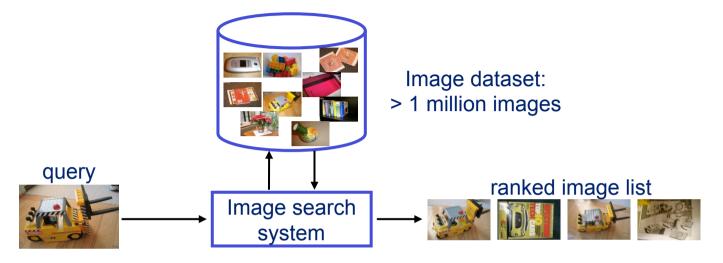
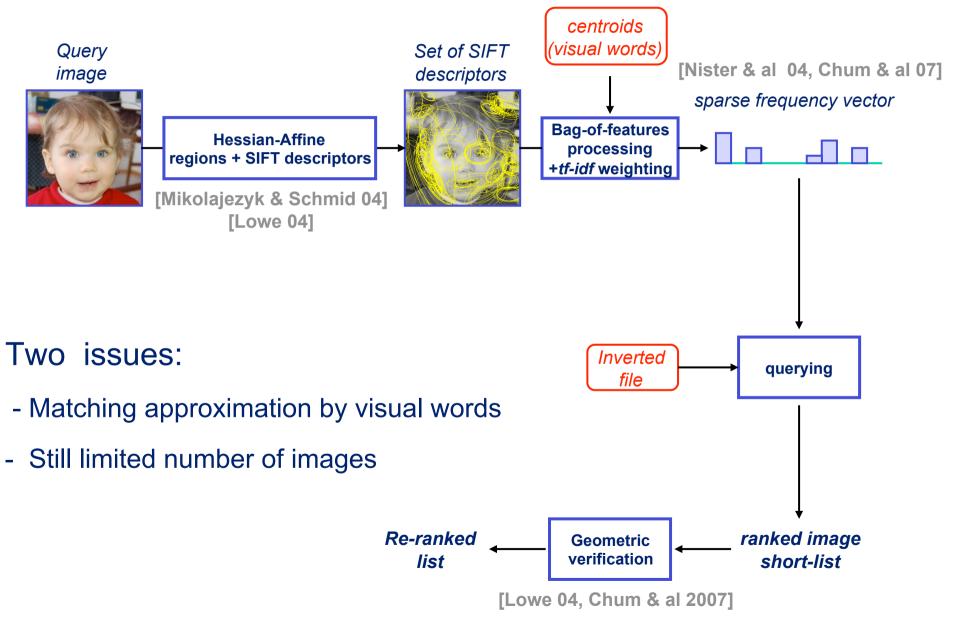
Large scale object/scene recognition



- Each image described by approximately 2000 descriptors
 - 2 10⁹ descriptors to index!
- Database representation in RAM:
 - Raw size of descriptors : 1 TB, search+memory intractable

State-of-the-art: Bag-of-words [Sivic & Zisserman'03]



Bag-of-features as an ANN search algorithm

Matching function of descriptors : k-nearest neighbors

$$f_{k\text{-NN}}(x,y) = \begin{cases} 1 & \text{if } x \text{ is a } k\text{-NN of } y \\ 0 & \text{otherwise} \end{cases}$$

• Bag-of-features matching function $f_q(x,y) = \delta_{q(x),q(y)}$

where q(x) is a quantizer, i.e., assignment to visual word and $\delta_{a,b}$ is the Kronecker operator ($\delta_{a,b}$ =1 iff a=b)

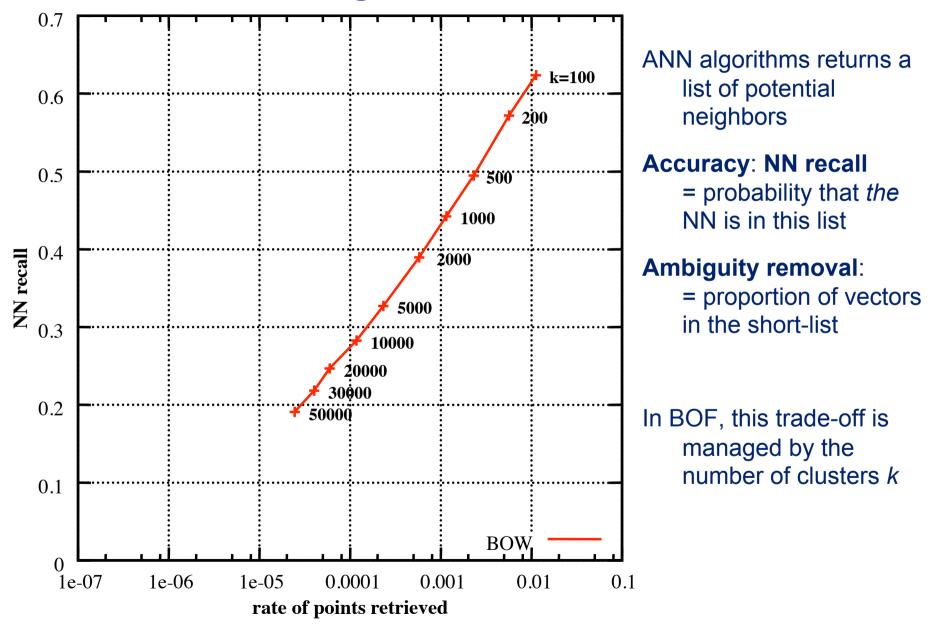
Approximate nearest neighbor search evaluation

- ANN algorithms usually returns a short-list of nearest neighbors
 - this short-list is supposed to contain the NN with high probability
 - exact search may be performed to re-order this short-list
- Proposed quality evaluation of ANN search: trade-off between
 - Accuracy: NN recall = probability that the NN is in this list

against

- Ambiguity removal = proportion of vectors in the short-list
 - the lower this proportion, the more information we have about the vector
 - the lower this proportion, the lower the complexity if we perform exact search on the short-list
- ANN search algorithms usually have some parameters to handle this trade-off

