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Part 1. Going large-scale 
 Approximate nearest neighbour matching 
 Bag-of-visual-words representation 
 Efficient visual search and extensions 
 Applications 

Part 2. Very large scale visual indexing – recent work  
(C. Schmid) 



Example II: Two images again 

1000+ descriptors per image 



 Match regions between frames using SIFT descriptors and 
spatial consistency 

Multiple regions overcome problem of partial occlusion 



Approach - review 

1.  Establish tentative (or putative) correspondence based 
on local appearance of individual features (now) 

2. Verify matches based on semi-local / global geometric 
relations (You have just seen this). 
    



What about multiple images? 

•  So far, we have seen successful matching of a query 
image to a single target image using local features. 

•  How to generalize this strategy to multiple target images 
with reasonable complexity? 

•   10, 102, 103, …, 107, … 1010 images? 



“Charade” [Donen, 1963] 

Visually defined query 

“Find this bag” 

Example: Visual search in an entire feature length movie 

Demo: 
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html 



History of “large scale” visual search with local regions 

 Schmid and Mohr ’97    – 1k images 
 Sivic and Zisserman’03    – 5k images 
 Nister and Stewenius’06    – 50k images (1M) 
 Philbin et al.’07     – 100k images 
 Chum et al.’07 + Jegou et al.’07   – 1M images 
 Chum et al.’08     – 5M images 
Jegou et al. ’09     – 10M images 

All on a single machine in ~ 1 second! 



Two strategies 

1. Efficient approximate nearest neighbour search on local 
feature descriptors. 

2. Quantize descriptors into a “visual vocabulary” and use 
efficient techniques from text retrieval. 
 (Bag-of-words representation) 



Images 

Local features invariant 
descriptor 

vectors 

1.  Compute local features in each image independently (Part 1) 
2.  “Label” each feature by a descriptor vector based on its intensity (Part 1) 
3.  Finding corresponding features is transformed to finding nearest neighbour vectors 
4.  Rank matched images by number of (tentatively) corresponding regions  
5.  Verify top ranked images based on spatial consistency (Part 2) 

Strategy I: Efficient approximate NN search 

invariant 
descriptor 

vectors 



Finding nearest neighbour vectors 

Establish correspondences between object model image and images in the 
database by nearest neighbour matching on SIFT vectors 

128D descriptor 
space 

Model image  Image database  

Solve following problem for all feature vectors,                     , in the query image: 

where,                      ,  are features from all the database images. 



Quick look at the complexity of the NN-search 

N … images 
M … regions per image (~1000) 
D … dimension of the descriptor (~128) 

Exhaustive linear search: O(M NMD) 

Example:  
•  Matching two images (N=1), each  having 1000 SIFT descriptors 
  Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)  
•  Memory footprint: 1000 * 128 = 128kB / image 

N =   1,000 … ~7min            (~100MB) 
N = 10,000 … ~1h7min        (~    1GB) 
… 
N = 107            ~115 days     (~    1TB) 
… 
All images on Facebook: 
N = 1010        …   ~300 years  (~    1PB) 

# of images CPU time Memory req. 



Nearest-neighbor matching 

Solve following problem for all feature vectors, xj, in the query image: 

where xi are features in database images. 

Nearest-neighbour matching is the major computational bottleneck 
•  Linear search performs dn operations for n features in the 

database and d dimensions 
•  No exact methods are faster than linear search for d>10 

•  Approximate methods can be much faster, but at the cost of 
missing some correct matches.  Failure rate gets worse for 
large datasets. 



Indexing local features:  
approximate nearest neighbor search 
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Best-Bin First (BBF), a variant of k-d 
trees that uses priority queue to 
examine most promising branches 
first [Beis & Lowe, CVPR 1997] 

Locality-Sensitive Hashing (LSH), a 
randomized hashing technique using 
hash functions that map similar 
points to the same bin, with high 
probability [Indyk & Motwani, 1998] 
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K-d tree 
•  K-d tree is a binary tree data structure for organizing a set of points in 
a K-dimensional space. 

•  Each internal node is associated with an axis aligned hyper-plane 
splitting its associated points into two sub-trees. 

•  Dimensions with high variance are chosen first. 

•  Position of the splitting hyper-plane is chosen as the mean/median of 
the projected points – balanced tree. 
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K-d tree construction 

Simple 2D example 
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K-d tree query 

Slide credit: Anna Atramentov 



K-d tree: Backtracking 

Backtracking is necessary as the true nearest neighbor 
may not lie in the query cell. 

