
Large scale object/scene recognition

•  Each image described by approximately 2000 descriptors

•  2 109 descriptors to index!

•  Database representation in RAM:

•  Raw size of descriptors : 1 TB, search+memory intractable

Image search
system

ranked image list

Image dataset:
> 1 million images

query

State-of-the-art: Bag-of-words [Sivic & Zisserman’03]

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

[Mikolajezyk & Schmid 04]
[Lowe 04]

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

[Lowe 04, Chum & al 2007]

Two issues:
 - Matching approximation by visual words

- Still limited number of images

[Nister & al 04, Chum & al 07]

Bag-of-features as an ANN search algorithm

•  Matching function of descriptors : k-nearest neighbors

•  Bag-of-features matching function

 where q(x) is a quantizer, i.e., assignment to visual word and
 δa,b is the Kronecker operator (δa,b=1 iff a=b)

Approximate nearest neighbor search evaluation

•  ANN algorithms usually returns a short-list of nearest neighbors

•  this short-list is supposed to contain the NN with high probability

•  exact search may be performed to re-order this short-list

•  Proposed quality evaluation of ANN search: trade-off between

•  Accuracy: NN recall = probability that the NN is in this list

 against

•  Ambiguity removal = proportion of vectors in the short-list

•  the lower this proportion, the more information we have about the vector

•  the lower this proportion, the lower the complexity if we perform exact search on
the short-list

•  ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features

ANN algorithms returns a
list of potential
neighbors

Accuracy: NN recall
= probability that the
NN is in this list

Ambiguity removal:
= proportion of vectors
in the short-list

In BOF, this trade-off is
managed by the
number of clusters k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

N
N

 re
ca

ll

rate of points retrieved

 k=100
 200

 500
 1000

 2000

 5000
 10000

 20000
 30000

 50000

BOW

Problem with bag-of-features

•  The intrinsic matching scheme performed by BOF is weak

•  for a “small” visual dictionary: too many false matches

•  for a “large” visual dictionary: many true matches are missed

•  No good trade-off between “small” and “large” !

•  either the Voronoi cells are too big

•  or these cells can’t absorb the descriptor noise

→ intrinsic approximate nearest neighbor search of BOF is not sufficient

20K visual word: false matchs

200K visual word: good matches missed

Hamming Embedding

•  Representation of a descriptor x
•  Vector-quantized to q(x) as in standard BOF

+ short binary vector b(x) for an additional localization in the Voronoi cell

•  Two descriptors x and y match iif
 where h(a,b) is the Hamming distance

•  Nearest neighbors for Hammg distance ≈ the ones for Euclidean distance

•  Efficiency
•  Hamming distance = very few operations

•  Fewer random memory accesses: 3faster that BOF with same dictionary size!

Hamming Embedding

•  Off-line (given a quantizer)

•  draw an orthogonal projection matrix P of size db × d

→ this defines db random projection directions

•  for each Voronoi cell and projection direction, compute the median value
from a learning set

•  On-line: compute the binary signature b(x) of a given descriptor

•  project x onto the projection directions as z(x) = (z1,…zdb)

•  bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

 [H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]

Hamming and Euclidean neighborhood

•  trade-off between
memory usage and
accuracy

→  more bits yield higher
accuracy

We used 64 bits (8 bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ra
te

 o
f 5

-N
N

 re
tri

ev
ed

 (r
ec

al
l)

rate of cell points retrieved

8 bits
16 bits
32 bits
64 bits

128 bits

ANN evaluation of Hamming Embedding

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

N
N

 re
ca

ll

rate of points retrieved

k=100
200

 500
1000

 2000

 5000
10000

 20000
 30000

 50000

ht=16

18

20
22

HE+BOW
BOW

32 28
24

compared to BOW: at
least 10 times less points
in the short-list for the
same level of accuracy

Hamming Embedding
provides a much better
trade-off between recall
and ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Weak geometry consistency

•  Re-ranking based on full geometric verification

•  works very well

•  but performed on a short-list only (typically, 100 images)

→  for very large datasets, the number of distracting images is so high that
relevant images are not even short-listed!

