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What we would like to be able to do...

* Visual scene understanding
 What is in the image and where

Ground: Gravel ™
e N 2

* Object categories, identities, properties, activities, relations, ...



Recognition Tasks

* Image Classification N
: : [, S — .
— Does the image contain an aeroplane? ==& .=

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

* Object Class Segmentation

— Which pixels are part of an aeroplane
(if any)?




Things vs. Stuff

Thing (n): An object with a
specific size and shape.

Ted Adelson, Forsyth et al. 1996.

Stuff (n): Material defined by a
homogeneous or repetitive pattern
of fine-scale properties, but has
no specific or distinctive spatial
extent or shape.

Slide: Geremy Heitz



Recognition Task

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

e Challenges

— Imaging factors e.g. lighting, pose,
occlusion, clutter

— Intra-class variation

« Compared to Classification
— Detailed prediction e.g. bounding box
— Location usually provided for training




Challenges: Scale




Challenges: Background Clutter




Challenges: Occlusion and truncation




Challenges: Intra-class variation




Object Category Recognition by Learning

e Difficult to define model of a category. Instead, learn from
example images




Level of Supervision for Learning

Image-level label

Bounding box




Preview of typical results

aeroplane bicycle

car cow

horse motorbike



Class of model: Pictorial Structure

 Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LEFT [ SV

2. structure (configuration of parts)

 Dates back to Fischler & Elschlager 1973

MOUTH

Is this complexity of representation necessary ?

Which features?



Restrict deformations




Problem of background clutter

e Use a sub-window
— At correct position, no clutter is present
— Slide window to detect object
— Change size of window to search over scale




Outline

. Sliding window detectors

. Features and adding spatial information

. Histogram of Oriented Gradients (HOG)

. Two state of the art algorithms and PASCAL VOC

. The future and challenges
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Outline

Sliding window detectors

o Start: feature/classifier agnostic
« Method

 Problems/limitations

Features and adding spatial information
Histogram of Oriented Gradients (HOG)

Two state of the art algorithms and PASCAL VOC

The future and challenges



Detection by Classification

« Basic component: binary classifier
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Car/non-car
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Classifier

J

!

NoO,
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Detection by Classification

» Detect objects in clutter by search
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 Sliding window: exhaustive search over position and scale



Detection by Classification

» Detect objects in clutter by search
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Detection by Classification

» Detect objects in clutter by search
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Car/non-car
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e Sliding window: exhaustive search over position and scale
(can use same size window over a spatial pyramid of images)



Window (Image) Classification

Training Data

~ ~
Feature

Extraction
" Y

Classifier

- Fx) Y

" !
Car/Non-car
P(c|x) < F(x)

 Features usually engineered
e Classifier learnt from data



Problems with sliding windows ...

e aspect ratio

e granularity (finite grid)

e partial occlusion

e multiple responses

See recent work by

* Christoph Lampert et al CVPR 08, ECCV 08




Outline

. Sliding window detectors

. Features and adding spatial information

 Bag of visual word (BoW) models
« Beyond BoW [: Constellation and ISM models
« Beyond BoW II: Grids and spatial pyramids

. Histogram of Oriented Gradients (HOG)
. Two state of the art algorithms and PASCAL VOC

. The future and challenges



» Detect affine invariant local features (e.g.
affine-Harris)

* Represent by high-dimensional
descriptors, e.g. 128-D for SIFT

e How to summarize sliding window content in
a fixed-length vector for classification?

1. Map descriptors onto a common
vocabulary of visual words

2. Represent image as a histogram over visual
words — a bag of words




Local region descriptors and visual words
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* Normalize regions to fixed size and shape

» Describe each region by a SIFT descriptor

» Vector quantize into visual words, e.g. using k-means

NB: aff. detectors/SIFT/visual words originally for view point invariant matching



Visual Words

Local Descriptors
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Example Visual Words




Intuition

Visual Vocabulary

 Visual words represent “iconic” image fragments
» Feature detectors and SIFT give invariance to local rotation and scale
 Discarding spatial information gives configuration invariance




Learning from positive ROl examples

l -Bag of Words l
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Sliding window detector

e Classifier: SVM with linear kernel

« BOW representation for ROI

-

Example detections for dog

Lampert et al CVPR 08



Discussion: ROl as a Bag of Visual Words

e Advantages

— No explicit modelling of spatial information =
high level of invariance to position and
orientation in image

