
Large-scale visual search – part 1

Josef Sivic
http://www.di.ens.fr/~josef

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d’Informatique, Ecole Normale Supérieure, Paris

With slides from: O. Chum, K. Grauman, S. Lazebnik, B. Leibe, D. Lowe, J.
Philbin, J. Ponce, D. Nister, C. Schmid, N. Snavely, A. Zisserman

Computer Vision and Machine Learning Winter School

ENS Lyon 2010

Outline

Part 1. Going large-scale
 Approximate nearest neighbour matching
 Bag-of-visual-words representation
 Efficient visual search and extensions
 Applications

Part 2. Very large scale visual indexing – recent work
(C. Schmid)

Example II: Two images again

1000+ descriptors per image

 Match regions between frames using SIFT descriptors and
spatial consistency

Multiple regions overcome problem of partial occlusion

Approach - review

1.  Establish tentative (or putative) correspondence based
on local appearance of individual features (now)

2. Verify matches based on semi-local / global geometric
relations (You have just seen this).

What about multiple images?

•  So far, we have seen successful matching of a query
image to a single target image using local features.

•  How to generalize this strategy to multiple target images
with reasonable complexity?

•  10, 102, 103, …, 107, … 1010 images?

“Charade” [Donen, 1963]

Visually defined query

“Find this bag”

Example: Visual search in an entire feature length movie

Demo:
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html

History of “large scale” visual search with local regions

 Schmid and Mohr ’97 – 1k images
 Sivic and Zisserman’03 – 5k images
 Nister and Stewenius’06 – 50k images (1M)
 Philbin et al.’07 – 100k images
 Chum et al.’07 + Jegou et al.’07 – 1M images
 Chum et al.’08 – 5M images
Jegou et al. ’09 – 10M images

All on a single machine in ~ 1 second!

Two strategies

1. Efficient approximate nearest neighbour search on local
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval.
 (Bag-of-words representation)

Images

Local features invariant
descriptor

vectors

1.  Compute local features in each image independently (Part 1)
2.  “Label” each feature by a descriptor vector based on its intensity (Part 1)
3.  Finding corresponding features is transformed to finding nearest neighbour vectors
4.  Rank matched images by number of (tentatively) corresponding regions
5.  Verify top ranked images based on spatial consistency (Part 2)

Strategy I: Efficient approximate NN search

invariant
descriptor

vectors

Finding nearest neighbour vectors

Establish correspondences between object model image and images in the
database by nearest neighbour matching on SIFT vectors

128D descriptor
space

Model image Image database

Solve following problem for all feature vectors, , in the query image:

where, , are features from all the database images.

Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:
•  Matching two images (N=1), each having 1000 SIFT descriptors
 Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)
•  Memory footprint: 1000 * 128 = 128kB / image

N = 1,000 … ~7min (~100MB)
N = 10,000 … ~1h7min (~ 1GB)
…
N = 107 ~115 days (~ 1TB)
…
All images on Facebook:
N = 1010 … ~300 years (~ 1PB)

of images CPU time Memory req.

Nearest-neighbor matching

Solve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck
•  Linear search performs dn operations for n features in the

database and d dimensions
•  No exact methods are faster than linear search for d>10

•  Approximate methods can be much faster, but at the cost of
missing some correct matches. Failure rate gets worse for
large datasets.

Indexing local features:
approximate nearest neighbor search

14
K. Grauman, B. Leibe

Best-Bin First (BBF), a variant of k-d
trees that uses priority queue to
examine most promising branches
first [Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar
points to the same bin, with high
probability [Indyk & Motwani, 1998]

l1

l8

1

l2 l3

l4 l5 l7 l6

l9 l10

3

2 5 4 11

9 10

8

6 7

4
7

6

5

1

3

2

9

8

10

11

l1

l2

Images: Anna Atramentov

K-d tree
•  K-d tree is a binary tree data structure for organizing a set of points in
a K-dimensional space.

•  Each internal node is associated with an axis aligned hyper-plane
splitting its associated points into two sub-trees.

•  Dimensions with high variance are chosen first.

•  Position of the splitting hyper-plane is chosen as the mean/median of
the projected points – balanced tree.

4
7

6

5

1

3

2

9

8

10

11

l5
l1 l9

l6

l3

l10 l7

l4

l8

l2

l1

l8

1

l2 l3

l4 l5 l7 l6

l9 l10

3

2 5 4 11

9 10

8

6 7

Slide credit: Anna Atramentov

K-d tree construction

Simple 2D example

4
7

6

5

1

3

2

9

8

10

11

l5
l1 l9

l6

l3

l10 l7

l4

l8

l2

l1

l8

1

l2 l3

l4 l5 l7 l6

l9 l10

3

2 5 4 11

9 10

8

6 7

q

K-d tree query

Slide credit: Anna Atramentov

K-d tree: Backtracking

Backtracking is necessary as the true nearest neighbor
may not lie in the query cell.

