
Large scale object/scene recognition 

•  Each image described by approximately 2000 descriptors 

•  2 109 descriptors to index! 

•  Database representation in RAM:  

•  Raw size of descriptors : 1 TB, search+memory intractable 

Image search  
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query 



State-of-the-art: Bag-of-words [Sivic & Zisserman’03] 
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[Lowe 04, Chum & al 2007] 

Two  issues: 
 - Matching approximation by visual words 

-  Still limited number of images 

[Nister & al  04, Chum & al 07] 



Bag-of-features as an ANN search algorithm 

•  Matching function of descriptors : k-nearest neighbors 

•  Bag-of-features matching function 

    where q(x) is a quantizer, i.e., assignment to visual word and 
     δa,b is the Kronecker operator (δa,b=1 iff a=b) 



Approximate nearest neighbor search evaluation 

•  ANN algorithms usually returns a short-list of nearest neighbors 

•  this short-list is supposed to contain the NN with high probability 

•  exact search may be performed to re-order this short-list 

•  Proposed quality evaluation of ANN search: trade-off between 

•  Accuracy: NN recall = probability that the NN is in this list 

     against 

•  Ambiguity removal = proportion of vectors in the short-list 

•  the lower this proportion, the more information we have about the vector  

•  the lower this proportion, the lower the complexity if we perform exact search on 
the short-list 

•  ANN search algorithms usually have some parameters to handle this trade-off 



ANN evaluation of bag-of-features 

ANN algorithms returns a 
list of potential 
neighbors 

Accuracy: NN recall 
= probability that the 
NN is in this list 

Ambiguity removal:  
= proportion of vectors 
in the short-list 

In BOF, this trade-off is 
managed by the 
number of clusters k 
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Problem with bag-of-features 

•  The intrinsic matching scheme performed by BOF is weak 

•  for a “small” visual dictionary: too many false matches  

•  for a “large” visual dictionary: many true matches are missed 

•  No good trade-off between “small” and “large” ! 

•  either the Voronoi cells are too big 

•  or these cells can’t absorb the descriptor noise 

→ intrinsic approximate nearest neighbor search of BOF is not sufficient 



20K visual word: false matchs 



200K visual word: good matches missed 



Hamming Embedding 

•  Representation of a descriptor x 
•  Vector-quantized to q(x) as in standard BOF 

+  short binary vector b(x) for an additional localization in the Voronoi cell 

•  Two descriptors x and y match iif 
         where h(a,b) is the Hamming distance 

•  Nearest neighbors for Hammg distance ≈ the ones for Euclidean distance 

•  Efficiency 
•  Hamming distance = very few operations 

•  Fewer random memory accesses: 3faster that BOF with same dictionary size! 



Hamming Embedding 

•  Off-line (given a quantizer) 

•  draw an orthogonal projection matrix P of size db × d 

→ this defines db random projection directions 

•  for each Voronoi cell and projection direction, compute the median value 
from a learning set 

•  On-line: compute the binary signature b(x) of a given descriptor 

•  project x onto the projection directions as z(x) = (z1,…zdb)  

•  bi(x) = 1 if zi(x) is above the learned median value, otherwise 0 

 [H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]  



Hamming and Euclidean neighborhood 

•  trade-off between 
memory usage and 
accuracy 

→  more bits yield higher 
accuracy 

We used 64 bits (8 bytes) 
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ANN evaluation of Hamming Embedding 
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Matching points - 20k word vocabulary 

201 matches 240 matches 

Many matches with the non-corresponding image! 



Matching points - 200k word vocabulary 

69 matches 35 matches 

Still many matches with the non-corresponding one 



Matching points - 20k word vocabulary + HE 

83 matches 8 matches 

10x more matches with the corresponding image! 