— Fixed length vector = standard machine
learning methods applicable

e Disadvantages

— No explicit modelling of spatial information =
less discriminative power

— Inferior to state of the art performance




Beyond BOW I: Pictorial Structure

« Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LENT Y

2. structure (configuration of parts)

 Dates back to Fischler & Elschlager 1973

MOUTH

Two approaches that have investigated this spring like model:
» Constellation model

 Implicit shape model



Spatial Models Considered

Fully connected shape

e.g. Constellation Model

Parts fully connected
Recognition complexity: O(NP)
Method: Exhaustive search

“Star” shape model

e.g. ISM

Parts mutually independent
Recognition complexity: O(NP)
Method: Gen. Hough Transform



Constellation model

Fergus, Perona & Zisserman,CVPR 03

 Explicit structure model — Joint Gaussian over all
part positions

 Part detector determines position and scale
e Simultaneous learning of parts and structure
e Learn from images alone using EM algorithm

Given detections: learn a
six part model by
optimizing part and
configuration similarity




Example — Learnt Motorbike Model

Samples from appearance model Shape model

Part 1 Det: 5x10-18
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Recognized Motorbikes
| Shape model

30+

10 0/99
% O

m 8 0.75

40— . . . . . . . . . "
50 40 30 20 10 0 10 20 30 40 50

Part 1 Det: 5x10-18

lﬂ 'Y IEY R E ”
a” “W@ - ! G A -e;'-;.
lﬂmunﬁnulga

t;:.
Backgrou nd Det 5x10-19
. "" “’ : E
) - |
i el ‘

} PUCH - | -
. e

position of object determined



Airplanes

0ok Airplane shape model

20+
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Spotted cats

Spotted cat shape model
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Discussion: Constellation Model

* Advantages
— Works well for many different object categories

— Can adapt well to categories where
« Shape is more important
« Appearance is more important

— Everything is learned from training data
— Weakly-supervised training possible

e Disadvantages
— Model contains many parameters that need to be estimated
— Cost increases exponentially with increasing number of parameters
= Fully connected model restricted to small number of parts.



Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

e Basic ideas o
— Learn an appearance codebook (%) (%)
— Learn a star-topology structural model (%) o (%)

* Features are considered independent given object centre

« Algorithm: probabilistic Generalized Hough Transform
Good engineering:
— Soft assignment
— Probabilistic voting
— Continuous Hough space



Codebook Representation

» Extraction of local object features
— Interest Points (e.g. Harris detector)
— Sparse representation of the object appearance

e Collect features from whole training set

e Example:
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Leibe & Schiele 03/04: Generalized Hough Transform

« Learning: for every cluster, store possible “occurrences”

* Recognition: for new image, let the matched patches vote for possible object
positions




Leibe & Schiele 03/04: Generalized Hough Transform

Interest Points Matched Codebook
Entries




Scale Voting: Efficient Computation
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Detection Results

e Qualitative Performance
— Recognizes different kinds of cars
— Robust to clutter, occlusion, low contrast, noise




Discussion: ISM and related models

Advantages

» Scale and rotation invariance
can be built into the
representation from the start

* Relatively cheap to learn and
test (inference)

» Works well for many different
object categories

* Max-margin extensions
possible, Maji & Malik, CVPR09

Disadvantages

* Requires searching for modes in the Hough space

» Similar to sliding window in this respect

* Is such a degree of invariance required? (many objects are horizontal)



Beyond BOW IlI: Grids and spatial pyramids

Start from BoW for ROI

* no spatial information recorded

« sliding window detector

l Bag of Words l
Illll I|||I
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[ ] Feature Vector [ ]



Adding Spatial Information to Bag of Words

Bag of Words

, ... |
- _— _—

\u/ Concatenate \u/

[ ] Feature Vector [ ]

Keeps fixed length feature vector for a window

[Fergus et al, 2005]



Tiling defines (records) the spatial correspondence of the words

J

e parameter: number of tiles
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If codebook has V visual words, then representation has dimension 4V
Fergus et al ICCV 05



Spatial Pyramid — represent correspondence
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 As in scene/image classification can use pyramid kernel

[Grauman & Darrell, 2005]

[Lazebnik et al, 2006]



Dense Visual Words

]

« Why extract only sparse image
fragments?

 Good where lots of invariance
IS needed, but not relevant to
sliding window detection?

