
Overview The basic structure Lattices LLL Recombination

The state of the art in polynomial factorization

Andy Novocin
École Normale Supérieure de Lyon

EVA-flo 2010

Overview The basic structure Lattices LLL Recombination

Outline:

The Basic Algorithmic Problem:

Given f ∈ Z[x] find a complete irreducible factorization,
g1 · · · gk = f in Z[x] (as quickly as possible).

My Personal Research Objective:

Prove near-sharp complexity bounds for highly practical (useful
and optimized) algorithms.

Overview The basic structure Lattices LLL Recombination

The Historical Gap in Polynomial Factoring

The best algorithm in theory vs. in practice:
Year Best Provable Bound Best Probable Bound
1969 Zassenhaus Zassenhaus
1982 LLL Zassenhaus
2002 LLL van Hoeij
2004 LLL Belabas
2010 Hoeij/Novocin Hart/Hoeij/Novocin
Summer 2010 Hart/Hoeij/Novocin Hart/Hoeij/Novocin

Now we’ll explore the behavior (in theory and in practice)
of Hart/Hoeij/Novocin.

Overview The basic structure Lattices LLL Recombination

The basic conepts

• f ∈ Z[x] ⊂ Zp[x]
• Finding a factorization in Zp[x] can be practical
• Let f1, . . . , fr be the factorization of f in Zp[x].
• True factors g|f correspond with 0–1 vectors in {0,1}r .
• True factors have boundable coefficients ‖ g ‖∞≤ L.
• Given a vector in {0,1}r we can quickly test it
• Provided we know f1, . . . , fr to sufficient precision (2L).
• A Technique called Hensel lifting can increase p-adic

precision

Overview The basic structure Lattices LLL Recombination

The basic conepts

• f ∈ Z[x] ⊂ Zp[x]
• Finding a factorization in Zp[x] can be practical
• Let f1, . . . , fr be the factorization of f in Zp[x].
• True factors g|f correspond with 0–1 vectors in {0,1}r .
• True factors have boundable coefficients ‖ g ‖∞≤ L.
• Given a vector in {0,1}r we can quickly test it
• Provided we know f1, . . . , fr to sufficient precision (2L).
• A Technique called Hensel lifting can increase p-adic

precision

Overview The basic structure Lattices LLL Recombination

The basic conepts

• f ∈ Z[x] ⊂ Zp[x]
• Finding a factorization in Zp[x] can be practical
• Let f1, . . . , fr be the factorization of f in Zp[x].
• True factors g|f correspond with 0–1 vectors in {0,1}r .
• True factors have boundable coefficients ‖ g ‖∞≤ L.
• Given a vector in {0,1}r we can quickly test it
• Provided we know f1, . . . , fr to sufficient precision (2L).
• A Technique called Hensel lifting can increase p-adic

precision

Overview The basic structure Lattices LLL Recombination

The basic conepts

• f ∈ Z[x] ⊂ Zp[x]
• Finding a factorization in Zp[x] can be practical
• Let f1, . . . , fr be the factorization of f in Zp[x].
• True factors g|f correspond with 0–1 vectors in {0,1}r .
• True factors have boundable coefficients ‖ g ‖∞≤ L.
• Given a vector in {0,1}r we can quickly test it
• Provided we know f1, . . . , fr to sufficient precision (2L).
• A Technique called Hensel lifting can increase p-adic

precision

Overview The basic structure Lattices LLL Recombination

The basic conepts

• f ∈ Z[x] ⊂ Zp[x]
• Finding a factorization in Zp[x] can be practical
• Let f1, . . . , fr be the factorization of f in Zp[x].
• True factors g|f correspond with 0–1 vectors in {0,1}r .
• True factors have boundable coefficients ‖ g ‖∞≤ L.
• Given a vector in {0,1}r we can quickly test it
• Provided we know f1, . . . , fr to sufficient precision (2L).
• A Technique called Hensel lifting can increase p-adic