But in some cases, almost all cells need to be inspected. 

Figure: A. Moore 



Solution: Approximate nearest neighbor K-d tree 

Key ideas:  

•  Search k-d tree bins in order 
of distance from query 

•  Requires use of a priority 
queue 

•  Limit the number of 
neighbouring k-d tree bins to 
explore: only approximate NN 
is found 

•  Reduce the boundary effects by randomization 



Randomized K-d trees 

    Multiple randomized trees increase the chances of finding 
nearby points 

Query point 

True nearest neighbour 
found? No No 

True nearest 
neighbour 

Yes 

    How to choose the dimension to split and the splitting point? 
  Pick dimension with the highest variance 
  Split at the mean/median  



Approximate NN search using a randomized forest 
of K-d trees: Algorithm summary 

1.  Descent all (typically 8) trees to the leaf node 

2.  Search k-d tree bins in order of distance from query 
•   Distance between the query and the bin is defined as the minimum 

distance between the query and any point on the bin boundary 

•  Requires the use of a priority queue: 
>  During lookup an entry is added to the priority queue about the option 

not taken 
>  For multiple trees, the queue is shared among the trees 

•  Limit the number of neighbouring K-d tree bins to explore 
(parameter of the algorithm, typically set to 512) 



Experimental evaluation for SIFT matching 
http://www.cs.ubc.ca/~lowe/papers/09muja.pdf 



Randomized K-d trees  

Performance w.r.t. the number of trees 

Precision: percentage of true nearest neighbours found 
d=128, n=100K 



Randomized K-d trees 

Performance w.r.t. the number of dimensions 



Randomized K-d trees: discussion 

•  Find approximate nearest neighbor in O(logN) time, 
where N is the number of data points.  

•  Increased memory requirements: needs to store multiple 
(~8) trees 

•  Good performance in practice for recognition problems 
(NN-search for SIFT descriptors and image patches). 

•  Code available online: 
 http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN 



Variation: K-means tree [Muja&Lowe, 2009] 

•  Partition of the space is determined by recursive 
application of k-means clustering. 

•  Cell boundaries are not axis aligned, but given by the set 
of cluster centers. 

•  Also called “tree structured vector quantization”. 

•  Finding nearest neighbor to a query point involves 
recursively finding nearest cluster center. 

•  Look-up complexity O(logN) 

•  Also used for vocabulary quantization (see later) 
[Nister&Stewenius’06] 
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Example 

3-nary tree construction: 

Figure credit: David Nister 



Query look-up: 
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Example 

Figure credit: David Nister 



Indexing local features:  
approximate nearest neighbor search 
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Best-Bin First (BBF), a variant of k-d 
trees that uses priority queue to 
examine most promising branches 
first [Beis & Lowe, CVPR 1997] 

Locality-Sensitive Hashing (LSH), a 
randomized hashing technique using 
hash functions that map similar 
points to the same bin, with high 
probability [Indyk & Motwani, 1998] 



Idea: construct hash functions g: Rd→Zk such that  

for any points p,q:  

If ||p-q|| ≤ r,  then Pr[g(p)=g(q)] is “high” or “not-so-small”  
If ||p-q|| > cr, then Pr[g(p)=g(q)] is “small”  

Example of g: linear projections 

g(p)=<h1(p),h2(p),…,hk(p)>,  where hX,b(p)=(p*X+b)/w 

. is the “floor” operator.  
Xi are sampled from a Gaussian. 
w is the width of each quantization bin. 
b is sampled from uniform distr. [0,w]. 

Locality Sensitive Hashing (LSH)  

[Datar-Immorlica-Indyk-Mirrokni’04] 



Locality Sensitive Hashing (LSH)  

    Choose a random projection 

    Project points 

    Points close in the original space 
remain close under the projection 

    Unfortunately, converse not true 

    Answer: use multiple quantized projections which define a 
high-dimensional “grid” 

Slide: Philbin, Chum, Isard, Zissrman 



Locality Sensitive Hashing (LSH)  

    Cell contents can be efficiently 
indexed using a hash table 

    Repeat to avoid quantization errors 
near the cell boundaries 

    Point that shares at least one cell = potential candidate 

    Compute distance to all candidates 

Slide: Philbin, Chum, Isard, Zissrman 



LSH: discussion 

In theory, query time is O(kL), where k is the number of projections and L is the 
number of hash tables,  i.e. independent of the number of points, N. 