» Extract dense visual words on an overlapping grid

[Luong & Malik, 1999]

: Quantize [Varma & Zisserman, 2003]
- | —» Word [Vogel & Schiele, 2004]
. [Jurie & Triggs, 2005]

[Fei-Fei & Perona, 2005]
Patch / SIFT [Bosch et al, 2006]

* More “detall” at the expense of invariance
e Pyramid histogram of visual words (PHOW)



Outline

. Sliding window detectors
. Features and adding spatial information

. Histogram of Oriented Gradients + linear SVM classifier

« Dalal & Triggs pedestrian detector
« HOG and history

 Training an object detector

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Dalal & Triggs CVPR 2005 Pedestrian
detection

* Objective: detect (localize) standing humans in an image
« sliding window classifier

e train a binary classifier on whether a window contains a
standing person or not

» Histogram of Oriented Gradients (HOG) feature

e although HOG + SVM originally introduced for pedestrians
has been used very successfully for many object categories



Feature: Histogram of Oriented
Gradients (HOG)

_ dominant
Image direction HOG

o tile 64 x 128 pixel window into 8 x 8 pixel cells

» each cell represented by histogram over 8
orientation bins (i.e. angles in range 0-180 degrees)

frequency

orientation



Histogram of Oriented Gradients (HOG) continued

Orientation Voting
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* Adds a second level of overlapping spatial bins re-
normalizing orientation histograms over a larger spatial area

* Feature vector dimension (approx) = 16 x 8 (for tiling) x 8
(orientations) x 4 (for blocks) = 4096



Window (Image) Classification

Training Data
_-——
._ I B E
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Feature | ___|.| _, | Classifier
Extraction . F(x)
\ J \ J
i l
« HOG Eeatures pedestrian/Non-pedestrian

e Linear SVM classifier P(clx) o< F(x)






Averaged examples
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Classifier: linear SVM

Advantages of linear SVM: f(X) — WTX + b

 Training (Learning)

 Very efficient packages for the linear case, e.g. LIBLINEAR for batch
training and Pegasos for on-line training.

o Complexity O(N) for N training points (cf O(N”*3) for general SVM)

- Testing (Detection)

S
S = # of support vectors
Nondinear  T(X) = Y _a;K(X ,X) + b
i = (worst case ) N

size of training data

S
linear f(x) = ZO[,X,-TX +0

—W/' X+ b Independent of size of training data



CVPR 2005

Dalal and Triggs



Learned model

f(X)=w'x+ b
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What do negative weights mean!
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Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan




Why does HOG + SVM work so well?

o Similar to SIFT, records spatial arrangement of histogram orientations

« Compare to learning only edges:

— Complex junctions can be represented
— Avoids problem of early thresholding
— Represents also soft internal gradients
» Older methods based on edges have become largely obsolete

f\]
'H

* HOG gives fixed length vector for window,
suitable for feature vector for SVM



Chamfer Matching

Input Edges Template * Match points between template
and image

e Measure mean distance

 Template edgel matches nearest
iImage edgel

D(T, 1) = % > mind(p,q)
peT A€l

 Distance transform reduces min operation

Distance to array lookup
Transform o _
e Computable Iin linear time
 Localize by sliding window search
Best
match

[Gavrila & Philomin, 1999]




Chamfer Matching
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Hierarchy of Templates Detections

e In practice performs poorly in clutter

e Unoriented edges are not discriminative enough

(too easy to find...)
[Gavrila & Philomin, 1999]



Contour-fragment models
Shotton et al ICCV 05, Opelt et al ECCV 06

» Generalized Hough like representation using contour
fragments

« Contour fragments learnt from edges of training images

e A el R

* Hough like voting for detection

o )
O ﬂ\
—

NGO

~

\



Training a sliding window detector

* Object detection Is inherently asymmetric: much more
“non-object” than “object” data

 Classifier needs to have very low false positive rate
* Non-object category is very complex — need lots of data



Bootstrapping

1. Pick negative training
set at random

2. Train classifier
3. Run on training data

4. Add false positives to
training set

5. Repeat from 2

e Collect a finite but diverse set of non-object windows
 Force classifier to concentrate on hard negative examples

e For some classifiers can ensure equivalence to training on
entire data set



Example: train an upper body detector

— Training data — used for training and validation sets
» 33 Hollywood?2 training movies
o 1122 frames with upper bodies marked

— First stage training (bootstrapping)
1607 upper body annotations jittered to 32k positive samples
« 55k negatives sampled from the same set of frames

— Second stage training (retraining)
« 150k hard negatives found in the training data

L




Training data — positive annotations




Positive windows

Note: common size and alignment



Jittered positives




Jittered positives
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Random negatives
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Window (Image) first stage classification