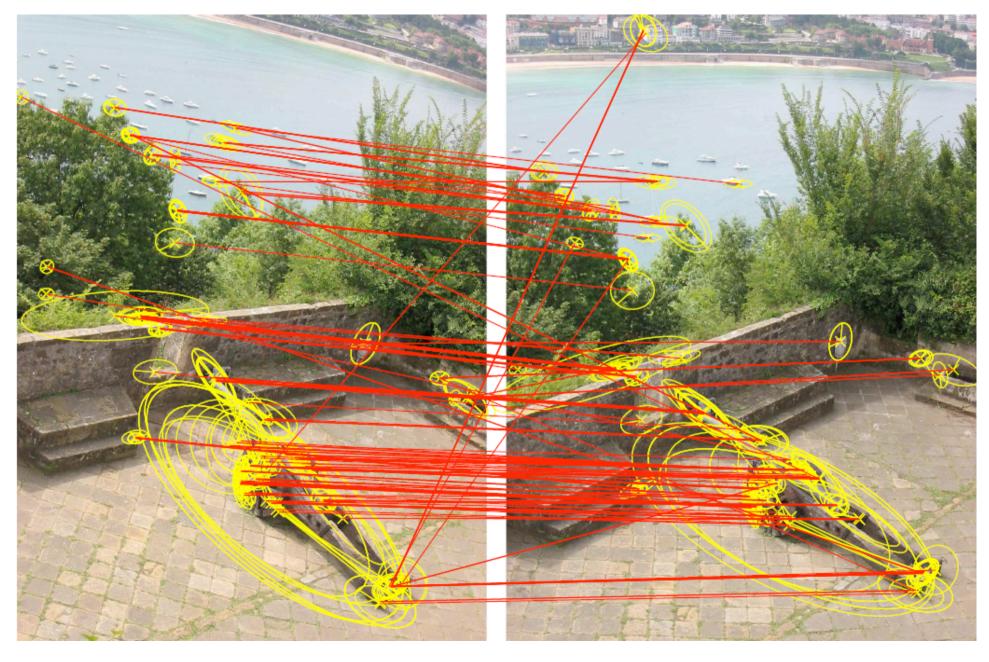
ANN evaluation of bag-of-features



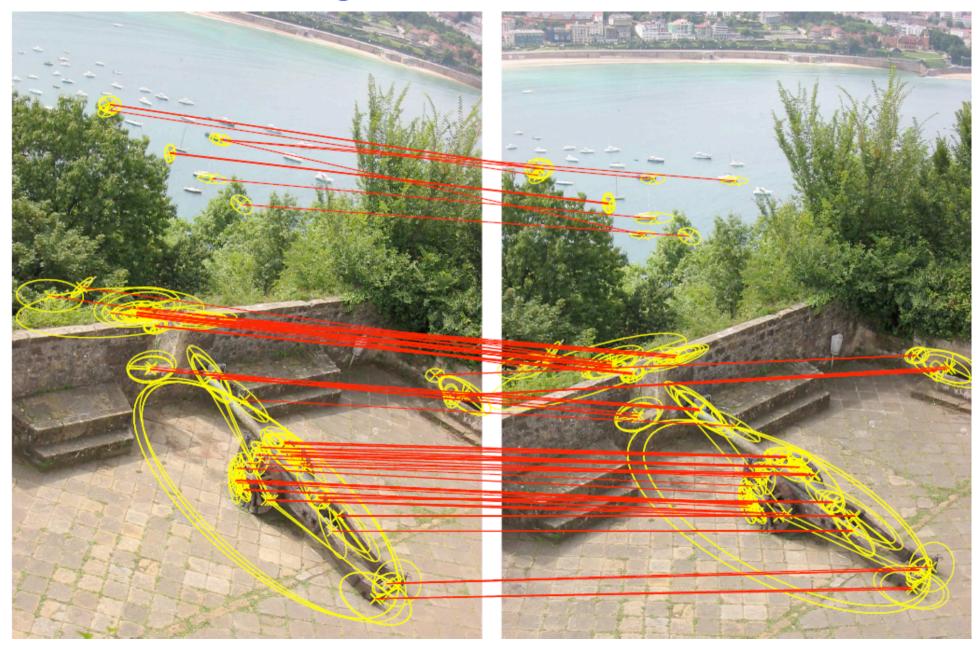
Problem with bag-of-features

- The intrinsic matching scheme performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: many true matches are missed
- No good trade-off between "small" and "large"!
 - either the Voronoi cells are too big
 - or these cells can't absorb the descriptor noise
 - → intrinsic approximate nearest neighbor search of BOF is not sufficient

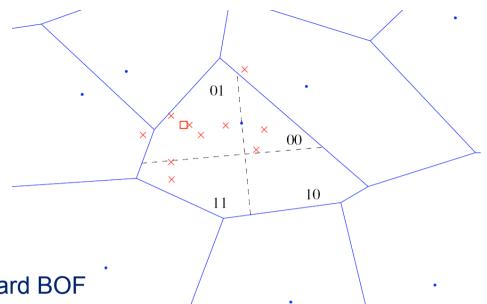
20K visual word: false matchs



200K visual word: good matches missed



Hamming Embedding

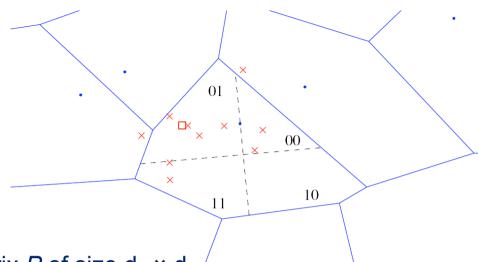


- Representation of a descriptor x
 - Vector-quantized to q(x) as in standard BOF
 - + short binary vector b(x) for an additional localization in the Voronoi cell
- Two descriptors x and y match iif

$$q(x) = q(y)$$
 and $h(b(x), b(y)) \le h_t$
where $h(a,b)$ is the Hamming distance

- Nearest neighbors for Hammg distance ≈ the ones for Euclidean distance
- Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: 3 faster that BOF with same dictionary size!

