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Machine learning : a tentative big picture

Unsupervised learning (learning without a teacher)
m Find structure of x € X, given observations x;, i = 1,...,n
Supervised learning (learning with a teacher)

m Predict y € ) from x € X, given observations (x;,y;), i = 1,...,n
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Machine learning : a tentative big picture

Applications in many fields

Computer vision
Bioinformatics
Audio/speech processing
Text mining

Computational astronomy

etc.

Interplays

m interplay between statistics and optimization, with a look towards Al

m interplay between theory, algorithms, and real applications
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Introduction

Unsupervised learning

Dimension reduction
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Unsupervised learning

Dimension reduction

m Computational efficiency : space and time savings
m Statistical performance : fewer dimensions — regularization

m Visualization : discover underlying structure of the data

— PCA and KPCA
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Unsupervised learning

Feature extraction

xT.
@ Y- A view from Idyllwild, California,

with pine trees and snow capped Marion
Mountain under a blue sky.’
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Unsupervised learning

Feature extraction

m Multimodality : leverage the correlation between the modalities
m Statistical performance : take advantage of both views of the data

m Putting in relation : discover underlying relations between the
modalities

— CCA and KCCA

Harchaoui (FR) ENSL ENS Lyon 9/61



Unsupervised learning

Clustering
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Unsupervised learning

Clustering

m Semantics : grouping datapoints in meaningful clusters
m Statistical performance : intrinsic degrees of freedom of the data

m Visualization : discover groupings between datapoints

— spectral clustering and temporal segmentation
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Introduction

Unsupervised learning

Detection problems
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Unsupervised learning

Detection problems

m Balance risks : control detection rate with a guaranteed false alarm
probability

m Power : detect differences not only in mean or covariance

— homogeneity testing, change detection

Harchaoui (FR) ENSL ENS Lyon 13 / 61



Kernel methods and feature space
QOutline

Kernel methods and feature space
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Kernel methods

Machine Learning methods taking K = [k(X;, X;)]; j=1,....n (Gram matrix
as input for processing a sample { X, ..., X}, where k(z,y) is a similarity

measure between z and y defining a positive definite kernel.

Strengths of Kernel Methods

m Minimal assumptions on data types (vectors, strings, trees, graphs,
etc.)

m Interpretation of k(z,y) as a dot product k(x,y) = (¢(x), ¢(y))y in a
reproducing kernel Hilbert space H where the observations are
mapped via [¢ : X — H] the feature map ¢(e) = k(e,-)
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Kernel methods

Positive-definite kernel

m definition : given a set of objects X, a positive definite kernel is a
symmetric function k(x,z’) such that for all finite sequences of
z; € X and ¢; € R,

Zaiozjk(:vi,xj) > 0.
0,

m Aronszajn theorem : k is a positive-definite kernel iif there exists a
Hilbert space H and a mapping ®(-) : X — H such that for any
r, 7' € X

k(z,2") = <<I>(a:),<I)(a;’)>H )
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Kernel methods

Reproducing kernel Hilbert space

m Assume k is a positive definite kernel on X' x X

m Aronszajn theorem : k is a positive-definite kernel iif there exists a
Hilbert space H and a mapping ®(-) : X — H such that for any
z, 7' € X

k(z,2') = (®(x), D(z)),, -

m Lexicon : X = Input space, H = Feature space, ®(-) = Feature map

Reproducing kernel Hilbert space

m Feature map is the Aronszajn map ®(x) = k(x,-)
m Function evaluation f(x) = (f, ®(x))
m Reproducing property k(z,y) = (®(x), ®(y))y
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How does the feature space look like ?

Example : space of shapes of birds
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How does the feature space look like ?

Feature map ?
How does the feature map look like?

T 20
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Kernel methods and feature space

How does the feature space look like ?

Feature map ?

The feature map is a function whose values span the whole range of shapes
with varying magnitudes.
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Examples of Kernels

Kernels on vectors

Polynomial k(x,y) = (¢ + (x,y))?
Laplace k(x,y)=exp(—|x—yl1/0)
RBF k(x,y) = exp(—|lx — y|5/07)
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Examples of Kernels

Kernels on histograms
Kernels built on top of divergence between probability distributions

1/)JD(9’9/) =h < D) 2 )

’ (at — 6;)2
¢X2(959):ZW, Yrv(6,0") Z|9

Vr,(0,0) Z\\/_ VO, o (6,6) Z|\/_ V.