Weak geometry consistency 

•  Re-ranking based on full geometric verification  

•  works very well 

•  but performed on a short-list only (typically, 100 images) 

→  for very large datasets, the number of distracting images is so high that 
relevant images are not even short-listed! 
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Weak geometry consistency 

•  Weak geometric information used for all images (not only the short-list) 

•  Each invariant interest region detection has a scale and rotation angle 
associated, here characteristic scale and dominant gradient orientation 

Scale change 2 
Rotation angle ca. 20 degrees 

•  Each matching pair results in a scale and angle difference 

•  For the global image scale and rotation changes are roughly consistent 



Max = rotation angle between images 

WGC: orientation consistency 



WGC: scale consistency 



Weak geometry consistency 

•  Integrate the geometric verification into the BOF representation  

•  votes for an image projected onto two quantized subspaces, that is vote 
for an image at a given angle & scale  

•  these subspace are show to be independent 

•  a score sj for all quantized angle and scale differences for each image 

•  final score: filtering for each parameter (angle and scale) and min selection 

•  Only matches that do agree with the main difference of orientation and scale 
will be taken into account in the final score 

•  Re-ranking using full geometric transformation still adds information in a final 
stage 



Experimental results 

•  Evaluation for the INRIA holidays dataset, 1491 images 

•  500 query images + 991 annotated true positives 

•  Most images are holiday photos of friends and family  

•  1 million & 10 million distractor images from Flickr 

•  Vocabulary construction on a different Flickr set  

•  Almost real-time search speed 

•  Evaluation metric: mean average precision (in [0,1], bigger = better) 

•  Average over precision/recall curve  



Holiday dataset – example queries  



Dataset : Venice Channel 

Query 

Base 4 Base 3 

Base 2 Base 1 



Dataset : San Marco square 

Query Base 1 Base 3 Base 2 

Base 9 Base 8 

Base 4 Base 5 Base 7 Base 6 



Example distractors - Flickr 



Experimental evaluation 

•  Evaluation on our holidays dataset, 500 query images, 1 million distracter 
images 

•  Metric: mean average precision (in [0,1], bigger = better) 
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Results – Venice Channel 

Base 1 Flickr 

Flickr Base 4 

Query 



Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07] 

Evaluation measure: 
Mean average precision (mAP) 



Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06] 

4 images per object  

 Evaluation measure: among the 4 best retrieval results how  
            many are correct (ranges from 1 to 4) 



Comparison with the state of the art 

[14] Philbin et al., CVPR’08;       [6] Nister et al., CVPR’06;     [10] Harzallah et al., CVPR’07 



Demo at http://bigimbaz.inrialpes.fr  



Extension to videos: video copy detection 

  Recognized “attacked” videos (distortion, blur, editing, mix up,...) 

  Video = image sequence: use image indexing 

►  index frames / keyframes of video, query frames of video query 

►  verify temporal consistency 

  Several tradeoffs in search quality vs. database size  

• 1000 of hours  

• a few seconds 



Temporal consistency 

  Store a subset of the frames of the video to be indexed in a database 

  Each frame of the query video is compared to the frames in the dataset of 
frames 

→ Output: a set of matching frames and associated scores (tq, b, tb , s) where  

tq  temporal position in the query video 
b  number of the video in the dataset 
tb  temporal position in the database video  
s  matching score for the two frames 



Temporal consistency 

  Estimate a function between tq and tb  

  Possible models: 

►  simple (temporal shift): tq = tb + t 

►  global speed changes (acceleration, slow-motion): tq =a* tb + t  

►  complex with varying shifts: tq = tb + shift [tq]  



Temporal consistency 

  Estimate a function between tq and tb  

  Possible models: 

►  simple (temporal shift): tq = tb + t 

►  global speed changes (acceleration, slow-motion): tq =a* tb + t  

►  complex with varying shifts: tq = tb + shift [tq]  

  Possible method for estimation:  

►  Hough transform  



TrecVid’08 copyright detection competition 
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Sample result 



Sample result 



Towards larger databases? 

  BOF can handle up to ~10 M d’images 
►  with a limited number of descriptors per image 
►  40 GB of RAM   
►  search = 2 s 

  Web-scale = billions of images 
►  With 100 M per machine  

  → search = 20 s, RAM = 400 GB 
  → not tractable! 



