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Introduction

Machine learning : a tentative big picture

Unsupervised learning (learning without a teacher)

Find structure of x ∈ X , given observations xi, i = 1, ..., n

Supervised learning (learning with a teacher)

Predict y ∈ Y from x ∈ X , given observations (xi, yi), i = 1, ..., n
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Introduction

Machine learning : a tentative big picture

Applications in many �elds

Computer vision

Bioinformatics

Audio/speech processing

Text mining

Computational astronomy

etc.

Interplays

interplay between statistics and optimization, with a look towards AI

interplay between theory, algorithms, and real applications
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Introduction

Unsupervised learning

Dimension reduction

face images

Zambian President Levy
Mwanawasa has won a
second term in office in
an election his challenger
Michael Sata accused him
of rigging, official results
showed on Monday.

According to media reports,
a pair of hackers said on
Saturday that the Firefox
Web browser, commonly
perceived as the safer
and more customizable
alternative to market
leader Internet Explorer,
is critically flawed. A
presentation on the flaw
was shown during the
ToorCon hacker conference
in San Diego.

documents

gene expression data MEG readings
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Introduction

Unsupervised learning

Dimension reduction

Computational e�ciency : space and time savings

Statistical performance : fewer dimensions → regularization

Visualization : discover underlying structure of the data

→ PCA and KPCA
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Introduction

Unsupervised learning

Feature extraction

_^]\XYZ[z
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_^]\XYZ[ϕx(x) _^]\XYZ[ϕy(y) x :y: “A view from Idyllwild, California,
with pine trees and snow capped Marion
Mountain under a blue sky.”

Learn kernelized projections that relate both spaces
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Introduction

Unsupervised learning

Feature extraction

Multimodality : leverage the correlation between the modalities

Statistical performance : take advantage of both views of the data

Putting in relation : discover underlying relations between the
modalities

→ CCA and KCCA
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Introduction

Unsupervised learning

Clustering
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Introduction

Unsupervised learning

Clustering

Semantics : grouping datapoints in meaningful clusters

Statistical performance : intrinsic degrees of freedom of the data

Visualization : discover groupings between datapoints

→ spectral clustering and temporal segmentation
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Introduction

Unsupervised learning

Detection problems
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Introduction

Unsupervised learning

Detection problems

Balance risks : control detection rate with a guaranteed false alarm
probability

Power : detect di�erences not only in mean or covariance

→ homogeneity testing, change detection
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Kernel methods and feature space

Kernel methods

Machine Learning methods taking K = [k(Xi, Xj)]i,j=1,...,n (Gram matrix
as input for processing a sample {X1, . . . , Xn}, where k(x, y) is a similarity
measure between x and y de�ning a positive de�nite kernel.

Strengths of Kernel Methods

Minimal assumptions on data types (vectors, strings, trees, graphs,
etc.)

Interpretation of k(x, y) as a dot product k(x, y) = 〈φ(x), φ(y)〉H in a
reproducing kernel Hilbert space H where the observations are
mapped via [φ : X → H] the feature map φ(•) = k(•, ·)
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Kernel methods and feature space

Kernel methods

Positive-de�nite kernel

de�nition : given a set of objects X , a positive de�nite kernel is a
symmetric function k(x, x′) such that for all �nite sequences of
xi ∈ X and αi ∈ R,

∑

i,j

αiαjk(xi, xj) ≥ 0 .

Aronszajn theorem : k is a positive-de�nite kernel iif there exists a
Hilbert space H and a mapping Φ(·) : X → H such that for any
x, x′ ∈ X

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
H .
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Kernel methods and feature space

Kernel methods

Reproducing kernel Hilbert space

Assume k is a positive de�nite kernel on X × X
Aronszajn theorem : k is a positive-de�nite kernel iif there exists a
Hilbert space H and a mapping Φ(·) : X → H such that for any
x, x′ ∈ X

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
H .

Lexicon : X = Input space, H = Feature space, Φ(·) = Feature map

Reproducing kernel Hilbert space

Feature map is the Aronszajn map Φ(x) = k(x, ·)
Function evaluation f(x) = 〈f,Φ(x)〉H
Reproducing property k(x, y) = 〈Φ(x),Φ(y)〉H
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Kernel methods and feature space

How does the feature space look like ?