But in some cases, almost all cells need to be inspected.

Figure: A. Moore

Solution: Approximate nearest neighbor K-d tree

Key ideas:

•  Search k-d tree bins in order
of distance from query

•  Requires use of a priority
queue

•  Limit the number of
neighbouring k-d tree bins to
explore: only approximate NN
is found

•  Reduce the boundary effects by randomization

Randomized K-d trees

  Multiple randomized trees increase the chances of finding
nearby points

Query point

True nearest neighbour
found? No No

True nearest
neighbour

Yes

  How to choose the dimension to split and the splitting point?
  Pick dimension with the highest variance
  Split at the mean/median

Approximate NN search using a randomized forest
of K-d trees: Algorithm summary

1. Descent all (typically 8) trees to the leaf node

2. Search k-d tree bins in order of distance from query
•  Distance between the query and the bin is defined as the minimum

distance between the query and any point on the bin boundary

•  Requires the use of a priority queue:
>  During lookup an entry is added to the priority queue about the option

not taken
>  For multiple trees, the queue is shared among the trees

•  Limit the number of neighbouring K-d tree bins to explore
(parameter of the algorithm, typically set to 512)

Experimental evaluation for SIFT matching
http://www.cs.ubc.ca/~lowe/papers/09muja.pdf

Randomized K-d trees

Performance w.r.t. the number of trees

Precision: percentage of true nearest neighbours found
d=128, n=100K

Randomized K-d trees

Performance w.r.t. the number of dimensions

Randomized K-d trees: discussion

•  Find approximate nearest neighbor in O(logN) time,
where N is the number of data points.

•  Increased memory requirements: needs to store multiple
(~8) trees

•  Good performance in practice for recognition problems
(NN-search for SIFT descriptors and image patches).

•  Code available online:
 http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

Variation: K-means tree [Muja&Lowe, 2009]

•  Partition of the space is determined by recursive
application of k-means clustering.

•  Cell boundaries are not axis aligned, but given by the set
of cluster centers.

•  Also called “tree structured vector quantization”.

•  Finding nearest neighbor to a query point involves
recursively finding nearest cluster center.

•  Look-up complexity O(logN)

•  Also used for vocabulary quantization (see later)
[Nister&Stewenius’06]

28
K. Grauman, B. Leibe

Example

3-nary tree construction:

Figure credit: David Nister

Query look-up:

29
K. Grauman, B. Leibe

Example

Figure credit: David Nister

Indexing local features:
approximate nearest neighbor search

30
K. Grauman, B. Leibe

Best-Bin First (BBF), a variant of k-d
trees that uses priority queue to
examine most promising branches
first [Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar
points to the same bin, with high
probability [Indyk & Motwani, 1998]

Idea: construct hash functions g: Rd→Zk such that

for any points p,q:

If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is “high” or “not-so-small”
If ||p-q|| > cr, then Pr[g(p)=g(q)] is “small”

Example of g: linear projections

g(p)=<h1(p),h2(p),…,hk(p)>, where hX,b(p)=(p*X+b)/w

. is the “floor” operator.
Xi are sampled from a Gaussian.
w is the width of each quantization bin.
b is sampled from uniform distr. [0,w].

Locality Sensitive Hashing (LSH)

[Datar-Immorlica-Indyk-Mirrokni’04]

Locality Sensitive Hashing (LSH)

  Choose a random projection

  Project points

  Points close in the original space
remain close under the projection

  Unfortunately, converse not true

  Answer: use multiple quantized projections which define a
high-dimensional “grid”

Slide: Philbin, Chum, Isard, Zissrman

Locality Sensitive Hashing (LSH)

  Cell contents can be efficiently
indexed using a hash table

  Repeat to avoid quantization errors
near the cell boundaries

  Point that shares at least one cell = potential candidate

  Compute distance to all candidates

Slide: Philbin, Chum, Isard, Zissrman

LSH: discussion

In theory, query time is O(kL), where k is the number of projections and L is the
number of hash tables, i.e. independent of the number of points, N.

In practice, LSH has high memory requirements as large number of projections/
hash tables are needed.

Code and more materials available online:
http://www.mit.edu/~andoni/LSH/

Hashing functions could be also data-dependent (PCA) or learnt from labeled
point pairs (close/far).

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.
R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.