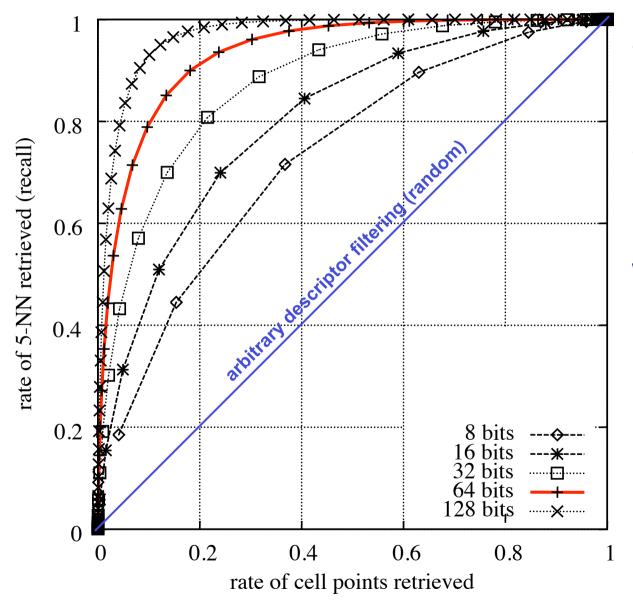
Hamming Embedding



- Off-line (given a quantizer)
 - draw an orthogonal projection matrix P of size $d_b \times d$
 - → this defines d_b random projection directions
 - for each Voronoi cell and projection direction, compute the median value from a learning set
- On-line: compute the binary signature b(x) of a given descriptor
 - project x onto the projection directions as $z(x) = (z_1,...z_{db})$
 - $b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV'10]

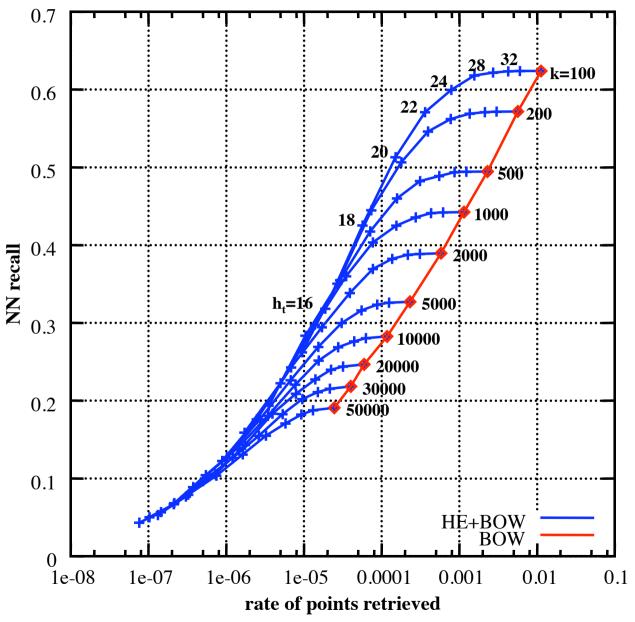
Hamming and Euclidean neighborhood



- trade-off between memory usage and accuracy
- → more bits yield higher accuracy

We used 64 bits (8 bytes)

ANN evaluation of Hamming Embedding



compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal

Matching points - 20k word vocabulary

240 matches 201 matches

Many matches with the non-corresponding image!

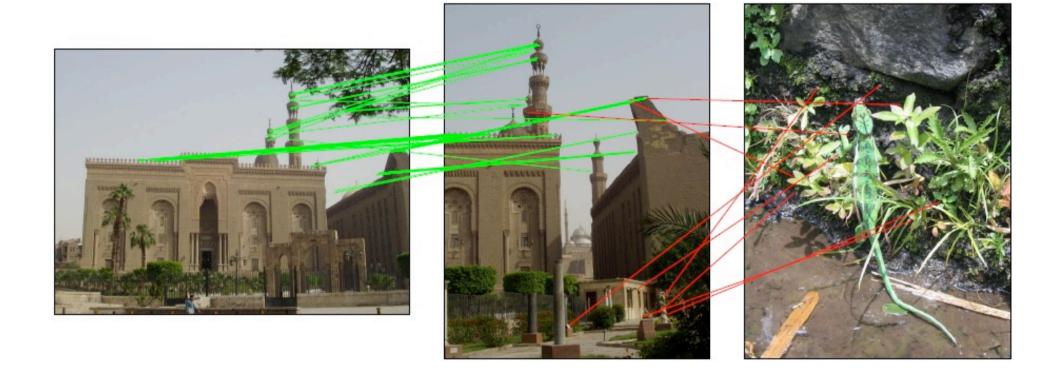
Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

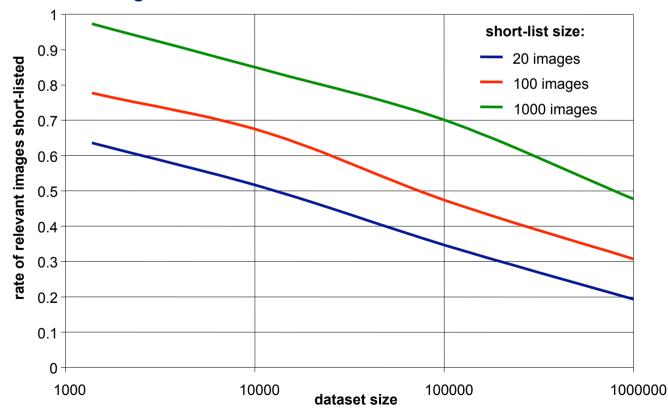
83 matches 8 matches



10x more matches with the corresponding image!

Weak geometry consistency

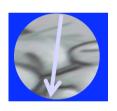
- Re-ranking based on full geometric verification [Lowe 04, Chum & al 2007]
 - works very well
 - but performed on a short-list only (typically, 100 images)
 - → for very large datasets, the number of distracting images is so high that relevant images are not even short-listed!