Example : space of shapes of birds
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Kernel methods and feature space

How does the feature space look like ?

Feature map ?

How does the feature map look like ?

schematic plot of k ( , · )
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Kernel methods and feature space

How does the feature space look like ?

Feature map ?

The feature map is a function whose values span the whole range of shapes
with varying magnitudes.
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Kernel methods and feature space

Examples of Kernels

Kernels on vectors

Polynomial k(x,y) = (c+ (x,y))d

Laplace k(x,y) = exp(−‖x− y‖1/σ)

RBF k(x,y) = exp(−‖x− y‖22/σ2)

Harchaoui (FR) ENSL ENS Lyon 21 / 61



Kernel methods and feature space

Examples of Kernels

Kernels on histograms

Kernels built on top of divergence between probability distributions

ψJD(θ, θ
′) = h

(
θ + θ′

2

)
− h(θ) + h(θ′)

2
,

ψχ2(θ, θ′) =
∑

i

(θi − θ′i)2
θi + θ′i

, ψTV (θ, θ
′) =

∑

i

|θi − θ′i|,

ψH2(θ, θ
′) =

∑

i

|
√
θi −

√
θ′i|2, ψH1(θ, θ

′) =
∑

i

|
√
θi −

√
θ′i|.

k(θ, θ′) = exp(−ψ(θ, θ′)/σ2) .
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Kernel methods and feature space

The kernel jungle

Kernels on histograms

Pyramid match kernels (Grauman and Darrell, 2005)

Multiresolution (nested histograms) kernels (Cuturi, 2006)

Walk and tree-walk kernels (Ramon & Gaertner, 2004 ; Harchaoui &
Bach, 2007 ; Mahe et al., 2007)

Kernels from statistical generative models

Mutual Information Kernels (Seeger, 2002)

Fisher kernels (see Shawe-Taylor & Cristianini, 2004)

Other kernels

Kernels of shapes and point coulds (Bach, 2007)

Kernels on time series (Cuturi, 2007)
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Kernel methods and feature space

How does the feature space look like ?

Classical kernel trick

Describes what happens to pairs of examples

Focuses on the pointwise e�ect of the feature map on an example

�Remixed� kernel trick

Describes what happens to a random sample from a probability
distribution

Focuses on the global e�ect of the feature map on a sample
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Mean element and covariance operator

Coordinate-free de�nitions of mean and covariance

Usual de�nitions

need explicit basis to de�ne quantities
→ tricky in high-dimensional/∞-dimensional feature spaces

Coordinate-free de�nitions

de�ne quantities through their projections along any direction
→ allow direct application of the reproducing property
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Mean element and covariance operator

Mean vector and mean element

Empirical mean element

Empirical mean vector µ̂ of
X1, . . . , Xm ∼ P

∀w ∈ X ,

(µ̂,w)
def
=

1

m

m∑

`=1

(x`,w)

Empirical mean element µ̂ of
X1, . . . , Xm ∼ P

∀f ∈ H,

〈µ̂, f〉H
def
=

1

m

m∑

`=1

〈φ(x`), f〉H
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Mean element and covariance operator

Mean vector and mean element

Empirical mean element

Empirical mean element µ̂ of x1, . . . ,xm ∼ P

∀f ∈ H,

〈µ̂, f〉H
def
=

1

m

m∑

`=1

〈φ(x`), f〉H

〈µ̂, f〉H
def
=

1

m

m∑

`=1

〈k(x`, ·), f〉H

def
=

1

m

m∑

`=1

f(x`) (reproducing property)

def
=

1

m

m∑

`=1

n∑

j=1

αjk(xj ,x`) , if f(·) =

n∑

j=1

αjk(xj , ·)
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Mean element and covariance operator

Centering in feature space

Gram matrix
K = [k(Xi, Xj)]i,j=1,...,n of all evaluations of the kernel k(·, ·) on the
sample x1, . . . ,xn.