4 D . (" Linear SVM )
Jittered positives H F r . .
P — CE)EragtEiict)Lli | — [] — Classifier
random negatives L y . L f(X) =W'X+ b y

« find high scoring false positives detections

* these are the hard negatives for the next round of training

e cOSt = # training images X inference on each image



Hard negatives




Hard negatives
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First stage performance on validation set
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* Precision: % of returned windows that

O
O
* Recall: % of correct windows that are !
O

precision

Precision — Recall curve
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First stage performance on validation set
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Performance after retraining
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Effects of retraining

precision
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Side by side




Side by side

before retraining after retraining




Side by side

before retraining after retraining




Tracked upper body detections
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Accelerating Sliding Window Search

e Sliding window search is slow because so many windows are
needed e.g. X x y x scale = 100,000 for a 320%x240 image

* Most windows are clearly not the object class of interest

« Can we speed up the search?



Cascaded Classification

» Build a sequence of classifiers with increasing complexity

More complex, slower, lower false positive rate

fdge

1 faRe
Window l l l -

Non-face Non-face Non-face

* Reject easy non-objects using simpler and faster classifiers

[Classifier] [lé‘dasﬂjigea] S [Iﬁd&smea] —» Face




Cascaded Classification

» Slow expensive classifiers only applied to a few windows =»

significant speed-up

 Controlling classifier complexity/speed:

— Number of support vectors
— Number of features
— Type of SVM kernel

'[Romdhani et al, 2001]
Viola & Jones, 2001]

Vedaldi et al, 2009]



Summary: Sliding Window Detection

« Can convert any image classifier into an ,_ |
object detector by sliding window. Efficient '=
search methods available.

e Requirements for invariance are reduced by
searching over e.g. translation and scale

* Spatial correspondence can be %&‘.:ﬁ
“engineered Iin” by spatial tiling ;-"=-"
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Outline

Sliding window detectors
Features and adding spatial information
HOG + linear SVM classifier

Two state of the art algorithms and PASCAL VOC
« VOC challenge

 Vedaldi et al — multiple kernels and features, cascade

 Felzenswalb et al — multiple parts, latent SVM

The future and challenges



The PASCAL Visual Object Classes
(VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams

John Winn
Andrew Zisserman

PASCAL

‘ Pattern Analysis, Statistical Modelling and
Computational Learning



The PASCAL VOC Challenge

 Challenge in visual object
recognition funded by
PASCAL network of
excellence

* Publicly available dataset of
annotated images

e Main competitions in classification (is there an X in this
Image), detection (where are the X’s), and segmentation
(which pixels belong to X)

* “Taster competitions” in 2-D human “pose estimation” (2007-
present) and static action classes

» Standard evaluation protocol (software supplied)



Dataset Content

» 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat,
chair, cow, dining table, dog, horse, motorbike, person,
potted plant, sheep, train, TV

* Real images downloaded from flickr, not filtered for “quality”

« Complex scenes, scale, pose, lighting, occlusion, ...



Annotation

» Complete annotation of all objects

* Annotated in one session with written guidelines

personFrortal TrunchDiff

Occluded pErsonCos
Obiject is significantly
occluded within BB

| bicye eSideFaceleft )
"

bicyclezideFaceRight Trunc

Truncated
Obiject extends
beyond BB

Difficult
Not scored in
evaluation

Pose
Facing left



Examples

Aeroplane




Examples

Dining Table Motorbike




Main Challenge Tasks

e Classification
— Is there a dog In this image?
— Evaluation by precision/recall

e Detection

— Localize all the people (if any) Iin
this image

— Evaluation by precision/recall
based on bounding box overlap




Detection: Evaluation of Bounding Boxes

» Area of Overlap (AO) Measure

Ground truth B

Byt [ Bp
AO(Bgy, By) = Dat[15r
By B, O( gt p) |BQtUBp|

Predicted Bp

-

Detection If > Threshold

o




Dataset Statistics

train val trainval test
Images Objects Images Objects Images Objects Images Objects