Weak geometry consistency

- Weak geometric information used for all images (not only the short-list)
- Each invariant interest region detection has a scale and rotation angle associated, here characteristic scale and dominant gradient orientation

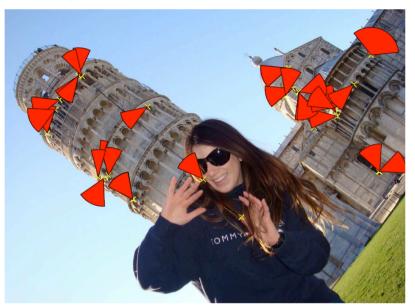




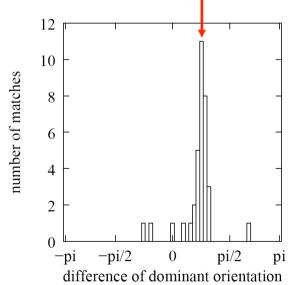
Scale change 2 Rotation angle ca. 20 degrees

- Each matching pair results in a scale and angle difference
- For the global image scale and rotation changes are roughly consistent

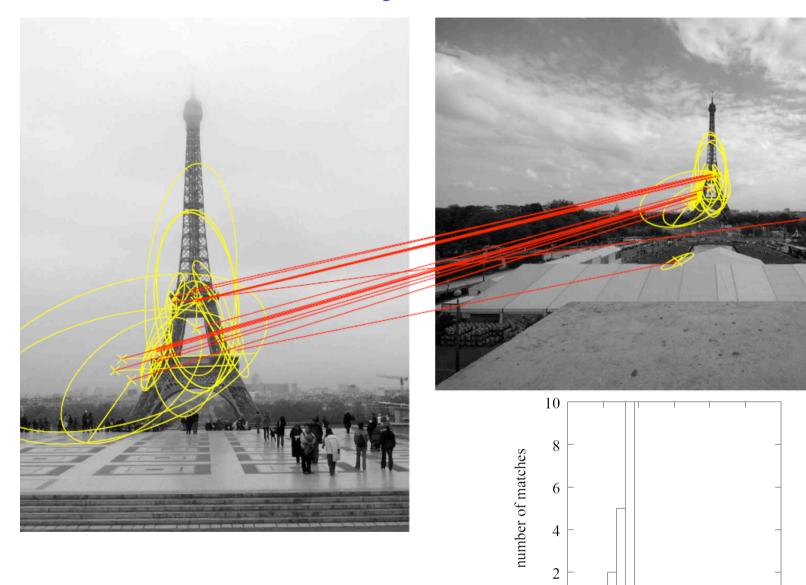
WGC: orientation consistency



Max = rotation angle between images



WGC: scale consistency



1/4 1/2

log-difference of charateristic scales

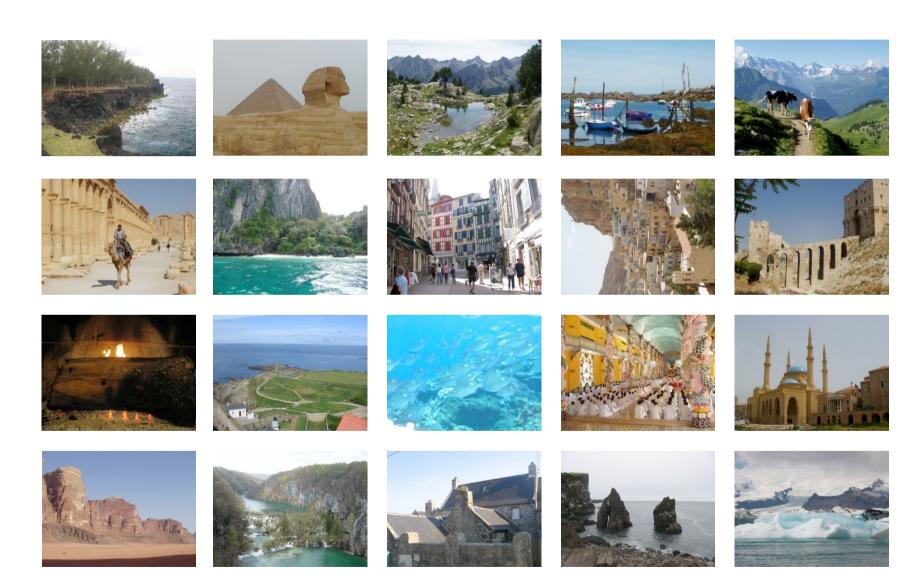
Weak geometry consistency

- Integrate the geometric verification into the BOF representation
 - votes for an image projected onto two quantized subspaces, that is vote for an image at a given angle & scale
 - these subspace are show to be independent
 - a score s_i for all quantized angle and scale differences for each image
 - final score: filtering for each parameter (angle and scale) and min selection
- Only matches that do agree with the main difference of orientation and scale will be taken into account in the final score
- Re-ranking using full geometric transformation still adds information in a final stage

Experimental results

- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed
- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve

Holiday dataset – example queries



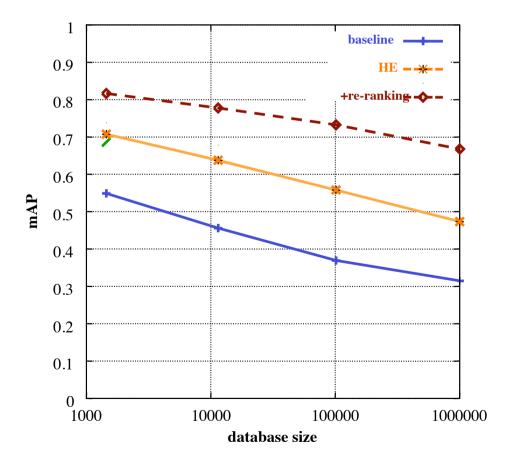
Dataset: Venice Channel

Dataset : San Marco square

Example distractors - Flickr

Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)



BOF 2 Ours 1

BOF 5890 Ours 4

Results – Venice Channel

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR'07]

Evaluation measure: Mean average precision (mAP)

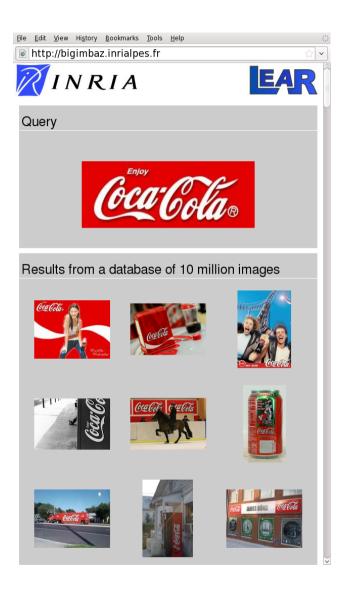
Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR'06]

4 images per object

Evaluation measure: among the 4 best retrieval results how many are correct (ranges from 1 to 4)