See also:
http://cobweb.ecn.purdue.edu/~malcolm/yahoo Slaney2008(LSHTutorialDraft).pdf
http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors_2.pdf

Dataset: 100K SIFT descriptors

Code for all methods available online, see Muja&Lowe’09

Comparison of approximate NN-search methods

Figure: Muja&Lowe’09

Approximate nearest neighbour search (references)

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Comm. ACM, 18(9), 1975.

Freidman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm for finding best matches in
logarithmic expected time. ACM Trans. Math. Softw., 3:209–226, 1977.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of
the ACM, 45:891–923, 1998.

C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In
CVPR, 2008.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In VISAPP, 2009.

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of
dimensionality,” in Proc. of 30th ACM Symposium on Theory of Computing, 1998

G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-
sensitive hashing,” in Proc. of the IEEE International Conference on Computer Vision,
2003.

R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.

ANN - search (references continued)

O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-
idf weighting. BMVC., 2008.

M. Raginsky and S. Lazebnik, “Locality-Sensitive Binary Codes from Shift-Invariant
Kernels,” in Proc. of Advances in neural information processing systems, 2009.

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image
search,” Proc. of the IEEE International Conference on Computer Vision, 2009.

J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image
retrieval,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for hashing with
compact codes,” in Proceedings of the 27th International Conference on Machine
Learning, 2010.

•  Linear exhaustive search can be prohibitively expensive
for large image collections

•  Answer (so far): approximate NN search methods
•  Randomized KD-trees
•  Locality sensitive hashing

•  However, memory footprint can be still high.
 Example: N = 107 images, 1010 SIFT features with 128B
per feature 1TB of memory

Look how text-based search engines (Google) index
documents – inverted files.

So far …

Indexing text with inverted files

Need to map feature descriptors to “visual words”.

Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] …

Common [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture [d2:hit], [d3: hit hit hit] …

Document
collection:

Visual words: main idea
Extract some local features from a number of images …

40
K. Grauman, B. Leibe

e.g., SIFT descriptor space: each
point is 128-dimensional

Slide credit: D. Nister [Sivic & Zisserman,ICCV’03]

Visual words: main idea

41
K. Grauman, B. Leibe Slide credit: D. Nister [Sivic & Zisserman,ICCV’03]

Visual words: main idea

42
K. Grauman, B. Leibe Slide credit: D. Nister [Sivic & Zisserman,ICCV’03]

Visual words: main idea

43
K. Grauman, B. Leibe Slide credit: D. Nister [Sivic & Zisserman,ICCV’03]

44
K. Grauman, B. Leibe Slide credit: D. Nister [Sivic & Zisserman,ICCV’03]

45
K. Grauman, B. Leibe Slide credit: D. Nister [Sivic & Zisserman,ICCV’03]

[Sivic & Zisserman,ICCV’03]

[Sivic & Zisserman,ICCV’03]

Visual words

Example: each group
of patches belongs to
the same visual word

48
K. Grauman, B. Leibe

Figure from Sivic & Zisserman, ICCV 2003

More specific example

Samples of visual words (clusters on SIFT descriptors):

More specific example

Samples of visual words (clusters on SIFT descriptors):

Visual words

•  First explored for texture and
material representations
•  Texton = cluster center of
filter responses over collection
of images
•  Describe textures and
materials based on distribution
of prototypical texture
elements.

Leung & Malik 1999; Varma &
Zisserman, 2002; Lazebnik,
Schmid & Ponce, 2003;

Slide: Grauman&Leibe

Inverted file index for images comprised of
visual words

Image credit: A. Zisserman K. Grauman, B. Leibe

Word
number

List of image
numbers

•  Score each image by the number of common visual words
(tentative correspondences)

•  Worst case complexity is linear in the number of images N

•  In practice, it is linear in the length of the lists (<< N)

Another interpretation:
Bags of visual words

Summarize entire image based
on its distribution (histogram)
of visual word occurrences.

Slide: Grauman&Leibe, Image: L. Fei-Fei

Hofmann 2001

... 1 0 0 2
t

d =

Analogous to bag of words
representation commonly used
for documents.

For a vocabulary of size K, each image is represented by a K-vector

where ti is the number of occurrences of visual word i.

Images are ranked by the normalized scalar product between the query
vector vq and all vectors in the database vd:

Another interpretation: the bag-of-words model

Scalar product can be computed efficiently using inverted file.

What if vectors are binary? What is the meaning of ?

