Local invariant features

Cordelia Schmid INRIA, Grenoble

Local features

Several / many local descriptors per image Robust to occlusion/clutter + no object segmentation required

Photometric : distinctive

Invariant : to image transformations + illumination changes

Local features: interest points

Local features: Contours/segments

Local features: segmentation

Application: Matching

Find corresponding locations in the image

Illustration – Matching

Interest points extracted with Harris detector (~ 500 points)

Illustration – Matching

Interest points matched based on cross-correlation (188 pairs)

Illustration – Matching

Global constraint - Robust estimation of the fundamental matrix

99 inliers

89 outliers

Application: Panorama stitching

Application: Instance-level recognition

Search for particular objects and scenes in large databases

Difficulties

Finding the object despite possibly large changes in scale, viewpoint, lighting and partial occlusion

\rightarrow requires invariant description

Scale

Viewpoint

Lighting

Occlusion

Difficulties

- Very large images collection \rightarrow need for efficient indexing
 - Flickr has 2 billion photographs, more than 1 million added daily
 - Facebook has 15 billion images (~27 million added daily)
 - Large personal collections
 - Video collections, i.e., YouTube

Search photos on the web for particular places

Find these landmarks

... in these images and 1M more

- Take a picture of a product or advertisement
 - \rightarrow find relevant information on the web

PRENEZ EN PHOTO L'AFFICHE !

[Pixee – Milpix]

• Finding stolen/missing objects in a large collection

• Copy detection for images and videos

Query video

Search in 200h of video

Local features - history

- Line segments [Lowe'87, Ayache'90]
- Interest points & cross correlation [Z. Zhang et al. 95]
- Rotation invariance with differential invariants [Schmid&Mohr'96]
- Scale & affine invariant detectors [Lindeberg'98, Lowe'99, Tuytelaars&VanGool'00, Mikolajczyk&Schmid'02, Matas et al.'02]
- Dense detectors and descriptors [Leung&Malik'99, Fei-Fei& Perona'05, Lazebnik et al.'06]
- Contour and region (segmentation) descriptors [Shotton et al.'05, Opelt et al.'06, Ferrari et al.'06, Leordeanu et al.'07]

Example for line segments

images 600 x 600

Example for line segments

248 / 212 line segments extracted

Matched line segments

89 matched line segments - 100% correct

3D reconstruction of line segments

Problems of line segments

- Often only partial extraction
 - Line segments broken into parts
 - Missing parts
- Information not very discriminative
 - 1D information
 - Similar for many segments
- Potential solutions
 - Pairs and triplets of segments
 - Interest points

Overview

- Harris interest points
- Comparing interest points
- Scale & affine invariant interest points
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Harris detector [Harris & Stephens'88]

Based on the idea of auto-correlation

Important difference in all directions => interest point

Images

- We can think of an **image** as a function, *f*, from R² to R:
 - f(x, y) gives the **intensity** at position (x, y)
 - the image is defined over a rectangle with a finite range
- A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Digital images

- In computer vision we operate on **digital** images:
 - **Sample** the 2D space on a regular grid
 - **Quantize** each sample (round to nearest integer)
- The image can now be represented as a matrix of integer values (pixels)

I I								
ļ	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Auto-correlation function for a poin(tx, y) and a shi($t\Delta x, \Delta y$)

$$a(x, y) = \sum_{\substack{(x_k, y_k) \in W(x, y) \\ (\Delta x, \Delta y)}} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

Auto-correlation function for a poin(tx, y) and a shi($t\Delta x, \Delta y$)

$$a(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

$$(\Delta x, \Delta y)$$

$$W$$

 $a(x,y) \begin{cases} \text{small in all directions} \rightarrow \text{uniform region} \\ \text{large in one directions} \rightarrow \text{contour} \\ \text{large in all directions} \rightarrow \text{interest point} \end{cases}$

"flat" region: no change in all directions

"edge":

no change along the edge direction "corner": significant change in all directions

Discret shifts are avoided based on the auto-correlation matrix

with first order approximation

$$I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) - I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$a(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$
$$= \sum_{(x_k, y_k) \in W} \left((I_x(x_k, y_k) - I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \right)^2$$

$$= \left(\Delta x \quad \Delta y\right) \begin{bmatrix} \sum_{\substack{(x_k, y_k) \in W}} (I_x(x_k, y_k))^2 & \sum_{\substack{(x_k, y_k) \in W}} I_x(x_k, y_k) I_y(x_k, y_k) \\ \sum_{\substack{(x_k, y_k) \in W}} I_x(x_k, y_k) I_y(x_k, y_k) & \sum_{\substack{(x_k, y_k) \in W}} (I_y(x_k, y_k))^2 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

Auto-correlation matrix

the sum can be smoothed with a Gaussian

$$= (\Delta x \quad \Delta y)G \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} (\Delta x) \\ (\Delta y)$$

• Auto-correlation matrix

$$G \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- captures the structure of the local neighborhood
- measure based on eigenvalues of this matrix
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Cornerness function

$$f = \det(a) - k(trace(a))^{2} = \lambda_{1}\lambda_{2} - k(\lambda_{1} + \lambda_{2})^{2}$$

Reduces the effect of a strong contour

- Interest point detection
 - Treshold (absolut, relatif, number of corners)
 - Local maxima

 $f > thresh \land \forall x, y \in 8 - neighbourhood f(x, y) \ge f(x', y')$

Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

Harris detector: Summary of steps

- 1. Compute Gaussian derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold *R*
- 5. Find local maxima of response function (non-maximum suppression)