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1000 10000 100000 1000000 dataset size

ra
te

 o
f r

el
ev

an
t i

m
ag

es
 s

ho
rt

-li
st

ed
 20 images

100 images
1000 images

short-list size:

[Lowe 04, Chum & al 2007]

Weak geometry consistency

•  Weak geometric information used for all images (not only the short-list)

•  Each invariant interest region detection has a scale and rotation angle
associated, here characteristic scale and dominant gradient orientation

Scale change 2
Rotation angle ca. 20 degrees

•  Each matching pair results in a scale and angle difference

•  For the global image scale and rotation changes are roughly consistent

Max = rotation angle between images

WGC: orientation consistency

WGC: scale consistency

Weak geometry consistency

•  Integrate the geometric verification into the BOF representation

•  votes for an image projected onto two quantized subspaces, that is vote
for an image at a given angle & scale

•  these subspace are show to be independent

•  a score sj for all quantized angle and scale differences for each image

•  final score: filtering for each parameter (angle and scale) and min selection

•  Only matches that do agree with the main difference of orientation and scale
will be taken into account in the final score

•  Re-ranking using full geometric transformation still adds information in a final
stage

Experimental results

•  Evaluation for the INRIA holidays dataset, 1491 images

•  500 query images + 991 annotated true positives

•  Most images are holiday photos of friends and family

•  1 million & 10 million distractor images from Flickr

•  Vocabulary construction on a different Flickr set

•  Almost real-time search speed

•  Evaluation metric: mean average precision (in [0,1], bigger = better)

•  Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query

Base 4 Base 3

Base 2 Base 1

Dataset : San Marco square

Query Base 1 Base 3 Base 2

Base 9 Base 8

Base 4 Base 5 Base 7 Base 6

Example distractors - Flickr

Experimental evaluation

•  Evaluation on our holidays dataset, 500 query images, 1 million distracter
images

•  Metric: mean average precision (in [0,1], bigger = better)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000000 100000 10000 1000

m
A

P

database size

baseline
HE

+re-ranking

BOF 2
Ours 1

BOF 43064
Ours 5

Query

BOF 5890
Ours 4

Results – Venice Channel

Base 1 Flickr

Flickr Base 4

Query

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:
Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

4 images per object

 Evaluation measure: among the 4 best retrieval results how
 many are correct (ranges from 1 to 4)

Comparison with the state of the art

[14] Philbin et al., CVPR’08; [6] Nister et al., CVPR’06; [10] Harzallah et al., CVPR’07

Demo at http://bigimbaz.inrialpes.fr

Extension to videos: video copy detection

  Recognized “attacked” videos (distortion, blur, editing, mix up,...)

  Video = image sequence: use image indexing

►  index frames / keyframes of video, query frames of video query

►  verify temporal consistency

  Several tradeoffs in search quality vs. database size

• 1000 of hours

• a few seconds

Temporal consistency

  Store a subset of the frames of the video to be indexed in a database

  Each frame of the query video is compared to the frames in the dataset of
frames

→ Output: a set of matching frames and associated scores (tq, b, tb , s) where

tq temporal position in the query video
b number of the video in the dataset
tb temporal position in the database video
s matching score for the two frames

Temporal consistency

  Estimate a function between tq and tb

  Possible models:

►  simple (temporal shift): tq = tb + t

►  global speed changes (acceleration, slow-motion): tq =a* tb + t

►  complex with varying shifts: tq = tb + shift [tq]

Temporal consistency

  Estimate a function between tq and tb

  Possible models:

►  simple (temporal shift): tq = tb + t

►  global speed changes (acceleration, slow-motion): tq =a* tb + t

►  complex with varying shifts: tq = tb + shift [tq]

  Possible method for estimation:

►  Hough transform

TrecVid’08 copyright detection competition
pr

ec
isi

on

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6
recall

INRIA-LEAR.Strict
INRIA-LEAR.Soft

INRIA-LEAR.KeysAds
Others
Others

Precision-recall: combined transformation (10)

Sample result

Sample result

Towards larger databases?

  BOF can handle up to ~10 M d’images
►  with a limited number of descriptors per image
►  40 GB of RAM
►  search = 2 s

  Web-scale = billions of images
►  With 100 M per machine

 → search = 20 s, RAM = 400 GB
 → not tractable!