Comparison with the state of the art

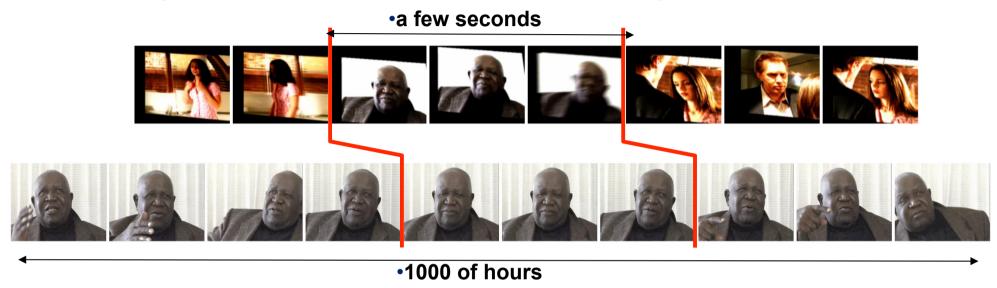
dataset	Oxford		Kentucky	
distractors	0	100K	0	1M
soft assignment [14]	0.493	0.343		
ours	0.615	0.516		
soft + geometrical re-ranking [14]	0.598	0.480		
ours + geometrical re-ranking	0.667	0.591		
soft + query expansion [14]	0.718	0.605		
ours + query expansion	0.747	0.687		
hierarchical vocabulary [6]			3.19	
CDM [11]			3.61	2.93
ours			3.42	3.10
ours + geometrical re-ranking			3.55	3.40



Demo at http://bigimbaz.inrialpes.fr

Extension to videos: video copy detection

Recognized "attacked" videos (distortion, blur, editing, mix up,...)



- Video = image sequence: use image indexing
 - index frames / keyframes of video, query frames of video query
 - verify temporal consistency
- Several tradeoffs in search quality vs. database size

Temporal consistency

- Store a subset of the frames of the video to be indexed in a database
- Each frame of the query video is compared to the frames in the dataset of frames
- \rightarrow Output: a set of matching frames and associated scores (t_q , b, t_b , s) where
- t_{α} temporal position in the query video
- b number of the video in the dataset
- t_b temporal position in the database video
- s matching score for the two frames

Temporal consistency

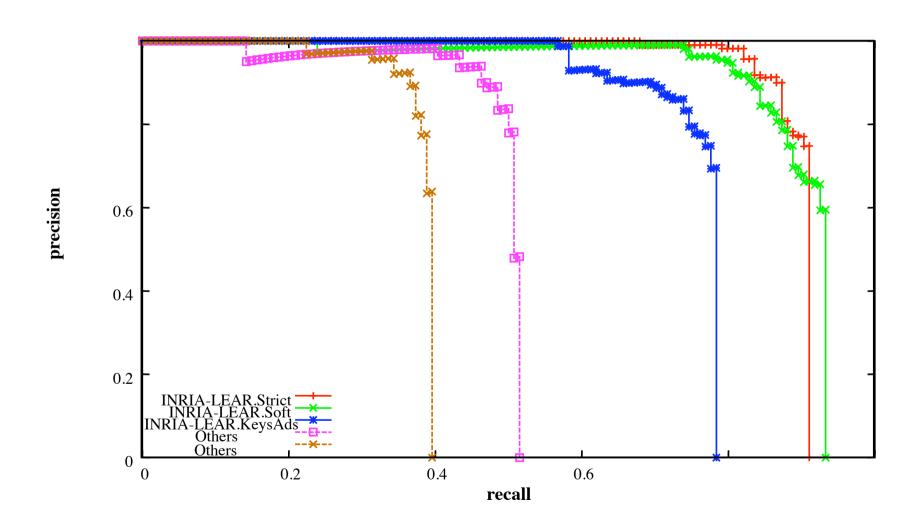
- Estimate a function between t_q and t_b
- Possible models:
 - ▶ simple (temporal shift): $t_q = t_b + \mathbf{W}t$
 - ▶ global speed changes (acceleration, slow-motion): $t_q = a^* t_b + \mathbf{W}t$
 - ► complex with varying shifts: $t_q = t_b + \text{shift } [t_q]$

Temporal consistency

- Estimate a function between t_q and t_b
- Possible models:
 - ▶ simple (temporal shift): $t_q = t_b + \mathbf{W}t$
 - ▶ global speed changes (acceleration, slow-motion): $t_q = a^* t_b + \mathbf{W}t$
 - ▶ complex with varying shifts: $t_q = t_b + \text{shift } [t_q]$
- Possible method for estimation:
 - Hough transform

TrecVid'08 copyright detection competition

Precision-recall: combined transformation (10)