Centering in feature space

To center all φ(x1), . . . , φ(xn) simultaneously, do

K← K̃ = ΠKΠ ,

where

Π = In −
1

n
1n1

T
n .
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Mean element and covariance operator

Covariance matrix and covariance operator

Empirical covariance operator
Empirical covariance matrix Σ̂ of

x1, . . . ,xm ∼ P

∀w,v ∈ X ,

(w, Σ̂v) =
1

m

m∑
`=1

(w, x̃`)(x̃`,v)

x̃` = x` − µ̂ .

Empirical covariance operator Σ̂ of

x1, . . . ,xm ∼ P

∀f, g ∈ H,〈
f, Σ̂g

〉
=

1

m

m∑
`=1

〈
f, φ̃(x`)

〉〈
φ̃(x`), g

〉
φ̃(x`) = φ(x`)− µ̂ .
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Mean element and covariance operator

Covariance matrix and covariance operator

Covariance operator

Empirical covariance operator Σ̂ of x1, . . . ,xm ∼ P

∀f, g ∈ H,
〈
f, Σ̂g

〉
=

1

m

m∑

`=1

〈
f, φ̃(x`)

〉〈
φ̃(x`), g

〉

=
1

m

m∑

`=1

{f(x`)− 〈µ̂, f〉H}{f(x`)− 〈µ̂, g〉H} .
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Mean element and covariance operator

Computing variance along a direction in feature space

Gram matrix
K = [k(Xi, Xj)]i,j=1,...,n of all evaluations of the kernel k(·, ·) on
x1, . . . , xn.

Covariance along two directions

〈
f, Σ̂g

〉
=

1

m
αT K̃K̃β ,

where

f(·) =
n∑

j=1

αjk(xj , ·) ,

g(·) =

n∑

j=1

βjk(xj , ·) .
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Mean element and covariance operator

Mean element and covariance operator

Population mean element and covariance operator

Population mean element µ and population covariance operator Σ of x ∼ P

〈µ, f〉H
def
= E[f(x)] , ∀f ∈ H

〈f,Σg〉H
def
= Cov[f(x), g(x)] , ∀f, g ∈ H

Empirical mean element and covariance operator

Empirical mean element µ̂ and empirical covariance operator Σ̂ of
x1, . . . ,xm ∼ P

〈µ̂, f〉H
def
=

1

m

m∑

`=1

f(x`) , ∀f ∈ H

〈
f, Σ̂g

〉
H

def
=

1

m

m∑

`=1

{f(x`)− 〈µ̂, f〉H}{f(x`)− 〈µ̂, g〉H} ∀f, g ∈ H
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Mean element and covariance operator

Some casual considerations before the real stu�

Supervised learning

least-square regression, kernel ridge regression, multilayer-perceptron
→ tackled through (possibly a sequence of) linear of systems

Operation \ in Matlab/Octave

Unsupervised learning

(kernel) principal component analysis, (kernel) canonical correlation
analysis, spectral clustering
→ tackled through (possibly a sequence of) eigenvalue problems

Function eigs in Matlab/Octave
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Kernel PCA

Kernel Principal Component Analysis
(Schölkopf et al., 1998 ; Shawe-Taylor & Cristianini, 2004)

Principal Component Analysis (PCA)

A brief refresher

Let x1, . . . ,xn a dataset of points in Rd

PCA is a classical method in multivariate statistics to de�ne a set of
orthogonal directions, called principal components, that capture the
maximum variance

Projection along the �rst 2-3 principal components allows to visualize
the dataset
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Kernel PCA

Refresher on Principal Component Analysis

Computational aspects

Maximum variance criterion corresponds to a Rayleigh quotient

PCA boils down to an eigenvalue problem on the centered covariance
matrix Σ̂ of the dataset, i.e. the principal components w1, . . . ,wd are
the eigenvectors of Σ̂ (assuming n > d)

Computational complexity : O(ndc) in time with a Singular Value

Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, d the dimension, c the number of principal
components retained ; stochastic approximation version for
nonstationary/large-scale datasets.
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Kernel PCA

Variance along a direction and Rayleigh quotients

Variance along a direction

PCA seeks for directions w1, . . . ,wc such that

wj = argmaxw∈Rd;wj⊥{w1,...,wj−1} Varemp
(w,x)

(w,w)

= argmaxw∈Rd;wj⊥{w1,...,wj−1}
1

m

m∑

i=1

(w,xi)
2

(w,w)

= argmaxw∈Rd;wj⊥{w1,...,wj−1}
(w, Σ̂w)

(w,w)︸ ︷︷ ︸
Rayleigh quotient

.