Images

Local features invariant
descriptor

vectors

1.  Compute local features in each image independently (offline)
2.  “Label” each feature by a descriptor vector based on its intensity (offline)
3.  Finding corresponding features is transformed to finding nearest neighbour vectors
4.  Rank matched images by number of (tentatively) corresponding regions
5.  Verify top ranked images based on spatial consistency (The first part of this lecture)

Strategy I: Efficient approximate NN search

invariant
descriptor

vectors

frames

regions invariant
descriptor

vectors

1.  Compute affine covariant regions in each frame independently (offline)
2.  “Label” each region by a vector of descriptors based on its intensity (offline)
3.  Build histograms of visual words by descriptor quantization (offline)
4.  Rank retrieved frames by matching vis. word histograms using inverted files.
5.  Verify retrieved frame based on spatial consistency (The first part of the lecture)

Strategy II: Match histograms of visual words

Quantize Single vector
(histogram)

Visual words: discussion I.

Efficiency – cost of quantization

•  Need to still assign each local descriptor to one of the
cluster centers. Could be prohibitive for large vocabularies
(K=1M)

•  Approximate NN-search still needed

•  True also for building the vocabulary

Visual words: discussion II.

Generalization

•  Is vocabulary/quantization learned on one dataset good
for searching another dataset?

•  Experimentally observe a loss in performance.

But, see recent work by Jegou et al.:
Hamming Embedding and Weak Geometry Consistency
for Large Scale Image Search, ECCV’2008
http://lear.inrialpes.fr/pubs/2008/JDS08a/

Visual words: discussion III.

•  What about quantization effects?
•  Visual word assignment can change due to e.g.

 noise in region detection,
 descriptor computation or
 non-modeled image variation (3D effects, lighting)

See also:
Jegou et al., ECCV’2008, http://lear.inrialpes.fr/pubs/2008/JDS08a/
Philbin et al. CVPR’08, http://www.robots.ox.ac.uk/~vgg/publications/html/philbin08-bibtex.html
Mikulik et al., ECCV’10, http://cmp.felk.cvut.cz/~chum/papers/mikulik_eccv10.pdf
Philbin et al., ECCV’10, http://www.di.ens.fr/~josef/publications/philbin10b.pdf

Visual words: discussion IV.

•  Need to determine the size of the vocabulary, K.

•  Other algorithms for building vocabularies, e.g.
agglomerative clustering / mean-shift, but typically more
expensive.

•  Supervised quantization?
Also give examples of images / descriptors which should
and should not match.
E.g.:
Philbin et al. ECCV’10, http://www.robots.ox.ac.uk/~vgg/publications/html/philbin10b-bibtex.html

Visual search using local regions (references)

C. Schmid, R. Mohr, Local Greyvalue Invariants for Image Retrieval, PAMI, 1997

J. Sivic, A. Zisserman, Text retrieval approach to object matching in videos, ICCV, 2003

D. Nister, H. Stewenius, Scalable Recognition with a Vocabulary Tree, CVPR, 2006.

J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval with large
vocabularies and fast spatial matching, CVPR, 2007

O. Chum, J. Philbin, M. Isard, J. Sivic, A. Zisserman, Total Recall: Automatic Query
Expansion with a Generative Feature Model for Object Retrieval, ICCV, 2007

H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency
for large scale image search, ECCV’2008

O. Chum, M. Perdoch, J. Matas: Geometric min-Hashing: Finding a (Thick) Needle in a
Haystack, CVPR 2009

H. Jégou, M. Douze and C. Schmid, On the burstiness of visual elements, CVPR, 2009

H. Jégou, M. Douze, C. Schmid and P. Pérez, Aggregating local descriptors into a
compact image representation, CVPR’2010

Efficient visual search for objects and places

Oxford Buildings Search - demo

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/
index.html

Example

Oxford buildings dataset

  Automatically crawled from Flickr

  Consists of:

Oxford buildings dataset
  Landmarks plus queries used for evaluation

All Soul's

Ashmolean

Balliol

Bodleian

Thom
Tower

Cornmarket

Bridge of
Sighs

Keble

Magdalen

University
Museum

Radcliffe
Camera

  Ground truth obtained for 11 landmarks

  Evaluate performance by mean Average Precision

Measuring retrieval performance: Precision - Recall

all images

returned
images

relevant
images

•  Precision: % of returned images that
 are relevant

•  Recall: % of relevant images that are
returned

Average Precision

•  A good AP score requires both
high recall and high precision

•  Application-independent AP

Performance measured by mean Average Precision (mAP) over
55 queries on 100K or 1.1M image datasets

50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
750K 0.609 0.630
1M 0.618 0.645

1.25M 0.602 0.625

vocab
size

bag of
words

spatial

Mean Average Precision variation with vocabulary size

What objects/scenes local regions do not work on?