In practice, LSH has high memory requirements as large number of projections/
hash tables are needed. 

Code and more materials available online: 
http://www.mit.edu/~andoni/LSH/ 

Hashing functions could be also data-dependent (PCA) or learnt from labeled 
point pairs (close/far). 

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.  
R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007. 

See also: 
http://cobweb.ecn.purdue.edu/~malcolm/yahoo Slaney2008(LSHTutorialDraft).pdf 
http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors_2.pdf 



Dataset: 100K SIFT descriptors 

Code for all methods available online, see Muja&Lowe’09 

Comparison of approximate NN-search methods 

Figure: Muja&Lowe’09 



Approximate nearest neighbour search (references) 
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ANN - search (references continued) 

O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-
idf weighting. BMVC., 2008.  

M. Raginsky and S. Lazebnik, “Locality-Sensitive Binary Codes from Shift-Invariant 
Kernels,” in Proc. of Advances in neural information processing systems, 2009. 

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image 
search,” Proc. of the IEEE International Conference on Computer Vision, 2009.  

J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image 
retrieval,” in IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition (CVPR), 2010. 

J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for hashing with 
compact codes,” in Proceedings of the 27th International Conference on Machine 
Learning, 2010.  



•  Linear exhaustive search can be prohibitively expensive 
for large image collections 

•  Answer (so far): approximate NN search methods 
•  Randomized KD-trees 
•  Locality sensitive hashing 

•  However, memory footprint can be still high. 
 Example: N = 107 images, 1010 SIFT features with 128B 
per feature  1TB of memory 

Look how text-based search engines (Google) index 
documents – inverted files. 

So far …  



Indexing text with inverted files  

Need to map feature descriptors to “visual words”.  

Inverted file: Term            List of hits (occurrences in documents) 

People          [d1:hit hit hit], [d4:hit hit] … 

Common       [d1:hit hit], [d3: hit], [d4: hit hit hit] … 

Sculpture      [d2:hit], [d3: hit hit hit]  … 

Document 
collection: 



Visual words: main idea 
Extract some local features from a number of images … 
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e.g., SIFT descriptor space: each 
point is 128-dimensional 

Slide credit: D. Nister [Sivic & Zisserman,ICCV’03] 



Visual words: main idea 
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Visual words: main idea 
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Visual words: main idea 
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[Sivic & Zisserman,ICCV’03] 



[Sivic & Zisserman,ICCV’03] 



Visual words 

Example: each group 
of patches belongs to 
the same visual word 
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Figure from  Sivic & Zisserman, ICCV 2003 



More specific example 

Samples of visual words  (clusters on SIFT descriptors): 



More specific example 

Samples of visual words  (clusters on SIFT descriptors): 



Visual words 

•  First explored for texture and 
material representations 
•  Texton = cluster center of 
filter responses over collection 
of images 
•  Describe textures and 
materials based on distribution 
of prototypical texture 
elements. 

Leung & Malik 1999; Varma & 
Zisserman, 2002; Lazebnik, 
Schmid & Ponce, 2003; 

Slide: Grauman&Leibe 



Inverted file index for images comprised of 
visual words 

Image credit: A. Zisserman K. Grauman, B. Leibe 

Word 
number 

List of image 
numbers 

•  Score each image by the number of common visual words 
(tentative correspondences) 

•  Worst case complexity is linear in the number of images N 

•  In practice, it is linear in the length of the lists (<< N) 



Another interpretation: 
Bags of visual words 

Summarize entire image based 
on its distribution (histogram) 
of visual word occurrences. 

Slide: Grauman&Leibe, Image: L. Fei-Fei 

Hofmann 2001 

... 1 0 0 ... ... 2 
t 

d  = 

Analogous to bag of words   
representation commonly used 
for documents. 



For a vocabulary of size K, each image is represented by a K-vector 

where ti is the number of occurrences of visual word i.  

Images are ranked by the normalized scalar product between the query 
vector vq and all vectors in the database vd: 

Another interpretation: the bag-of-words model 

Scalar product can be computed efficiently using inverted file. 

What if vectors are binary?  What is the meaning of               ? 