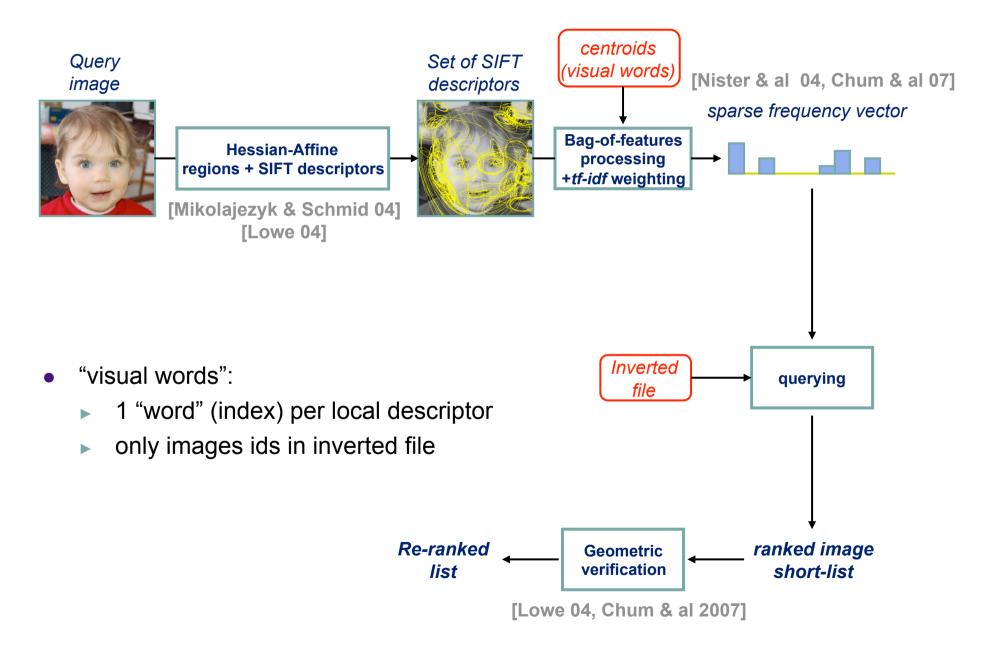
Sample result

Sample result

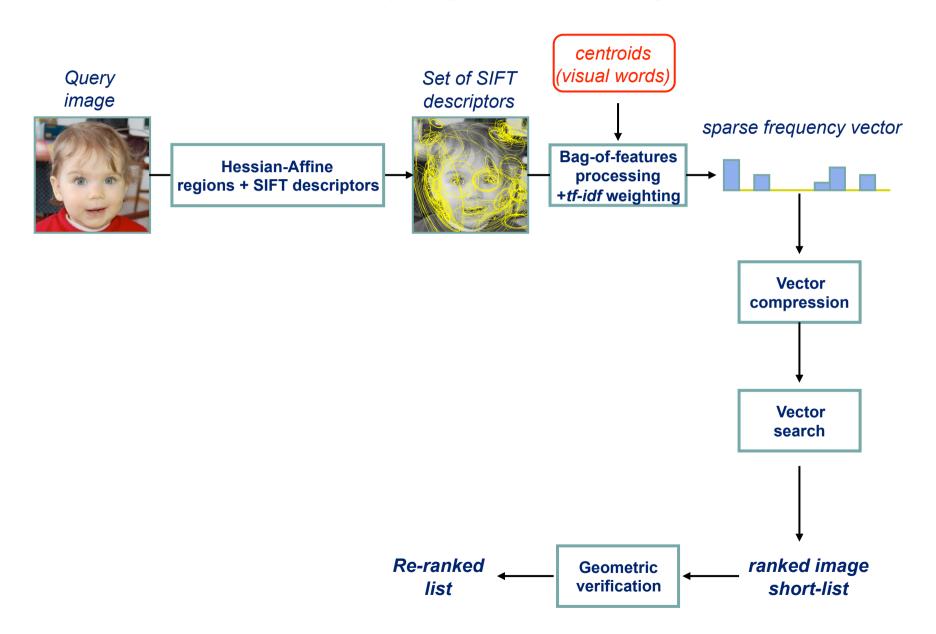
Towards larger databases?

- BOF can handle up to ~10 M d'images
 - with a limited number of descriptors per image
 - 40 GB of RAM
 - Search = 2 s
- Web-scale = billions of images
 - With 100 M per machine
 - \rightarrow search = 20 s, RAM = 400 GB
 - → not tractable!

State-of-the-art: Bag-of-words [Sivic & Zisserman'03]



Recent approaches for very large scale indexing



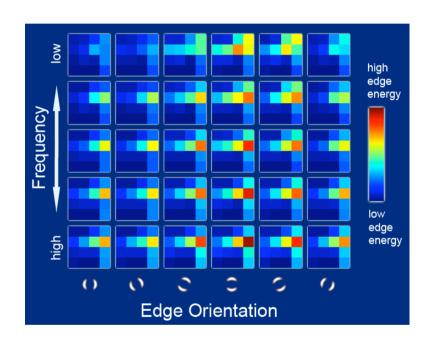
Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
- require hundreds of bytes are required to obtain a "reasonable quality"

- GIST descriptors with Spectral Hashing [Weiss et al.'08]
- very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor

The "gist" of a scene: Oliva & Torralba (2001)



- 5 frequency bands and 6 orientations for each image location
- PCA or tiling of the image (windowing) to reduce the dimension

GIST descriptor + spectral hashing

• The position of the descriptor in the image is encoded in the representation

•Torralba et al. (2003)

Spectral hashing produces binary codes similar to spectral clusters

Related work on very large scale image search

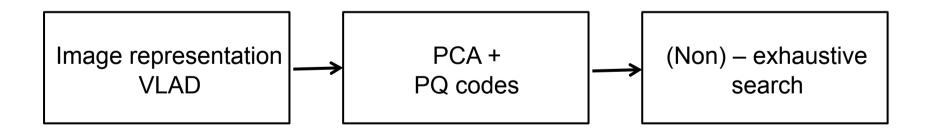
- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
- require hundreds of bytes are required to obtain a "reasonable quality"

- GIST descriptors with Spectral Hashing [Weiss et al.'08]
- → very limited invariance to scale/rotation/crop

- Aggregating local descriptors into a compact image representation [Jegou et al. '10]
- Efficient object category recognition using classemes [Torresani et al.'10]

Aggregating local descriptors into a compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality
- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm



Aggregation of local descriptors

Problem: represent an image by a single fixed-size vector:

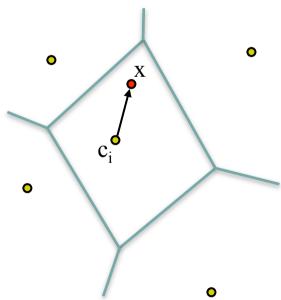
set of *n* local descriptors \rightarrow 1 vector

- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
- → high dimensionality reduction/compression introduces loss

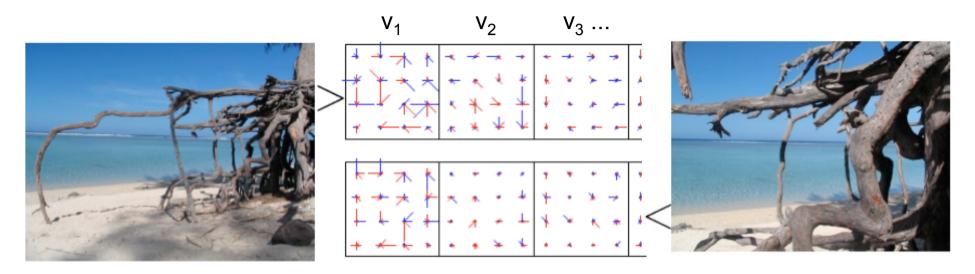
- Alternative : vector of locally aggregated descriptors (VLAD)
 - non sparse vector
 - excellent results with a small vector dimensionality