Principal components w1, . . . ,wc are the �rst c eigenvectors of Σ̂.
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Kernel PCA

Variance along a direction and Rayleigh quotients

Variance along a direction

KPCA seeks for directions f1, . . . , fc such that

fj = argmaxf∈H;fj⊥{f1,...,fj−1} Varemp
〈f, φ(x)〉
〈f, f〉

= argmaxf∈H;fj⊥{f1,...,fj−1}
1

m

m∑

i=1

〈f, φ(xi)〉2
〈f, f〉

= argmaxf∈H;fj⊥{f1,...,fj−1}

〈
f, Σ̂f

〉

〈f, f〉︸ ︷︷ ︸
Rayleigh quotient

.

Principal components f1, . . . , fc are the �rst c eigenvectors of Σ̂. Is that it ?
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Kernel PCA

Rescue theorems

Properties of covariance operators

RKHS Covariance operators are (Zwald et al., 2005, Harchaoui et al.,
2008)

self-adjoint (∞-dimensional counterpart of symmetric)

positive

trace-class

Consequence

The covariance operator Σ̂ and the centered Gram matrix K̃ share the
same eigenvalues on the nonzero part of their spectra, and their
eigenvectors are related by a simple relation.
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Kernel PCA

Kernel Principal Component Analysis

KPCA algorithm

Center the Gram matrix

Performs an SVD on K̃ to get the �rst c eigenvector/eigenvalue pairs
(ej , λj)j=1,...,c.

Normalize the eigenvector ẽj ← ej/λj

Projections onto the j-th eigenvectors is given by K̃ẽj
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Kernel PCA

Computational aspects of KPCA

Computational aspects

Maximum variance in feature space corresponds to a Rayleigh quotient

KPCA boils down to an eigenvalue problem involving the centered
auto-covariance matrices K̃

Computational complexity : O(cn2) in time with a Singular Value

Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, c the number of principal components retained ;
stochastic approximation version for nonstationary/large-scale
datasets.
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Kernel PCA

Low-dimensional representation with KPCA

Human body pose representation

Walking sequence of length 400 (containing about 3 walking cycles)
obtained from the CMU Mocap database

Data : silhouette images of size (160 100) taken at a side view

Human body pose representation (Kim & Pavlovic, 2008)

t=56 t=62 t=68 t=73 t=85 t=97 t=105 t=110 t=120

Figure: Selected skeleton and silhouette images for a half walking cycle
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Kernel PCA

Low-dimensional representation with KPCA

Human body pose representation
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Figure: Central subspaces for silhouette images from walking motion
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Kernel PCA

Low-dimensional representation with KPCA

Human body pose representation
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Kernel PCA

Super-resoluton with KPCA (Kim et al., 2005)

Super-resolution

(fig: Kim et al., PAMI 2005.)

Figure: Super-resolution from low-resolution images of faces
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Kernel PCA

KPCA+n : unsupervised alignment (de la Torre & Nguyen,
2009)

Unsupervised alignment

KPCA + Rigid motion model

a b c

Figure: original USPS (a), Parametrized KPCA (b), congealing (c)Harchaoui (FR) ENSL ENS Lyon 47 / 61



Kernel PCA

Applications

Popular

Image denoising (digits, faces, etc.)

Visualization of bioinformatics data (strings, proteins, etc.)

Dimension-reduction of high-dimensional features (appearance,
interest points, etc.)

Not so well-know property of KPCA

Regularization in supervised learning can be enforced by projection
→ careful not to regularize twice !