State-of-the-art: Bag-of-words [Sivic & Zisserman’03] 
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[Lowe 04, Chum & al 2007] 

  “visual words”:  
►  1 “word” (index) per local descriptor  
►  only images ids in inverted file 

[Nister & al  04, Chum & al 07] 



Recent approaches for very large scale indexing   

Hessian-Affine 
regions + SIFT descriptors 

Bag-of-features 
processing 

+tf-idf weighting 
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Related work on very large scale image search 

  Min-hash and geometrical min-hash [Chum et al. 07-09] 
  Compressing the BoF representation (miniBof) [ Jegou et al. 09]  
   require hundreds of bytes are required to obtain a “reasonable quality” 

  GIST descriptors with Spectral Hashing [Weiss et al.’08] 
   very limited invariance to scale/rotation/crop 



Global scene context – GIST descriptor  

  The “gist” of a scene: Oliva & Torralba (2001) 

  5 frequency bands and 6 orientations for each image location 
  PCA or tiling of the image (windowing) to reduce the dimension 



GIST descriptor + spectral hashing  

  The position of the descriptor in the image is encoded in the representation  

• Torralba et al. (2003) 

• Gist 

  Spectral hashing produces binary codes similar to  spectral clusters 



Related work on very large scale image search 

  Min-hash and geometrical min-hash [Chum et al. 07-09] 
  Compressing the BoF representation (miniBof) [ Jegou et al. 09]  
   require hundreds of bytes are required to obtain a “reasonable quality” 

  GIST descriptors with Spectral Hashing [Weiss et al.’08] 
   very limited invariance to scale/rotation/crop 

  Aggregating local descriptors  into a compact image representation [Jegou et al. ‘10] 

  Efficient object category recognition using classemes [Torresani et al.’10] 



Aggregating local descriptors into a compact image representation 

  Aim: improving the tradeoff between 
►  search speed 
►  memory usage 
►  search quality 

  Approach: joint optimization of three stages 
►  local descriptor aggregation 
►  dimension reduction 
►  indexing algorithm 

Image representation 
VLAD  

PCA +  
PQ codes 

(Non) – exhaustive  
search 



Aggregation of local descriptors 

  Problem: represent an image by a single fixed-size vector: 

         set of n local descriptors → 1 vector 

  Most popular idea: BoF representation [Sivic & Zisserman 03] 
►  sparse vector 
►  highly dimensional 

→ high dimensionality reduction/compression introduces loss 

  Alternative : vector of locally aggregated descriptors (VLAD) 
►  non sparse vector 
►  excellent results with a small vector dimensionality 



VLAD : vector of locally aggregated descriptors 

  Learning: a vector quantifier (k-means) 
►  output: k centroids (visual words): c1,…,ci,…ck 

►  centroid ci has dimension d 

  For a given image  
►  assign each descriptor to closest center ci 
►  accumulate (sum) descriptors per cell 

  vi := vi + (x - ci) 

  VLAD (dimension D = k x d) 

  The vector is L2-normalized 

ci 

x 



VLADs for corresponding images 

 SIFT-like representation per centroid (+ components: blue, - components: red) 

  good coincidence of energy & orientations 

  v1           v2          v3 ... 



VLAD performance and dimensionality reduction 

  We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%) 
  Dimension is reduced to from D to D’ dimensions with PCA (principal 

component analyses)  

  Observations: 
►  VLAD better than BoF for a given descriptor size 
►  Choose a small D if output dimension D’ is small 

Aggregator k D D’=D 
(no reduction) 

D’=128 D’=64 

BoF 1,000 1,000 41.4 44.4 43.4 

BoF 20,000 20,000 44.6 45.2 44.5 

BoF 200,000 200,000 54.9 43.2 41.6 

VLAD 16 2,048 49.6 49.5 49.4 

VLAD 64 8,192 52.6 51.0 47.7 

VLAD 256 32,768 57.5 50.8 47.6 



Compact image representation 

  Approach: joint optimization of three stages 
►  local descriptor aggregation 
►  dimension reduction 
►  indexing algorithm 

►  Dimensionality reduction with  
►  Principal component analysis (PCA)  
►  Compact encoding: product quantizer 
►   very compact descriptor, fast nearest neighbor search, little storage 

requirements  

Image representation 
VLAD  

PCA +  
PQ codes 

(Non) – exhaustive  
search 



  Vector split into m subvectors: 

  Subvectors are quantized separately by quantizers 
where each     is learned by k-means with a limited number of centroids 

  Example: y = 128-dim vector split in 8 subvectors of dimension 16 
►  each subvector is quantized with 256 centroids  -> 8 bit  
►  very large codebook 256^8 ~ 1.8x10^19 