precision

Overview The basic structure Lattices LLL Recombination

The basic conepts

• f ∈ Z[x] ⊂ Zp[x]
• Finding a factorization in Zp[x] can be practical
• Let f1, . . . , fr be the factorization of f in Zp[x].
• True factors g|f correspond with 0–1 vectors in {0,1}r .
• True factors have boundable coefficients ‖ g ‖∞≤ L.
• Given a vector in {0,1}r we can quickly test it
• Provided we know f1, . . . , fr to sufficient precision (2L).
• A Technique called Hensel lifting can increase p-adic

precision

Overview The basic structure Lattices LLL Recombination

The basic conepts

• f ∈ Z[x] ⊂ Zp[x]
• Finding a factorization in Zp[x] can be practical
• Let f1, . . . , fr be the factorization of f in Zp[x].
• True factors g|f correspond with 0–1 vectors in {0,1}r .
• True factors have boundable coefficients ‖ g ‖∞≤ L.
• Given a vector in {0,1}r we can quickly test it
• Provided we know f1, . . . , fr to sufficient precision (2L).
• A Technique called Hensel lifting can increase p-adic

precision

Overview The basic structure Lattices LLL Recombination

An Example

• Let f = x4 − 11 and p = 5.
• A bound (Landau-Mignotte) on the coefficients of any

factors of f is 12.05.
• f = x4 − 11 ≡ (x + 1)(x + 2)(x + 3)(x + 4) mod 5
• Using Hensel Lifting we find

f ≡ (x + 16)(x + 12)(x + 13)(x + 9) ≡
(x − 9)(x + 12)(x − 12)(x + 9) mod 52.

• Could brute force combinations, such as:
(x − 9) · (x + 9) ≡ x2 − 6 mod 25, but the GCD of x2 − 6
and f performed in Z[x] is 1.

• After testing certain combinations we would determine that
f is irreducible.

Overview The basic structure Lattices LLL Recombination

Behavior/Cost of the parts

• Let f have degree N and ‖ f ‖∞≤ 2H .

• Factoring modulo p costs O(N2 + N log p) CPU ops
• Hensel Lifting to precision a is O(M(N)M(a · log p) · log r).
• Checking a 0–1 vector is cheap, in worst-case,
O(N2 + NH).

• There are 2r such 0–1 vectors.
• We call the process of finding 0–1 vectors, recombination.
• Zassenhaus uses brute force, modern approaches (since

van Hoeij) use LLL.
• The behavior of LLL and recombination is practical but

mysterious.

Overview The basic structure Lattices LLL Recombination

Our first philosophical dilemma

• Treat ‘modern’ recombination as a black box.
• It accepts a p-adic factorization of f with precision a.
• It returns either the complete factorization of f over Z or it

gives up.
• There are some (obscure) worst-case polynomials when

recombination dominates Hensel lifting (as it does in
theory).

• The average polynomials tend to be dominated by Hensel
lifting in practice.

• So what should we use for the first precision?
• Aim too low then recombination might fail.
• Aim too high Hensel lifting could dominate running times.

Overview The basic structure Lattices LLL Recombination

The Hensel Picture

Factor

mod p

Hensel

Lift

Attempt to

recombine

f

Success

- -

?

�

�

Overview The basic structure Lattices LLL Recombination

Before opening the box

Practical Design Goal

In practice we would like to always minimize the cost of Hensel
lifting.

Theoretical Design Goal

We must show that, in the worst-case, any failed attempts do
not impact the complexity bound.

Balanced Design Goal

We show that, in the worst-cases, failed attempts do not impact
the running times.

Overview The basic structure Lattices LLL Recombination

Opening the recombination box

At the heart of our modern recombination technique is an
application of the LLL algorithm.

LLL is a somewhat mysterious algorithm with many useful
applications (cryptography, number theory, integer

programming, Diophantine approximations, relation finding,
Table Maker’s Dilemma).