0+ 0/) _h(8) + h(®)

k(0,0") = exp(—(6,0")/a?) .
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The kernel jungle

Kernels on histograms

m Pyramid match kernels (Grauman and Darrell, 2005)
m Multiresolution (nested histograms) kernels (Cuturi, 2006)

m Walk and tree-walk kernels (Ramon & Gaertner, 2004 ; Harchaoui &
Bach, 2007 ; Mahe et al., 2007)

Kernels from statistical generative models

m Mutual Information Kernels (Seeger, 2002)
m Fisher kernels (see Shawe-Taylor & Cristianini, 2004)

Other kernels

m Kernels of shapes and point coulds (Bach, 2007)
m Kernels on time series (Cuturi, 2007)
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How does the feature space look like ?

Classical kernel trick

m Describes what happens to pairs of examples

m Focuses on the pointwise effect of the feature map on an example

“Remixed” kernel trick

m Describes what happens to a random sample from a probability
distribution

m Focuses on the global effect of the feature map on a sample
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Mean element and covariance operator
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Coordinate-free definitions of mean and covariance

Usual definitions

m need explicit basis to define quantities
— tricky in high-dimensional /co-dimensional feature spaces

Coordinate-free definitions

m define quantities through their projections along any direction
— allow direct application of the reproducing property
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Mean element and covariance operator

Mean vector and mean element

Empirical mean element

Empirical mean  vector
X, .., Xy ~P
Yw € X,
m
def 1
= xfa
m
(=1
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Mean element and covariance operator

Mean vector and mean element

Empirical mean element
Empirical mean element ji of x1,.

ey Xy ~ P
VfeH,

</l7 f>7-[ dﬁf

ak(xj,xe) , if £() =Y ajk(x;, )
=1 =1
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Mean element and covariance operator

Centering in feature space

Gram matrix

K = [k(Xi, Xj)]i j=1,..n of all evaluations of the kernel k(-,-) on the
sample x1,...,Xp,.

Centering in feature space

To center all ¢(x1),...,¢(xy,) simultaneously, do

K «+ K = IIKII ,

where
1
T
nm=I1,--1,1, .
n
ENSL ENS Lyon 29 /61



Mean element and covariance operator

Covariance matrix and covariance operator

Empirical covariance operator

Empirical covariance matrix X

XiyeeoyXm ~ P

VYw,v € X,

1 m
—_ E w, X@ XZ)
m =1

Il
»
i

I
=
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Mean element and covariance operator

Covariance matrix and covariance operator

Covariance operator

Empirical covariance operator 3 of x1,...,Xm ~ P
Vf,geH,
(£.89) = -3 {1.d6x0)) ((x0).9)
{=1

I
3=
NE

{F(xe) = (s Py (x0) = (s 9)py 3 -

~
Il

1
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Mean element and covariance operator

Computing variance along a direction in feature space

Gram matrix

K = [k(Xi, Xj)]i j=1,..n of all evaluations of the kernel k(-,-) on
Tlyeeey Ty,

Covariance along two directions

(£.59) = +-a"RKS

where
FO) =D ak(x;,)
j=1
g() =Y Bik(x;,) .
j=1
S
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Mean element and covariance operator

Mean element and covariance operator

Population mean element and covariance operator

Population mean element . and population covariance operator ¥ of x ~ P

(1, fry CEf(X)], VfeH

(f,S9)3 & Covlf(x),9(x)], VfgeH

Empirical mean element and covariance operator

Empirical mean element /i and empirical covariance operator X of
X1,y X ~ P

G S fx) VI EH
(=1
(£.50) % S 700 — (o D (F00) — {fogha} Vg € H
(=1
S
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Some casual considerations before the real stuff

Supervised learning

m least-square regression, kernel ridge regression, multilayer-perceptron
— tackled through (possibly a sequence of) linear of systems

m Operation \ in Matlab/Octave

Unsupervised learning

m (kernel) principal component analysis, (kernel) canonical correlation
analysis, spectral clustering
— tackled through (possibly a sequence of) eigenvalue problems

m Function eigs in Matlab/Octave
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Kernel PCA
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Kernel PCA