Images 

Local features invariant 
descriptor 

vectors 

1.  Compute local features in each image independently (offline) 
2.  “Label” each feature by a descriptor vector based on its intensity (offline) 
3.  Finding corresponding features is transformed to finding nearest neighbour vectors 
4.  Rank matched images by number of (tentatively) corresponding regions  
5.  Verify top ranked images based on spatial consistency (The first part of this lecture) 

Strategy I: Efficient approximate NN search 

invariant 
descriptor 

vectors 



frames 

regions invariant 
descriptor 

vectors 

1.  Compute affine covariant regions in each frame independently (offline) 
2.  “Label” each region by a vector of descriptors based on its intensity (offline) 
3.  Build histograms of visual words by descriptor quantization (offline) 
4.  Rank retrieved frames by matching vis. word histograms using inverted files.  
5.  Verify retrieved frame based on spatial consistency (The first part of the lecture) 

Strategy II: Match histograms of visual words  

Quantize Single vector 
(histogram) 



Visual words: discussion I. 

Efficiency – cost of quantization 

•  Need to still assign each local descriptor to one of the 
cluster centers. Could be prohibitive for large vocabularies 
(K=1M) 

•  Approximate NN-search still needed 

•  True also for building the vocabulary 



Visual words: discussion II. 

Generalization  

•  Is vocabulary/quantization learned on one dataset good 
for searching another dataset? 

•  Experimentally observe a loss in performance. 

But, see recent work by Jegou et al.: 
Hamming Embedding and Weak Geometry Consistency 
for Large Scale Image Search, ECCV’2008 
http://lear.inrialpes.fr/pubs/2008/JDS08a/ 



Visual words: discussion III. 

•  What about quantization effects? 
•  Visual word assignment can change due to e.g. 

 noise in region detection,  
 descriptor computation or  
 non-modeled image variation (3D effects, lighting) 

See also:  
Jegou et al., ECCV’2008, http://lear.inrialpes.fr/pubs/2008/JDS08a/ 
Philbin et al. CVPR’08, http://www.robots.ox.ac.uk/~vgg/publications/html/philbin08-bibtex.html 
Mikulik et al., ECCV’10, http://cmp.felk.cvut.cz/~chum/papers/mikulik_eccv10.pdf 
Philbin et al., ECCV’10, http://www.di.ens.fr/~josef/publications/philbin10b.pdf 



Visual words: discussion IV.  

•  Need to determine the size of the vocabulary, K. 

•  Other algorithms for building vocabularies, e.g. 
agglomerative clustering / mean-shift, but typically more 
expensive. 

•  Supervised quantization?  
Also give examples of images / descriptors which should 
and should not match. 
E.g.: 
Philbin et al. ECCV’10, http://www.robots.ox.ac.uk/~vgg/publications/html/philbin10b-bibtex.html 



Visual search using local regions (references) 
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Efficient visual search for objects and places 

Oxford Buildings Search - demo 

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/
index.html 



Example 







Oxford buildings dataset 

    Automatically crawled from Flickr 

    Consists of: 



Oxford buildings dataset 
    Landmarks plus queries used for evaluation 

All Soul's 

Ashmolean 

Balliol 

Bodleian 

Thom 
Tower 

Cornmarket 

Bridge of 
Sighs 

Keble 

Magdalen 

University 
Museum 

Radcliffe 
Camera 

    Ground truth obtained for 11 landmarks 

    Evaluate performance by mean Average Precision 



Measuring retrieval performance: Precision - Recall 

all images 

returned 
images 

relevant 
images 

•  Precision: % of returned images that  
    are relevant 

•  Recall: % of relevant images that are  
returned 



Average Precision 

•  A good AP score requires both 
high recall and high precision 

•  Application-independent AP 

Performance measured by mean Average Precision (mAP) over 
55 queries on 100K or 1.1M image datasets 





50K 0.473 0.599 
100K 0.535 0.597 
250K 0.598 0.633 
500K 0.606 0.642 
750K 0.609 0.630 
1M 0.618 0.645 

1.25M 0.602 0.625 

vocab 
size 

bag of 
words 

spatial 

Mean Average Precision variation with vocabulary size 



What objects/scenes local regions do not work on? 



E.g. texture-less objects, objects defined by shape, deformable 
objects, wiry objects. 

What objects/scenes local regions do not work on? 