Overview The basic structure Lattices LLL Recombination

Introducing Lattices

A lattice, L

��
��
��
��

��
��
��
��

��
��
��
��

The same lattice, L

��
���

���
��

���
���

��
���

���
��

���
���

��
���

���
��

���
���

Definition
A lattice, L, is the set of all integer combinations of some set of
vectors in Rn

Any minimal spanning set of L is called a basis of L

Every lattice has many bases. . . and LLL wants to find a good
basis!

Overview The basic structure Lattices LLL Recombination

Introducing Lattices

A lattice, L

��
��
��
��

��
��
��
��

��
��
��
��

The same lattice, L

��
���

���
��

���
���

��
���

���
��

���
���

��
���

���
��

���
���

Definition
A lattice, L, is the set of all integer combinations of some set of
vectors in Rn

Any minimal spanning set of L is called a basis of L

Every lattice has many bases. . . and LLL wants to find a good
basis!

Overview The basic structure Lattices LLL Recombination

Introducing Lattices

A lattice, L

��
��
��
��

��
��
��
��

��
��
��
��

The same lattice, L

��
���

���
��

���
���

��
���

���
��

���
���

��
���

���
��

���
���

Definition
A lattice, L, is the set of all integer combinations of some set of
vectors in Rn

Any minimal spanning set of L is called a basis of L

Every lattice has many bases. . . and LLL wants to find a good
basis!

Overview The basic structure Lattices LLL Recombination

Introducing Lattices

A lattice, L

��
��
��
��

��
��
��
��

��
��
��
��

The same lattice, L

��
���

���
��

���
���

��
���

���
��

���
���

��
���
���

��
���

���

Definition
A lattice, L, is the set of all integer combinations of some set of
vectors in Rn

Any minimal spanning set of L is called a basis of L

Every lattice has many bases. . . and LLL wants to find a good
basis!

Overview The basic structure Lattices LLL Recombination

Introducing Lattices

A lattice, L

��
��
��
��

��
��
��
��

��
��
��
��

The same lattice, L

��
���

���
��

���
���

��
���

���
��

���
���

��
���
���

��
���

���

Definition
A lattice, L, is the set of all integer combinations of some set of
vectors in Rn

Any minimal spanning set of L is called a basis of L

Every lattice has many bases. . . and LLL wants to find a good
basis!

Overview The basic structure Lattices LLL Recombination

The Most Common Lattice Question

The Shortest Vector Problem
Given a lattice, L, find the Shortest Vector in L.

• The Shortest Vector Problem (SVP) is NP-hard (≈ very
difficult / not polynomial time) to solve.

• The are many interesting research areas which can be
connected to the SVP.

• One of the primary uses of a ’good basis’ is to
approximately solve the SVP in polynomial time.

• Sometimes approximating can be enough.

Overview The basic structure Lattices LLL Recombination

The Most Common Lattice Question

The Shortest Vector Problem
Given a lattice, L, find the Shortest Vector in L.

• The Shortest Vector Problem (SVP) is NP-hard (≈ very
difficult / not polynomial time) to solve.

• The are many interesting research areas which can be
connected to the SVP.

• One of the primary uses of a ’good basis’ is to
approximately solve the SVP in polynomial time.

• Sometimes approximating can be enough.

Overview The basic structure Lattices LLL Recombination

The Most Common Lattice Question

The Shortest Vector Problem
Given a lattice, L, find the Shortest Vector in L.

• The Shortest Vector Problem (SVP) is NP-hard (≈ very
difficult / not polynomial time) to solve.

• The are many interesting research areas which can be
connected to the SVP.

• One of the primary uses of a ’good basis’ is to
approximately solve the SVP in polynomial time.

• Sometimes approximating can be enough.

Overview The basic structure Lattices LLL Recombination

The Most Common Lattice Question

The Shortest Vector Problem
Given a lattice, L, find the Shortest Vector in L.