Useful in settings where ridge-regularization is impractical (Zwald et
al., 2009 ; Harchaoui et al., 2009 ; Guillaumin et al., 2010)
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Kernel CCA
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Kernel CCA

Kernel Canonical Correlation Analysis
(Shawe-Taylor & Cristianini, 2004)

Canonical Correlation Analysis (CCA)

A brief refresher

Let (x1,y1), . . . , (xn,yn) a dataset of points in Rd ×Rp, for which
two views are available : the �x-view" and the �y-view"

CCA is a classical method from multivariate statistics to de�ne a set
of pairs of orthogonal directions, called canonical variates, that
capture the maximum correlation between the two views.

Projection along the �rst 2-3 pairs of canonical variates resp. of
�x-view" and the �y-view" allows to visualize the components dataset
maximizing the correlation between the two views.
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Kernel CCA

Refresher on Canonical Correlation Analysis

Computational aspects

Maximum correlation criterion corresponds to a generalized Rayleigh
quotient

CCA boils down to a generalized eigenvalue problem involving the
(centered) auto-covariance matrices Σ̂xx and Σ̂yy and on the
(centered) cross-covariance matrix Σ̂xy

Computational complexity : O(n(d+ p)c) in time with a Singular

Value Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, d the dimension, c the number of canonical variates
retained ; stochastic approximation version for
nonstationary/large-scale datasets.
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Kernel CCA

Cross-covariance matrix and cross-covariance operator

Empirical cross-covariance matrix

Empirical cross-covariance matrix Σ̂xy

of x1, . . . ,xm ∼ Px and y1, . . . ,ym ∼
Py

∀w,v ∈ X ,Y

(w, Σ̂xyv) =
1

m

m∑
`=1

(w, x̃`)(ỹ`,v)

x̃` = x` − µ̂x

ỹ` = y` − µ̂y .

Empirical cross-covariance operator Σ̂xy

of x1, . . . ,xm ∼ Px and y1, . . . ,ym ∼
Py

∀f, g ∈ F ,H〈
f, Σ̂xyg

〉
=

1

m

m∑
`=1

〈
f, φ̃(x`)

〉〈
ψ̃(y`), g

〉
φ̃(x`) = φ(x`)− µ̂x

ψ̃(y`) = ψ(y`)− µ̂y .
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Covariance along two directions

CCA seeks for directions (w1,v1) such that 1

(w1,v1) = argmax(w,v)∈Rd×Rp
Cov((w,x), (v,y))

Var1/2((w,x)Var1/2((v,y)

= argmax(w,v)∈Rd×Rp
(w, Σ̂xyv)

(w, Σ̂xxw)1/2(v, Σ̂yyv)1/2
.

1. focus here on the �rst pair of canonical variates
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Generalized Rayleigh quotient

Canonical variates (w1,v1), . . . , (wc,vc) are the �rst c pairs of vectors
solutions of the generalized eigenvalue problem

[
0 Σ̂xy

Σ̂xy 0

](
w
v

)
= ρ

[
Σ̂xx 0

0 Σ̂yy

](
w
v

)
.
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Covariance along two directions

Kernel CCA seeks for directions (f1, g1) such that 2

(f1, g1) = argmax(f,g)∈H×H
Cov(〈f, φ(x)〉 , 〈g, ψ(y)〉)

{Var 〈f, φ(x)〉+ ε 〈f, f〉}1/2{Var 〈g, ψ(x)〉+ ε 〈g, g〉}1/2

= argmax(f,g)∈H×H

〈
f, Σ̂xyg

〉
〈
f, (Σ̂xx + nε

2
)g
〉1/2 〈

f, (Σ̂yy + nε
2

)g
〉1/2

.

2. focus here on the �rst pair of canonical variates
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Kernel CCA

Correlation along two directions

Generalized eigenvalue problem

Coe�cients of canonical variates (α1, β1), . . . , (αc, βc) are the �rst c pairs
of vectors solutions of the generalized eigenvalue problem

[
0 K̃xK̃y

K̃xK̃y 0

](
α
β

)
= ρ

[
K̃xK̃x 0

0 K̃yK̃y

](
α
β

)
.
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Kernel CCA

Computational aspects of KCCA

Computational aspects

Maximum correlation in feature space corresponds to a Rayleigh
quotient

KCCA boils down to a generalized eigenvalue problem involving the

squared centered Gram matrices matrices K̃x
2
K̃y

2
and the product

of the Gram matrices K̃xK̃y.