State-of-the-art: Bag-of-words [Sivic & Zisserman’03]

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

[Mikolajezyk & Schmid 04]
[Lowe 04]

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

[Lowe 04, Chum & al 2007]

  “visual words”:
►  1 “word” (index) per local descriptor
►  only images ids in inverted file

[Nister & al 04, Chum & al 07]

Recent approaches for very large scale indexing

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

Vector
compression

sparse frequency vector

centroids
(visual words)

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

Vector
search

Related work on very large scale image search

  Min-hash and geometrical min-hash [Chum et al. 07-09]
  Compressing the BoF representation (miniBof) [Jegou et al. 09]
   require hundreds of bytes are required to obtain a “reasonable quality”

  GIST descriptors with Spectral Hashing [Weiss et al.’08]
   very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor

  The “gist” of a scene: Oliva & Torralba (2001)

  5 frequency bands and 6 orientations for each image location
  PCA or tiling of the image (windowing) to reduce the dimension

GIST descriptor + spectral hashing

  The position of the descriptor in the image is encoded in the representation

• Torralba et al. (2003)

• Gist

  Spectral hashing produces binary codes similar to spectral clusters

Related work on very large scale image search

  Min-hash and geometrical min-hash [Chum et al. 07-09]
  Compressing the BoF representation (miniBof) [Jegou et al. 09]
   require hundreds of bytes are required to obtain a “reasonable quality”

  GIST descriptors with Spectral Hashing [Weiss et al.’08]
   very limited invariance to scale/rotation/crop

  Aggregating local descriptors into a compact image representation [Jegou et al. ‘10]

  Efficient object category recognition using classemes [Torresani et al.’10]

Aggregating local descriptors into a compact image representation

  Aim: improving the tradeoff between
►  search speed
►  memory usage
►  search quality

  Approach: joint optimization of three stages
►  local descriptor aggregation
►  dimension reduction
►  indexing algorithm

Image representation
VLAD

PCA +
PQ codes

(Non) – exhaustive
search

Aggregation of local descriptors

  Problem: represent an image by a single fixed-size vector:

 set of n local descriptors → 1 vector

  Most popular idea: BoF representation [Sivic & Zisserman 03]
►  sparse vector
►  highly dimensional

→ high dimensionality reduction/compression introduces loss

  Alternative : vector of locally aggregated descriptors (VLAD)
►  non sparse vector
►  excellent results with a small vector dimensionality

VLAD : vector of locally aggregated descriptors

  Learning: a vector quantifier (k-means)
►  output: k centroids (visual words): c1,…,ci,…ck

►  centroid ci has dimension d

  For a given image
►  assign each descriptor to closest center ci
►  accumulate (sum) descriptors per cell

 vi := vi + (x - ci)

  VLAD (dimension D = k x d)

  The vector is L2-normalized

ci

x

VLADs for corresponding images

 SIFT-like representation per centroid (+ components: blue, - components: red)

  good coincidence of energy & orientations

 v1 v2 v3 ...

VLAD performance and dimensionality reduction

  We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
  Dimension is reduced to from D to D’ dimensions with PCA (principal

component analyses)

  Observations:
►  VLAD better than BoF for a given descriptor size
►  Choose a small D if output dimension D’ is small

Aggregator k D D’=D
(no reduction)

D’=128 D’=64

BoF 1,000 1,000 41.4 44.4 43.4

BoF 20,000 20,000 44.6 45.2 44.5

BoF 200,000 200,000 54.9 43.2 41.6

VLAD 16 2,048 49.6 49.5 49.4

VLAD 64 8,192 52.6 51.0 47.7

VLAD 256 32,768 57.5 50.8 47.6

Compact image representation

  Approach: joint optimization of three stages
►  local descriptor aggregation
►  dimension reduction
►  indexing algorithm

►  Dimensionality reduction with
►  Principal component analysis (PCA)
►  Compact encoding: product quantizer
►   very compact descriptor, fast nearest neighbor search, little storage

requirements

Image representation
VLAD

PCA +
PQ codes

(Non) – exhaustive
search

  Vector split into m subvectors:

  Subvectors are quantized separately by quantizers
where each is learned by k-means with a limited number of centroids

  Example: y = 128-dim vector split in 8 subvectors of dimension 16
►  each subvector is quantized with 256 centroids -> 8 bit
►  very large codebook 256^8 ~ 1.8x10^19

Product quantization

8 bits

16 components

⇒ 8 subvectors x 8 bits = 64-bit quantization
index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centroids

Product quantizer: distance computation

  Asymmetric distance computation (ADC)

  Sum of square distances with quantization centroids

Product quantizer: asymmetric distance computation (ADC)

  Compute the square distance approximation in the compressed domain

  To compute distance between query and many codes
►  compute for each subvector and all possible centroids
→ stored in look-up tables
►  for each database code: sum the elementary square distances

  Each 8x8=64-bits code requires only m=8 additions per distance!

Optimizing the dimension reduction and quantization together

  VLAD vectors suffer two approximations
►  mean square error from PCA projection: ep(D’)
►  mean square error from quantization: eq(D’)

  Given k and bytes/image, choose D’ minimizing their sum

Ex, k=16, 16B: D’ ep(D’) eq(D’) ep(D’)+eq(D’)

32 0.0632 0.0164 0.0796

48 0.0508 0.0248 0.0757

64 0.0434 0.0321 0.0755

80 0.0386 0.0458 0.0844

Joint optimization of VLAD and dimension reduction-indexing

  For VLAD
►  The larger k, the better the raw search performance
►  But large k produce large vectors, that are harder to index

  Optimization of the vocabulary size
►  Fixed output size (in bytes)
►  D’ computed from k via the joint optimization of reduction/indexing
►  Only k has to be set

 end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters

Results on standard datasets

  Datasets
►  University of Kentucky benchmark score: nb relevant images, max: 4
►  INRIA Holidays dataset score: mAP (%)

Method bytes UKB Holidays
BoF, k=20,000 10K 2.92 44.6

BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 x 8 16 2.88 46.0

VLAD k=64, ADC 32 x10 40 3.10 49.5

miniBOF: “Packing Bag-of-Features”, ICCV’09

D’ =64 for k=16 and D’ =96 for k=64
ADC (subvectors) x (bits to encode each subvector)

Comparison BOF / VLAD + ADC

  Datasets
►  INRIA Holidays dataset , score: mAP (%)

Method Holidays
BOF, k=2048, D’= 64, ADC 16x8 42.5

VLAD k=16,D=2048, D’ = 64, ADC 16 x 8 46.0

BOF, k=8192, D’= 128, AD16x8 41.9

VLAD k=64, D= 8192, D’=128, ADC 16X8 45.8

►  VLAD improves results over BOF
►  Product quantizer gives excellent results for BOF!

Compact image representation

  Approach: joint optimization of three stages
  Non-exhaustive search

►  local descriptor aggregation
►  dimension reduction
►  indexing algorithm

  Non-exhaustive search
►  Combination with an inverted file to avoid exhaustive search

Image representation
VLAD

PCA +
PQ codes

(Non) – exhaustive
search

Large scale experiments (10 million images)

  Exhaustive search of VLADs, D’=64
►  4.77s

  With the product quantizer
►  Exhaustive search with ADC: 0.29s
►  Non-exhaustive search with IVFADC: 0.014s

 IVFADC -- Combination with an inverted file

Large scale experiments (10 million images)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1000 10k 100k 1M 10M

re
ca

ll@
10

0

Database size: Holidays+images from Flickr

BOF D=200k
VLAD k=64

VLAD k=64, D'=96
VLAD k=64, ADC 16 bytes

VLAD+Spectral Hashing, 16 bytes

4.768s

ADC: 0.286s
IVFADC: 0.014s

Timings

SH ≈ 0.267s

Searching with quantization: comparison with spectral Hashing

  *** Put Only ADC ***

VLAD + PQ codes

  Excellent search accuracy and speed in 10 million of images

  Each image is represented by very few bytes (20 – 40 bytes)

  Tested on up to 220 million video frame
►  extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

  On-line available:
►  Matlab source code of ADC

  Alternative: using Fisher vectors instead of VLAD descriptors [Perronnin’10]