Kernel Principal Component Analysis
(Schélkopf et al., 1998 ; Shawe-Taylor & Cristianini, 2004)

Principal Component Analysis (PCA)
A brief refresher

m Let x1,...,x, a dataset of points in R?

m PCA is a classical method in multivariate statistics to define a set of
orthogonal directions, called principal components, that capture the
maximum variance

m Projection along the first 2-3 principal components allows to visualize
the dataset
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Refresher on Principal Component Analysis

Computational aspects

m Maximum variance criterion corresponds to a Rayleigh quotient

m PCA boils down to an eigenvalue problem on the centered covariance
matrix X of the dataset, i.e. the principal components wy,...,w, are
the eigenvectors of X (assuming n > d)

m Computational complexity : O(ndc) in time with a Singular Value
Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, d the dimension, ¢ the number of principal
components retained ; stochastic approximation version for
nonstationary/large-scale datasets.
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Variance along a direction and Rayleigh quotients

Variance along a direction
PCA seeks for directions w1, ..., w, such that

W = argmaXy crd.w, | {wi,..,w;_1} Varemp(
m
1 (w, )
- argmaXWERd;WjJ_{Wl,...,Wj 1} E W

= argMmaXy ecrd:w, | {wy,...w;_1} (
Rayleigh quotient

Principal components wy, ..., w, are the first ¢ eigenvectors of X.
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Variance along a direction and Rayleigh quotients

Variance along a direction
KPCA seeks for directions f1,..., f. such that

fi = argmaxseasr i1, 01} Varempw

N (f p(x))
= argmaXfe’H;ij{fl7~-~,f]’—1} E Z <<f(.)]i>)>
i=1 ’

(£.21)
= argmaXf.gH;ij{fl,.--7fj—1} W
N —’

Rayleigh quotient

Principal components fi, ..., f. are the first ¢ eigenvectors of . Is that it ?
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Rescue theorems

Properties of covariance operators
RKHS Covariance operators are (Zwald et al., 2005, Harchaoui et al.,
2008)

m self-adjoint (oco-dimensional counterpart of symmetric)
m positive

m trace-class

Consequence

The covariance operator 3 and the centered Gram matrix K share the
same eigenvalues on the nonzero part of their spectra, and their
eigenvectors are related by a simple relation.
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Kernel PCA

Kernel Principal Component Analysis

KPCA algorithm

m Center the Gram matrix

m Performs an SVD on K to get the first ¢ eigenvector /eigenvalue pairs
(€55 Aj)j=1,....c-
m Normalize the eigenvector €; <— e;/)\;

m Projections onto the j-th eigenvectors is given by Kéj

Harchaoui (FR) ENSL ENS Lyon 41 / 61



Computational aspects of KPCA

Computational aspects

m Maximum variance in feature space corresponds to a Rayleigh quotient

m KPCA boils down to an eigenvalue problem involving the centered
auto-covariance matrices K

m Computational complexity : O(cn?) in time with a Singular Value
Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, ¢ the number of principal components retained ;
stochastic approximation version for nonstationary/large-scale
datasets.
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Low-dimensional representation with KPCA

Human body pose representation

m Walking sequence of length 400 (containing about 3 walking cycles)
obtained from the CMU Mocap database
m Data : silhouette images of size (160 100) taken at a side view

Human body pose representation (Kim & Pavlovic, 2008)

eaN G EY
LEhAARL L
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Low-dimensional representation with KPCA

Human body pose representation
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Low-dimensional representation with KPCA

Human body pose representation
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Super-resoluton with KPCA (Kim et al., 2005)

Super-resolution

10x10 40x40
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Kernel PCA

KPCA+n : unsupervised alignment (de la Torre & Nguyen,
2009)

Unsupervised alignment
KPCA + Rigid motion model

PR Y A Y
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Applications

Popular

m Image denoising (digits, faces, etc.)
m Visualization of bioinformatics data (strings, proteins, etc.)

m Dimension-reduction of high-dimensional features (appearance,
interest points, etc.)