Product quantization 

8 bits 

16 components 

⇒ 8 subvectors x 8 bits = 64-bit quantization 
index 

y1 y2 y3 y4 y5 y6 y7 y8 

q1 q2 q3 q4 q5 q6 q7 q8 

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8) 

256 
centroids 



Product quantizer: distance computation 

  Asymmetric distance computation (ADC)  

  Sum of square distances with quantization centroids  



Product quantizer: asymmetric distance computation (ADC) 

  Compute the square distance approximation in the compressed domain 

  To compute distance between query      and many codes 
►  compute                    for each subvector      and all possible centroids 
→ stored in look-up tables  
►  for each database code: sum the elementary square distances 

  Each 8x8=64-bits code requires only m=8 additions per distance! 



Optimizing the dimension reduction and quantization together 

  VLAD vectors suffer two approximations 
►  mean square error from PCA projection:  ep(D’) 
►  mean square error from quantization:   eq(D’) 

  Given k and bytes/image, choose D’ minimizing their sum 

Ex, k=16, 16B: D’ ep(D’) eq(D’) ep(D’)+eq(D’) 

32 0.0632 0.0164 0.0796 

48 0.0508 0.0248 0.0757 

64 0.0434 0.0321 0.0755 

80 0.0386 0.0458 0.0844 



Joint optimization of VLAD and dimension reduction-indexing  

  For VLAD 
►  The larger k, the better the raw search performance 
►  But large k produce large vectors, that are harder to index 

  Optimization of the vocabulary size 
►  Fixed output size (in bytes) 
►  D’ computed from k via the joint optimization of reduction/indexing 
►  Only k has to be set 

 end-to-end parameter optimization 



Results on the Holidays dataset with various quantization parameters  



Results on standard datasets 

  Datasets 
►  University of Kentucky benchmark  score: nb relevant images, max: 4  
►  INRIA Holidays dataset                  score: mAP (%) 

Method bytes UKB Holidays 
BoF, k=20,000 10K 2.92 44.6 

BoF, k=200,000 12K 3.06 54.9 

miniBOF 20 2.07 25.5 

miniBOF 160 2.72 40.3 

VLAD k=16, ADC 16 x 8 16 2.88 46.0 

VLAD k=64, ADC 32 x10 40 3.10 49.5 

miniBOF: “Packing Bag-of-Features”, ICCV’09 

D’ =64 for k=16 and D’ =96 for k=64 
ADC  (subvectors) x (bits to encode each subvector) 



Comparison BOF / VLAD  + ADC  

  Datasets 
►  INRIA Holidays dataset , score: mAP (%) 

Method Holidays 
BOF,  k=2048, D’= 64, ADC 16x8 42.5 

VLAD k=16,D=2048, D’ = 64, ADC 16 x 8 46.0 

BOF,  k=8192, D’= 128, AD16x8 41.9 

VLAD k=64, D= 8192, D’=128, ADC 16X8 45.8 

►  VLAD improves results over BOF 
►  Product quantizer gives excellent results for BOF! 



Compact image representation 

  Approach: joint optimization of three stages 
  Non-exhaustive search  

►  local descriptor aggregation 
►  dimension reduction 
►  indexing algorithm 

  Non-exhaustive search 
►  Combination with an inverted file to avoid exhaustive search 

Image representation 
VLAD  

PCA +  
PQ codes 

(Non) – exhaustive  
search 



Large scale experiments (10 million images) 

  Exhaustive search of VLADs, D’=64 
►  4.77s 

  With the product quantizer 
►  Exhaustive search with ADC:  0.29s   
►  Non-exhaustive search with IVFADC:  0.014s   

                 IVFADC  -- Combination with an inverted file  



Large scale experiments (10 million images) 
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Searching with quantization: comparison with spectral Hashing 

  *** Put Only ADC *** 



VLAD + PQ codes  

  Excellent search accuracy and speed in 10 million of images 

  Each image is represented by very few bytes (20 – 40 bytes) 

  Tested on up to 220 million video frame 
►  extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores 

  On-line available: 
►  Matlab source code of ADC  

  Alternative: using Fisher vectors instead of VLAD descriptors [Perronnin’10] 