Example applications of  
large scale visual search and matching 
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Sony Aibo (Evolution Robotics) 

SIFT usage 
•  Recognize  

docking station 
•  Communicate  

with visual cards 

Other uses 
•  Place recognition 
•  Loop closure in SLAM 

Slide credit: David Lowe 



Application: Internet-based inpainting 
Photo-editing using images of the same place 
[Whyte, Sivic and Zisserman, 2009] 
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Mobile tourist guide 

Mobile tourist guide 
•  Self-localization 
•  Object/building recognition 
•  Photo/video augmentation 

Aachen Cathedral 

[Quack, Leibe, Van Gool, CIVR’08] 



Web Demo: Movie Poster Recognition 
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http://www.kooaba.com/en/products_engine.html# 

50’000 movie 
posters indexed 

Query-by-image 
from mobile phone 
available in Switzer- 
land 



Image Auto-Annotation 
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Left:   Wikipedia image 
Right: closest match from Flickr 

[Quack CIVR’08] 

Moulin Rouge 

Tour Montparnasse Colosseum 

Viktualienmarkt 
Maypole 

Old Town Square (Prague) 



Visual search in your pocket 



Slide credit: I. Laptev 





Building Rome in a Day – or – 

matching and 3D reconstruction in large 
unstructured datasets.  

Goal: Build a 3D model of a city from  
          a large collection of images downloaded from the Internet 

Use a cluster with 500 CPU cores. 

Building Rome in a Day, Sameer Agarwal, Noah Snavely, Ian 
Simon, Steven M. Seitz and Richard Szeliski, 
International Conference on Computer Vision, 2009 
http://grail.cs.washington.edu/rome/ 



15,464  

76,389  

37,383  

Slide: N. Snavely 



Reproduced with permission of Yahoo! Inc. © 2005 by Yahoo! Inc. 
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc. 

Slide: N. Snavely 



Photo Tourism overview 

Scene 
reconstruction 

Photo 
Explorer Input photographs Relative camera 

positions and orientations 

Point cloud 

Sparse correspondence 

Slide: N. Snavely 



Photo Tourism overview 

Scene 
reconstruction 

Photo 
Explorer 

Input photographs 

Slide: N. Snavely 



Scene reconstruction 

Automatically estimate  
•  position, orientation, and focal length of cameras 
•  3D positions of feature points 

Feature detection 

Feature matching 
Incremental 

structure 
from motion 

Correspondence 
estimation 

Slide: N. Snavely 



Feature detection 

Detect features using SIFT [Lowe, IJCV 2004] 

Slide: N. Snavely 



Feature detection 

Detect features using SIFT [Lowe, IJCV 2004] 

Slide: N. Snavely 



Feature detection 

Detect features using SIFT [Lowe, IJCV 2004] 

Slide: N. Snavely 



Feature matching 

Complexity of matching: 

From Agarwal et al. “Building 
Rome in a Day”, ICCV’09  



Feature matching 

Obtain candidate pairs of images to match using  
visual vocabulary matching based on k-means tree  

Figure: N. Snavely 



Feature matching 

Match features between candidate pairs using            
K-d trees built on SIFT descriptors. 

Figure: N. Snavely 



Feature matching 

Refine matching using RANSAC [Fischler & Bolles 1987] 
to estimate fundamental matrices between pairs 

Slide: N. Snavely 



Structure from motion (R. Keriven’s class) 

Camera 1 

Camera 2 

Camera 3 
R1,t1 

R2,t2 

R3,t3 

p1 

p4 

p3 

p2 

p5 

p6 

p7 

minimize 
f (R, T, P) 

Slide: N. Snavely 



Slide: N. Snavely 



Slide: N. Snavely 



•  Optimize parameters for 
two cameras and common 
points 

•  Find new image with most 
matches to existing points 

•  Initialize new camera using 
pose estimation 

•  Bundle adjust 
•  Add new points 
•  Bundle adjust  

Slide: N. Snavely 



[Agarwal, Snavely, Simon, Seitz and Szeliski ’09] 

• 150,000 images from Flickr.com associated with the tags "Rome" or "Roma" 
•  Matching and reconstruction: 21 hours on a cluster with 496 compute cores Slide: N. Snavely 
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• 150,000 images from Flickr.com associated with the tags "Rome" or "Roma" 
•  Matching and reconstruction: 21 hours on a cluster with 496 compute cores Slide: N. Snavely 
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Example of the final 3D point cloud and cameras 
57,845 downloaded images, 11,868 registered images. This video: 4,619 images.    



The end 


