
•  Continuous Voting Space 
•  Can be generalized to arbitrary 

shapes and objects 

RANSAC 
Advantages 

•  General method suited to large range 
of problems 

•  Easy to implement 
•  “Independent” of number of dimensions 

Disadvantages 
•  Basic version only handles moderate 

number of outliers (<50%) 

Many variants available, e.g. 
•  PROSAC: Progressive RANSAC 

[Chum05] 

•  Preemptive RANSAC [Nister05] [Leibe08] 



Beyond affine transformations 

What is the transformation between two views of a planar 
surface? 

What is the transformation between images from two 
cameras that share the same center? 



Beyond affine transformations 

Homography: plane projective transformation 
(transformation taking a quad to another arbitrary quad) 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 

•  The two image planes are related by a homography H 

•  H depends only on the relation between the image 
planes and camera centre, C, not on the 3D structure  

P = K [ I | 0 ]   P’ = K’ [ R | 0 ] 

H = K’ R K^(-1) 



Fitting a homography 

Recall: homogenenous coordinates 

Converting to homogenenous 
image coordinates 

Converting from homogenenous 
image coordinates 



Fitting a homography 

Recall: homogenenous coordinates 

Equation for homography: 

Converting to homogenenous 
image coordinates 

Converting from homogenenous 
image coordinates 
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Fitting a homography 

Equation for homography: 
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3 equations, only 2 linearly  
independent 

9 entries, 8 degrees of freedom 
(scale is arbitrary) 



Direct linear transform 

H has 8 degrees of freedom (9 parameters, but scale is 
arbitrary) 

One match gives us two linearly independent equations 
Four matches needed for a minimal solution (null space 

of 8x9 matrix) 
More than four: homogeneous least squares 



Application: Panorama stitching 

Images courtesy of A. Zisserman.  



Recognizing panoramas 

M. Brown and D. Lowe,  “Recognizing panoramas”, ICCV 2003.  

Given contents of a camera memory card, automatically figure out 
which pictures go together and stitch them together into panoramas 



1. Estimate homography (RANSAC) 



1. Estimate homography (RANSAC) 



1. Estimate homography (RANSAC) 



2. Find connected sets of images 



2. Find connected sets of images 



2. Find connected sets of images 



3. Stitch and blend the panoramas 



Results 



M. Brown, D. Lowe, B. Hearn, J. Beis 