Harris - invariance to transformations

- Geometric transformations
 - translation
 - rotation
 - similitude (rotation + scale change)
 - affine (valide for local planar objects)
- Photometric transformations
 - Affine intensity changes $(I \rightarrow a I + b)$

Harris Detector: Invariance Properties

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Invariance Properties

• Affine intensity change

Harris Detector: Invariance Properties

• Scaling

All points will be classified as edges

Not invariant to scaling

Overview

- Harris interest points
- Comparing interest points (SSD, ZNCC, Derivatives, SIFT)
- Scale & affine invariant interest points
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Comparison of patches - SSD

Comparison of the intensities in the neighborhood of two interest points

SSD : sum of square difference

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1 + i, y_1 + j) - I_2(x_2 + i, y_2 + j))^2$$

Small difference values \rightarrow similar patches

Comparison of patches

SSD:
$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1 + i, y_1 + j) - I_2(x_2 + i, y_2 + j))^2$$

Invariance to photometric transformations?

Intensity changes $(I \rightarrow I + b)$ => Normalizing with the mean of each patch $\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} ((I_1(x_1+i, y_1+j) - m_1) - (I_2(x_2+i, y_2+j) - m_2))^2$

Intensity changes $(I \rightarrow aI + b)$

=> Normalizing with the mean and standard deviation of each patch

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1+i, y_1+j) - m_1}{\sigma_1} - \frac{I_2(x_2+i, y_2+j) - m_2}{\sigma_2} \right)^2$$

Cross-correlation ZNCC

zero normalized SSD

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1+i, y_1+j) - m_1}{\sigma_1} - \frac{I_2(x_2+i, y_2+j) - m_2}{\sigma_2} \right)^2$$

ZNCC: zero normalized cross correlation

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1+i, y_1+j) - m_1}{\sigma_1} \right) \cdot \left(\frac{I_2(x_2+i, y_2+j) - m_2}{\sigma_2} \right)$$

ZNCC values between -1 and 1, 1 when identical patches in practice threshold around 0.5

Local descriptors

- Greyvalue derivatives
- Differential invariants [Koenderink'87]
 - combinations of derivatives
- SIFT descriptor [Lowe'99]

Greyvalue derivatives: Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}\right]$

•
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$
 \downarrow $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$ $\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$

- The gradient points in the direction of most rapid increase in intensity
- The gradient direction is given by

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- how does this relate to the direction of the edge?
- The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

Differentiation and convolution

• Recall, for 2D function, f(x,y): $\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \left(\frac{f(x+\epsilon, y)}{\epsilon} - \frac{f(x, y)}{\epsilon} \right)$

• We could approximate this as

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

Convolution with the filter

Finite difference filters

• Other approximations of derivative filters exist:

Prewitt:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ;
 $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

 Sobel:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

 Roberts:
 $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Effects of noise

• Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

• Where is the edge?

Source: S. Seitz

Solution: smooth first

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Local descriptors

- Greyvalue derivatives
 - Convolution with Gaussian derivatives

$$\mathbf{v}(x,y) = \begin{pmatrix} I(x,y) * G(\sigma) \\ I(x,y) * G_{x}(\sigma) \\ I(x,y) * G_{y}(\sigma) \\ I(x,y) * G_{xx}(\sigma) \\ I(x,y) * G_{xy}(\sigma) \\ I(x,y) * G_{yy}(\sigma) \\ \vdots \end{pmatrix} = \begin{pmatrix} L(x,y) \\ L_{x}(x,y) \\ L_{y}(x,y) \\ L_{xy}(x,y) \\ L_{yy}(x,y) \\ L_{yy}(x,y) \\ \vdots \end{pmatrix}$$

$$I(x,y) * G(\sigma) = \int_{-\infty-\infty}^{\infty} G(x',y',\sigma) I(x-x',y-y') dx' dy'$$
$$G(x,y,\sigma) = \frac{1}{2\pi\sigma^2} \exp(-\frac{x^2+y^2}{2\sigma^2})$$

Gaussian Kernel

- Gaussian filters have infinite support, but discrete filters
 use finite kernels
- Rule of thumb: set filter half-width to about 3 σ

Local descriptors – rotation invariance

Invariance to image rotation : differential invariants [Koen87]

Laplacian of Gaussian (LOG)

 $LOG = G_{xx}(\sigma) + G_{yy}(\sigma)$

SIFT descriptor [Lowe'99]

- Approach
 - 8 orientations of the gradient
 - 4x4 spatial grid
 - soft-assignment to spatial bins, dimension 128
 - normalization of the descriptor to norm one
 - comparison with Euclidean distance

Local descriptors - rotation invariance

- Estimation of the dominant orientation
 - extract gradient orientation
 - histogram over gradient orientation
 - peak in this histogram
- Rotate patch in dominant direction

Local descriptors – illumination change

• Robustness to illumination changes

in case of an affine transformation $I_1(\mathbf{x}) = aI_2(\mathbf{x}) + b$

• Normalization of the image patch with mean and variance

Invariance to scale changes

• Scale change between two images

• Scale factor s can be eliminated

- Support region for calculation!!
 - In case of a convolution with Gaussian derivatives defined by σ

$$I(x,y) * G(\sigma) = \int_{-\infty-\infty}^{\infty} G(x',y',\sigma) I(x-x',y-y') dx' dy'$$
$$G(x,y,\sigma) = \frac{1}{2\pi\sigma^2} \exp(-\frac{x^2+y^2}{2\sigma^2})$$