Aeroplane 201 267 206 266 407 533
Bicycle 167 232 181 236 348 468
Bird 262 381 243 379 505 760
Boat 170 270 155 267 325 537
Bottle 220 394 200 393 420 787
Bus 132 179 126 186 258 365
Car 372 664 358 653 730 1,317
Cat 266 308 277 314 543 622
Chair 338 716 330 713 668 1,429
Cow 86 164 86 172 172 336
Diningtable 140 153 131 153 271 306
Dog 316 391 333 392 649 783
Horse 161 237 167 245 328 482
Motorbike 171 235 167 234 338 469
Person 1,333 2,819 1,446 2,996 2779 5815
Pottedplant 166 311 166 316 332 627
Sheep 67 163 64 175 131 338
Sofa 155 172 153 175 308 347
Train 164 190 160 191 324 381
Tvmonitor 180 259 173 257 353 516

Total 3,473 8,505 3,581 8,713 7,054 17,218 6,650 16,829




True Positives - Bicycle

UoCTTI_LSVM-MDPM




False Positives - Bicycle

UoCTTI_LSVM-MDPM




True Positives — TV /monitor

OXFORD_MKL

LEAR_CHI-SVM-SIFT-HOG-CLS




False Positives — TV /monitor

OXFORD_MKL
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Precision/Recall — Potted plant
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AP by Class Detection

_ O Max
—| - B Median
20 + ——

AP (%)
N
tn
|

aeroplane
bicycle
train
bus
motorbike
person
horse
tv/monitor
car

cat

bottle

sofa

dog

sheep
diningtable
cow

bird

boat

chair
pottedplant

Wide variety of methods: sliding window, combination with whole
Image classifiers, segmentation based



Multiple Kernels for Object Detection

Andrea Vedaldi, Varun Gulshan,
Manik Varma, Andrew Zisserman

ICCV 2009



Approach

 Three stage cascade

J10139A alnjesa

( )

Fast Linear SVM

Quasi-linear SVM

Non-linear SVM

\. J

----------------------

0
---------------------

— Each stage uses a more powerful and more expensive classifier
* Multiple kernel learning for the classifiers over multiple features

« Jumping window first stage



Multiple Kernel Classification
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( )
[ PHOW Gray ]|$ : : :
\I I I / MK SVM
\. Y,
[ PHOW Color ]E> : : : %
U combine one kernel per histogram
F
[ ros ]'f? mm % 1| K(hh) =) dK(h;hj)
— @ i=1
[ PHOG Sym ]|$ : : : % ) [Varma & Rai, 2007]
NEEY [Gehler & Nowozin, 2009]
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Multiple Kernel Detection: Challenges

» Goal: sliding window MK classifier

— Inference space is huge
— #windows = 100 millions

— TMK = seconds

Image

Candidate region e

10]09A 8iNnjeaH

MK SVM

Tmk

Time required:
Tmk X #windows

Excruciatingly slow (days per image)



Cascade

101J39A alnleaH

Fast Linear SVM

Y

\.

Quasi-linear SVM

J

b

Non-linear SVM

* all full MK SVMs

* all look at all features

* trade-off speed and power by
choosing the kernel structure



Architecture
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Post Processing




Cascade
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Non-linear sliding SVM

Image
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Candidate region _
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Time required:
#dimensions x #windows x #SVs
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Support Vectors (SVs)
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Cascade
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Fast Linear SVM

Y

U

Non-linear SVM




Quasi-linear SVM

Image

Candidate region

10109\ @inyeaH
10109 11oddns yi-I
—_—

Time required:
#dimensions x #windows x @K

#dimensions x #windows

Quasi-linear (or additive) kernel
decompose as:

d
K(z,y) = Z’f(%yj)

Thus SVM score rewrites:

Pre-compute look-up table.

Maji, Berg, Malik, CVPR 08



Cascade
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Quasi-linear SVM
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Non-linear SVM




Fast linear SVM

Image

Candidate region

Linear SVM score

i

(

, W)

J10]J39A alnjeaH

Time required:

#dim

ons x #windows X @6’

#windows

Image

Pixel

—_——
10109/ @lnjeoH

Score map

Compute sum with
integral images

, W)

Pre-compute
scores
for each pixel.