E.g. texture-less objects, objects defined by shape, deformable
objects, wiry objects.

What objects/scenes local regions do not work on?

Example applications of
large scale visual search and matching

100
K. Grauman, B. Leibe

Sony Aibo (Evolution Robotics)

SIFT usage
•  Recognize

docking station
•  Communicate

with visual cards

Other uses
•  Place recognition
•  Loop closure in SLAM

Slide credit: David Lowe

Application: Internet-based inpainting
Photo-editing using images of the same place
[Whyte, Sivic and Zisserman, 2009]

102
B. Leibe

Mobile tourist guide

Mobile tourist guide
•  Self-localization
•  Object/building recognition
•  Photo/video augmentation

Aachen Cathedral

[Quack, Leibe, Van Gool, CIVR’08]

Web Demo: Movie Poster Recognition

103
K. Grauman, B. Leibe

http://www.kooaba.com/en/products_engine.html#

50’000 movie
posters indexed

Query-by-image
from mobile phone
available in Switzer-
land

Image Auto-Annotation

104
K. Grauman, B. Leibe

Left: Wikipedia image
Right: closest match from Flickr

[Quack CIVR’08]

Moulin Rouge

Tour Montparnasse Colosseum

Viktualienmarkt
Maypole

Old Town Square (Prague)

Visual search in your pocket

Slide credit: I. Laptev

Building Rome in a Day – or –

matching and 3D reconstruction in large
unstructured datasets.

Goal: Build a 3D model of a city from
 a large collection of images downloaded from the Internet

Use a cluster with 500 CPU cores.

Building Rome in a Day, Sameer Agarwal, Noah Snavely, Ian
Simon, Steven M. Seitz and Richard Szeliski,
International Conference on Computer Vision, 2009
http://grail.cs.washington.edu/rome/

15,464

76,389

37,383

Slide: N. Snavely

Reproduced with permission of Yahoo! Inc. © 2005 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Slide: N. Snavely

Photo Tourism overview

Scene
reconstruction

Photo
Explorer Input photographs Relative camera

positions and orientations

Point cloud

Sparse correspondence

Slide: N. Snavely

Photo Tourism overview

Scene
reconstruction

Photo
Explorer

Input photographs

Slide: N. Snavely

Scene reconstruction

Automatically estimate
•  position, orientation, and focal length of cameras
•  3D positions of feature points

Feature detection

Feature matching
Incremental

structure
from motion

Correspondence
estimation

Slide: N. Snavely

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Slide: N. Snavely

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Slide: N. Snavely

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Slide: N. Snavely

Feature matching

Complexity of matching:

From Agarwal et al. “Building
Rome in a Day”, ICCV’09

Feature matching

Obtain candidate pairs of images to match using
visual vocabulary matching based on k-means tree

Figure: N. Snavely

Feature matching

Match features between candidate pairs using
K-d trees built on SIFT descriptors.

Figure: N. Snavely

Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987]
to estimate fundamental matrices between pairs

Slide: N. Snavely

Structure from motion (R. Keriven’s class)

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

p1

p4

p3

p2

p5

p6

p7

minimize
f (R, T, P)

Slide: N. Snavely

Slide: N. Snavely

Slide: N. Snavely

•  Optimize parameters for
two cameras and common
points

•  Find new image with most
matches to existing points

•  Initialize new camera using
pose estimation

•  Bundle adjust
•  Add new points
•  Bundle adjust

Slide: N. Snavely

[Agarwal, Snavely, Simon, Seitz and Szeliski ’09]

• 150,000 images from Flickr.com associated with the tags "Rome" or "Roma"
•  Matching and reconstruction: 21 hours on a cluster with 496 compute cores Slide: N. Snavely

[Agarwal, Snavely, Simon, Seitz and Szeliski ’09]

• 150,000 images from Flickr.com associated with the tags "Rome" or "Roma"
•  Matching and reconstruction: 21 hours on a cluster with 496 compute cores Slide: N. Snavely

[Agarwal, Snavely, Simon, Seitz and Szeliski ’09]

• 250,000 Venice images from Flickr.com
•  Matching and reconstruction: 27 hours on a cluster with 496 compute cores Slide: N. Snavely

[Agarwal, Snavely, Simon, Seitz and Szeliski ’09]

• 250,000 Venice images from Flickr.com
•  Matching and reconstruction: 27 hours on a cluster with 496 compute cores Slide: N. Snavely

Example of the final 3D point cloud and cameras
57,845 downloaded images, 11,868 registered images. This video: 4,619 images.

The end