Computational complexity : O(cn2) in time with a Singular Value

Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, c the number of principal components retained ;
stochastic approximation version for nonstationary/large-scale
datasets.
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Kernel CCA

Multimedia content based image retrieval with KCCA

Multimedia

Multimedia content → multi-view data

images with text captions : text → �x�-view, image → �y�-view

Multimedia content based image retrieval (Hardoon et al, 2004)

18.75 3.75 87.75

11.5 88.5 5.75

69.75 7.75 6.5

17.25 14.75 78.75

12 81.5 11.25

70.75 3.75 10

6.5 3.25 95.25

0.5 94.75 2.5

93 2 2.25

9 4.5 89.75

9 93.75 5.75

82 1.75 4.5

1 1.75 95.5

0.75 98 3.75

98.25 0.25 0.75

Modality Classification Error
Color
Texture
Texture/Color
Text
Combined (texture/color/text)

Fig. 5. Optimal test classification confusion matrices (top) ob-
tained by selecting the number of components, , to minimize
BIC criterion [9]. Rows and columns are estimated and correct
classes, respectively, and the confusion reported in per cent sum
to column-wise. Rows/columns 1 through 3 correspond to

, and classes.

depicted in Fig. 5. ICA classification is done for single feature
groups: texture, color, text, as well combinations texture-color
and all features (texture/color/text). The number of components
is selected using the BIC criterion [9] as shown in Fig. 6. Fig. 5
(bottom) further shows the order of importance of the different fea-
ture groups as expressed by the overall test classification error, and
indicates the importance of extracting meaningful information. In
this data set text features convey much more content information as
compared to image features - both individually and in combination
(texture-color). However, by combining all features the classifica-
tion error is reduced approx. by a factor of 2 relative to using only
text features. This indicates that the ICA classifier is able to ex-
ploit synergy among text and image features. For comparison we
used the same classification framework with PCA, which resulted
in classification errors of .

4.7. Image annotation application
An application of the suggested method is automatic annotation of
text or keywords to new (test) images. In case we do not have avail-
able class labels we aim at assigning the image to a component by

 . That is, we first need to estimate sources without
knowledge of . It can be shown that the optimal source estimate

 !  is obtained for  " ! " ! with def-
initions as in Eq. (4), and with begin the columns corresponding
to image features. That is, ! "  . If class labels are

Fig. 6. Selection of components using BIC in the case of combined
data (texture/color/text). In BIC, an asymptotic (large data set)
estimate of # is computed, viz. the probability of the model
having components given the training data. The most probable
model is obtained for and the associated classification
errors are reported in Fig. 5.

I1 I2 I3

Image Label Keywords
I1 Sports position college weight born lbs height guard
I2 Aviation na air convair wing
I3 Paintball check darkside force gog strike odt
Fig. 7. Annotation of 3 images not used for training the model.
Keywords for are team names.

available, we can further assign class label by  . In
both cases associated descriptive keyword can be generated as de-
scribed in Section 4.4.1. An example of automatic image annota-
tion is presented in Fig. 7.

5. CONCLUSIONS AND PERSPECTIVES
This paper demonstrated the potential of independent component
analysis and blind sources separation methods for modeling, un-
derstanding and intelligent processing of multimedia data. The
unique feature of ICA is that it provides unsupervised grouping of
data which are amenable for interpretation and well-aligned with
human perception.

A number of multimedia applications involving ICA/BBS and
related method have been reviewed and are summarized in Table 1.
The applications cover image/video, multimodal brain, audio, text,
and combined media data. The potential of ICA/BSS is clear, how-
ever, there still exist a number of interesting open research issues,
which are further discussed below.

We provided an extended review of our recent work on mod-
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Temporal segmentation

Outline
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Spectral clustering
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Homogeneity testing
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