Not so well-know property of KPCA

m Regularization in supervised learning can be enforced by projection
— careful not to regularize twice!

m Useful in settings where ridge-regularization is impractical (Zwald et
al., 2009 ; Harchaoui et al., 2009 ; Guillaumin et al., 2010)
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Kernel CCA
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Kernel CCA

Kernel Canonical Correlation Analysis
(Shawe-Taylor & Cristianini, 2004)

Canonical Correlation Analysis (CCA)
A brief refresher

m Let (X1,¥1),...,(Xn, ¥n) a dataset of points in R x RP, for which
two views are available : the “z-view" and the “y-view"

m CCA is a classical method from multivariate statistics to define a set
of pairs of orthogonal directions, called canonical variates, that
capture the maximum correlation between the two views.

m Projection along the first 2-3 pairs of canonical variates resp. of
“x-view" and the “y-view" allows to visualize the components dataset
maximizing the correlation between the two views.
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Refresher on Canonical Correlation Analysis

Computational aspects

m Maximum correlation criterion corresponds to a generalized Rayleigh
quotient

m CCA boils down to a generalized eigenvalue problem involving the
(centered) auto-covariance matrices Yx and Z yy and on the
(centered) cross-covariance matrix 3y

m Computational complexity : O(n(d + p)c) in time with a Singular
Value Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, d the dimension, ¢ the number of canonical variates
retained ; stochastic approximation version for
nonstationary/large-scale datasets.
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Kernel CCA

Cross-covariance matrix and cross-covariance operator

Empirical cross-covariance matrix

Empirical cross-covariance matrix f)xy Empirical cross-covariance operator f)xy
of x1,...,Xm ~Pxand y1,...,ym ~|of X1,...,Xm ~Px and y1,...,ym ~
Py Py
Yw,ve X,) Vf,ge F,H
1 & . 1 « -
W, S ) = =S (W k)Tev) | (LEmg) = — > (£96x0) (By0), )
=1 £=1
X¢ = X¢ — fix B(xe) = p(xe) — fix
Ye=Ye—fiy - P(ye) =p(ye) — fiy
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Covariance along two directions
CCA seeks for directions (w1, v1) such that!

Cov((w,x), (v,y))
Var'/2((w, x)Var'/2((v,y)
(w, i]xyv)

(w, 2A]xxw)l/2 (v, 2A)yyv)l/2 ‘

(Wla Vl) = argmaX(y v)eR4xRP

= argmaX(y v)eR4xRp

1. focus here on the first pair of canonical variates
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Generalized Rayleigh quotient

Canonical variates (w1,v1),..., (W, v¢) are the first ¢ pairs of vectors
solutions of the generalized eigenvalue problem

0 f)xy wo\ f]xx 0 w
Sy O v ) Pl 0 5y, v )
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Covariance along two directions
Kernel CCA seeks for directions (f1,g1) such that?

R Cov((£,6(x)) , (9. 9(y)))
(F1:91) = 3€MX( 10130 (ar (7, 6(@)) + ¢ (f, £)}1/2 (Var (g, 0(2)) T < (g.9)] 72

<f7 2A:xyg>

(5 Gt 590) (1, By +599)

= argmax(f,g)eﬂxn

2. focus here on the first pair of canonical variates
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Kernel CCA

Correlation along two directions

Generalized eigenvalue problem

Coefficients of canonical variates (a1, 1), ..., (¢, Bc) are the first ¢ pairs
of vectors solutions of the generalized eigenvalue problem

0 KxKy]<oz>_ [KIKI 0 le%
KK, 0 g)=" 0 KK, } ( 6) ‘
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Yy



Computational aspects of KCCA

Computational aspects

m Maximum correlation in feature space corresponds to a Rayleigh
quotient

m KCCA boils down to a generalized eigenvalue problem involving the
squared centered Gram matrices matrices K, 2 Ky2 and the product
of the Gram matrices K, K

m Computational complexity : O(cn2) in time with a Singular Value
Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, ¢ the number of principal components retained ;
stochastic approximation version for nonstationary/large-scale
datasets.
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Kernel CCA

Multimedia content based image retrieval with KCCA

Multimedia

m Multimedia content — multi-view data

m images with text captions : text — “x"-view, image — “y"-view

Multimedia content based image retrieval (Hardoon et al, 2004)

Image | Label | Keywords

I Sports | position college weight born Ibs height guard
g Aviation | na air convair wing

I3 Paintball | check darkside force gog strike odt
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Outline

B Temporal segmentation
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Outline

Spectral clustering
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Outline

B Homogeneity testing
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