VLAD: vector of locally aggregated descriptors

- Learning: a vector quantifier (*k*-means)
 - output: k centroids (visual words): $c_1, ..., c_i, ..., c_k$
 - centroid c_i has dimension d
- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell
 v_i := v_i + (x c_i)
- VLAD (dimension $D = k \times d$)
- The vector is L2-normalized



VLADs for corresponding images



SIFT-like representation per centroid (+ components: blue, - components: red)

good coincidence of energy & orientations

VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
- Dimension is reduced to from D to D' dimensions with PCA (principal component analyses)

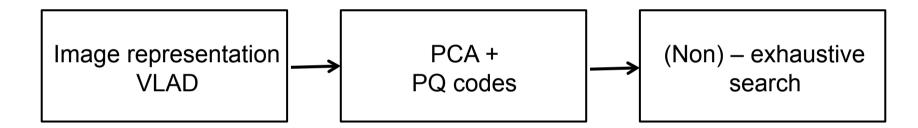
Aggregator	k	D	D'=D (no reduction)	D'=128	D'=64
BoF	1,000	1,000	41.4	44.4	43.4
BoF	20,000	20,000	44.6	45.2	44.5
BoF	200,000	200,000	54.9	43.2	41.6
VLAD	16	2,048	49.6	49.5	49.4
VLAD	64	8,192	52.6	51.0	47.7
VLAD	256	32,768	57.5	50.8	47.6

Observations:

- VLAD better than BoF for a given descriptor size
- Choose a small D if output dimension D' is small

Compact image representation

- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

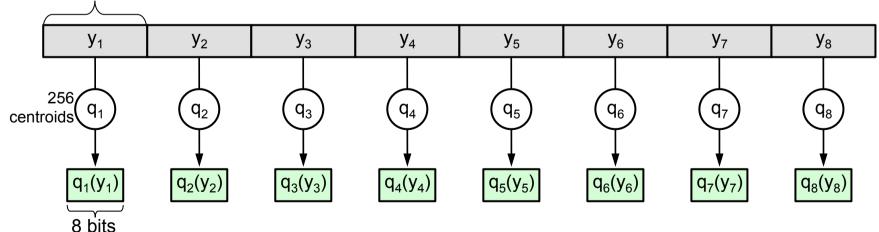


- Dimensionality reduction with
 - Principal component analysis (PCA)
 - Compact encoding: product quantizer
 - ➤ very compact descriptor, fast nearest neighbor search, little storage requirements

Product quantization

- Vector split into m subvectors: $y \rightarrow [y_1 | \dots | y_m]$
- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1)| \dots |q_m(y_m)]$ where each q_i is learned by k-means with a limited number of centroids
- Example: y = 128-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook 256^8 ~ 1.8x10^19

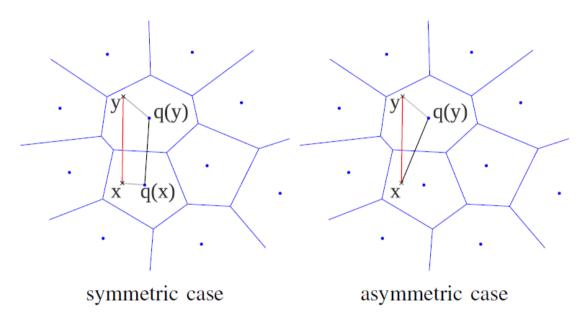
16 components



 \Rightarrow 8 subvectors x 8 bits = 64-bit quantization index

Product quantizer: distance computation

Asymmetric distance computation (ADC)



Sum of square distances with quantization centroids

Product quantizer: asymmetric distance computation (ADC)

Compute the square distance approximation in the compressed domain

$$d(x,y)^{2} \approx \sum_{i=1}^{m} d(x_{i}, q_{i}(y_{i}))^{2}$$

- To compute distance between query x and many codes
 - **compute** $d(x_i, c_{i,j})^2$ for each subvector x_i and all possible centroids
 - → stored in look-up tables
 - for each database code: sum the elementary square distances
- Each 8x8=64-bits code requires only m=8 additions per distance!

Optimizing the dimension reduction and quantization together

VLAD vectors suffer two approximations

• mean square error from PCA projection: $e_p(D')$

ightharpoonup mean square error from quantization: $e_q(D')$

• Given k and bytes/image, choose D' minimizing their sum

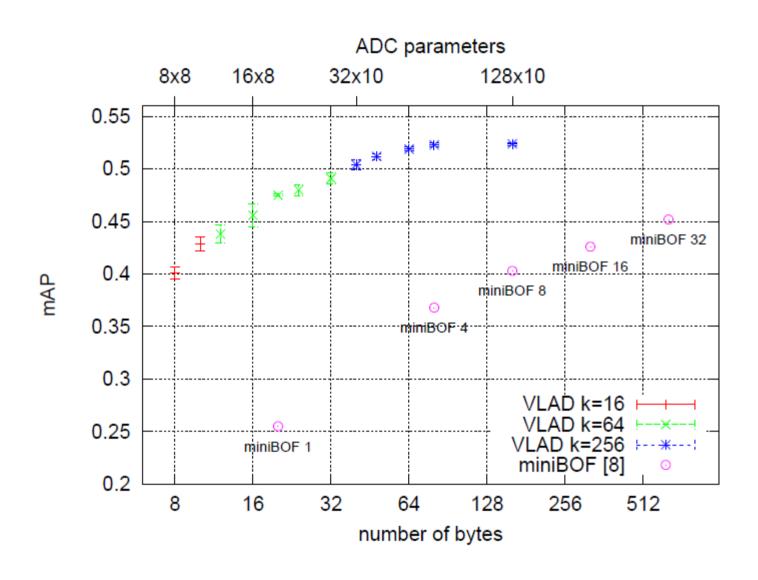
Ex, k=16, 16B:

D'	e _p (D')	e _q (D')	$e_p(D')+e_q(D')$
32	0.0632	0.0164	0.0796
48	0.0508	0.0248	0.0757
64	0.0434	0.0321	0.0755
80	0.0386	0.0458	0.0844

Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - \blacktriangleright The larger k, the better the raw search performance
 - ▶ But large *k* produce large vectors, that are harder to index
- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - D' computed from k via the joint optimization of reduction/indexing
 - Only k has to be set
 - → end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters



Results on standard datasets

Datasets

University of Kentucky benchmark

► INRIA Holidays dataset

score: nb relevant images, max: 4

score: mAP (%)

Method	bytes	UKB	Holidays
BoF, k=20,000	10K	2.92	44.6
BoF, k=200,000	12K	3.06	54.9
miniBOF	20	2.07	25.5
miniBOF	160	2.72	40.3
VLAD k=16, ADC 16 x 8	16	2.88	46.0
VLAD k=64, ADC 32 x10	40	3.10	49.5

D' = 64 for k = 16 and D' = 96 for k = 64

ADC (subvectors) x (bits to encode each subvector)

miniBOF: "Packing Bag-of-Features", ICCV'09

Comparison BOF / VLAD + ADC

Datasets

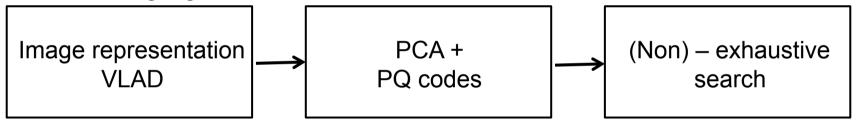
► INRIA Holidays dataset , score: mAP (%)

Method	Holidays
BOF, k=2048, D'= 64, ADC 16x8	42.5
VLAD k=16,D=2048, D' = 64, ADC 16 x 8	46.0
BOF, k=8192, D'= 128, AD16x8	41.9
VLAD k=64, D= 8192, D'=128, ADC 16X8	45.8

- VLAD improves results over BOF
- Product quantizer gives excellent results for BOF!

Compact image representation

- Approach: joint optimization of three stages
- Non-exhaustive search
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm



- Non-exhaustive search
 - Combination with an inverted file to avoid exhaustive search

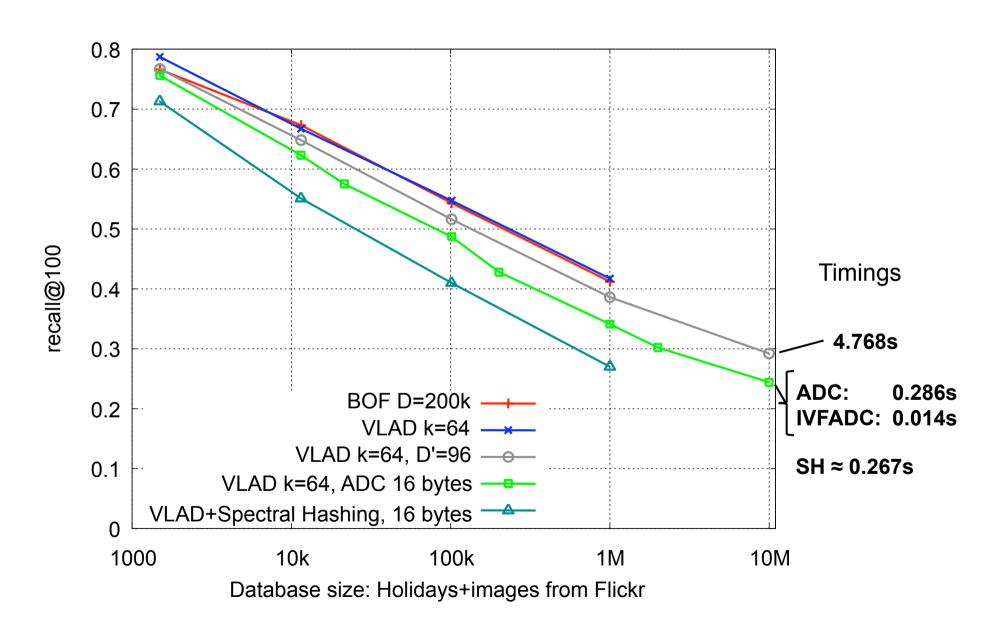
Large scale experiments (10 million images)

- Exhaustive search of VLADs, D'=64
 - ▶ 4.77s
- With the product quantizer
 - Exhaustive search with ADC: 0.29s
 - ▶ Non-exhaustive search with IVFADC: 0.014s

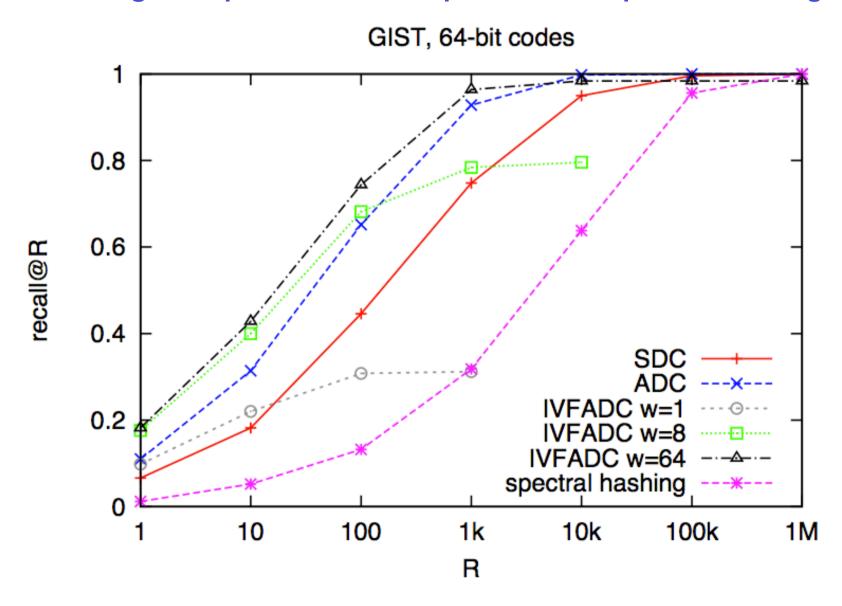
IVFADC -- Combination with an inverted file



Large scale experiments (10 million images)



Searching with quantization: comparison with spectral Hashing



VLAD + PQ codes

- Excellent search accuracy and speed in 10 million of images
- Each image is represented by very few bytes (20 40 bytes)
- Tested on up to 220 million video frame
 - extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores</p>
- On-line available:
 - Matlab source code of ADC

Alternative: using Fisher vectors instead of VLAD descriptors [Perronnin'10]