Jumping window

Position of visual word with respt to the object

Training

learn the position/scale/aspect ratio of the ROI with respect to the visual word

Handles change of aspect ratio

Detection

Hypothesis



SVMs overview

First stage

— linear SVM

—  (or jumping window)
— time: #windows
Second stage

— quasi-linear SVM

—  x°kernel
— time: #windows x #dimensions

Third stage
— non-linear SVM
—  x*-RBF kernel

— time:
#windows x #dimensions x #SVs

10]09A alnjesa

( )

Fast Linear SVM

Quasi-linear SVM

Non-linear SVM
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----------------------
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Single Kernel vs. Multiple Kernels

e Multiple Kernels gives substantial boost

e Multiple Kernel Learning:
— small improvement over averaging

— sparse feature selection 1
09

KL 50.4%

— ¥ — ssim 39.1%

W/ — & — phogl1B0 39.8%
Y — & — phog360 40.9%
— % — phowColor 42.6%
— + — phowGray 44 .4%
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Precision/Recall: VOC2009 Aeroplane

precision
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Object Detection with Discriminatively
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester,
Deva Ramanan, Ross Girshick

PAMI 2010



Approach

* Mixture of deformable part-based models
— One component per “aspect” e.g. front/side view

e Each component has global template + deformable parts
e Discriminative training from bounding boxes alone



Example Model

* One component of person model

root filters
coarse resolution

part filters
finer resolution

-

sl

deformation
models




Starting Point: HOG Filter

P

Filter F

Score of F at position p is
F-@(p, H)

@(p, H) = concatenation of
HOG features from
HOG pyramid H subwindow specified by p

e Search: sliding window over position and scale
e Feature extraction: HOG Descriptor
e Classifier: Linear SVM Dalal & Triggs [2005]



Object Hypothesis

 Position of root + each part
« Each part: HOG filter (at higher resolution)

z = (po,..., Pn)
Po: location of root
P1,..., Pn : location of parts

Score Is sum of filter
scores minus
deformation costs

HOG feature pyramid



Score of a Hypothesis

Appearance term Spatial prior

T

smre(pn,...,pn)=zFi*¢ , Di) Zd - (dz3, dy;)

1=0 1 T displacements

filters deformation parameters

score(z) = 3 - V(H, 2)
/ \

concatenation of filters concatenation of

and deformation HOG features and

parameters part displacement
features

* Linear classifier applied to feature subset defined by hypothesis



Training

e Training data = images + bounding boxes
 Need to learn: model structure, filters, deformation costs




Latent SVM (MI-SVM)

Classifiers that score an example x using

fa(z) = max (- ®(z,2)

2€2(z) / R
3 are model parameters

< * \Which component?
z are latent values * Where are the parts?

Training data D = ((z1,¥1),-- -, (Tn,¥n)) ¥ €{-1,1}
We would like to find 8 such that: ¥%:fs(z;) >0

Minimize

1 L
Lp(8) = |I8II> +C }_max(0,1 - yifs(=:))
=1 SVM objective



Latent SVM Training

Lo(8) = 5181 + C' Y max(0,1 - yifs(a:))

i=1
« Convex Iif we fix z for positive examples
e Optimization:

— Initialize g and iterate:
* Pick best z for each positive example

» Optimize g with z fixed )

 Local minimum: needs good initialization
— Parts initialized heuristically from root

Alternation
strategy



Person Model

e w w o il Y
| e )
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b ] § dee—t 4ot
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e e g ..I...u.*. x

part filters deformation

root filters
coarse resolution finer resolution

models

Handles partial occlusion/truncation



Car Model

root filters part filters deformation
coarse resolution finer resolution models



Car Detections

high scoring true positives high scoring false positives




Person Detections

high scoring false positives
(not enough overlap)

high scoring true positives




Precision/Recall: VOC2008 Person
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Precision/Recall: VOC2008 Bicycle
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Comparison of Models

precision

031 —4—1 Root (0.48)

2 Root (0.58)
1 Root+Parts (0.55)
—e— 2 Root+Parts (0.62)
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0.1+

class: car, year 2006

| ——2 Root+Parts+BB (0.64)
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Summary

e Multiple features and multiple kernels boost
performance

 Discriminative learning of model with latent
variables for single feature (HOG):

— Latent variables can learn best alignment in the
ROI training annotation

— Parts can be thought of as local SIFT vectors

— Some similarities to Implicit Shape
Model/Constellation models but with
discriminative/careful training throughout

t

NB: Code available for latent model !




Outline

. Sliding window detectors

. Features and adding spatial information

. HOG + linear SVM classifier

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Current Research Challenges

» Context
— from scene properties: GIST, BoW, stuff
— from other objects
— from geometry of scene, e.g. Hoiem et al CVPR 06

e Occlusion/truncation
— Winn & Shotton, Layout Consistent Random Field, CVPR 06
— Vedaldi & Zisserman, NIPS 09
— Yang et al, Layered Object Detection, CVPR 10

3D

e Scaling up — thousands of classes
— Torralba et al, Feature sharing
— ImageNet

« Weak and noisy supervision
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