• The Shortest Vector Problem (SVP) is NP-hard (≈ very
difficult / not polynomial time) to solve.

• The are many interesting research areas which can be
connected to the SVP.

• One of the primary uses of a ’good basis’ is to
approximately solve the SVP in polynomial time.

• Sometimes approximating can be enough.

Overview The basic structure Lattices LLL Recombination

The Most Common Lattice Question

The Shortest Vector Problem
Given a lattice, L, find the Shortest Vector in L.

• The Shortest Vector Problem (SVP) is NP-hard (≈ very
difficult / not polynomial time) to solve.

• The are many interesting research areas which can be
connected to the SVP.

• One of the primary uses of a ’good basis’ is to
approximately solve the SVP in polynomial time.

• Sometimes approximating can be enough.

Overview The basic structure Lattices LLL Recombination

An Example: Algebraic Number Reconstruction

Finding a minpoly: Given an approximation
α̃ = Re(α̃) + i · Im(α̃).
Make a lattice, L, like this:

1 0 0 0 C · Re(α̃0) C · Im(α̃0)

0 1 0 0 C · Re(α̃1) C · Im(α̃1)

0 0 1 0 C · Re(α̃2) C · Im(α̃2)

0 0 0 1 C · Re(α̃3) C · Im(α̃3)


Where C is a very large constant.
Let minpoly(α) =: c0 + c1x + c2x2 + c3x3.
Then (c0, c1, c2, c3,0,0) ∈ L and is smaller in size than the
other vectors.

Overview The basic structure Lattices LLL Recombination

An Example: Algebraic Number Reconstruction

Finding a minpoly: Given an approximation
α̃ = Re(α̃) + i · Im(α̃).
Make a lattice, L, like this:

1 0 0 0 C · Re(α̃0) C · Im(α̃0)

0 1 0 0 C · Re(α̃1) C · Im(α̃1)

0 0 1 0 C · Re(α̃2) C · Im(α̃2)

0 0 0 1 C · Re(α̃3) C · Im(α̃3)


Where C is a very large constant.
Let minpoly(α) =: c0 + c1x + c2x2 + c3x3.
Then (c0, c1, c2, c3,0,0) ∈ L and is smaller in size than the
other vectors.

Overview The basic structure Lattices LLL Recombination

An Example: Algebraic Number Reconstruction

Finding a minpoly: Given an approximation
α̃ = Re(α̃) + i · Im(α̃).
Make a lattice, L, like this:

1 0 0 0 C · Re(α̃0) C · Im(α̃0)

0 1 0 0 C · Re(α̃1) C · Im(α̃1)

0 0 1 0 C · Re(α̃2) C · Im(α̃2)

0 0 0 1 C · Re(α̃3) C · Im(α̃3)


Where C is a very large constant.
Let minpoly(α) =: c0 + c1x + c2x2 + c3x3.
Then (c0, c1, c2, c3,0,0) ∈ L and is smaller in size than the
other vectors.

Overview The basic structure Lattices LLL Recombination

An Example: Algebraic Number Reconstruction

Finding a minpoly: Given an approximation
α̃ = Re(α̃) + i · Im(α̃).
Make a lattice, L, like this:

1 0 0 0 C · Re(α̃0) C · Im(α̃0)

0 1 0 0 C · Re(α̃1) C · Im(α̃1)

0 0 1 0 C · Re(α̃2) C · Im(α̃2)

0 0 0 1 C · Re(α̃3) C · Im(α̃3)


Where C is a very large constant.
Let minpoly(α) =: c0 + c1x + c2x2 + c3x3.
Then (c0, c1, c2, c3,0,0) ∈ L and is smaller in size than the
other vectors.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Orthogonalization

Given a set of vectors b1, . . . ,bd ∈ Rn the Gram-Schmidt (G-S)
process returns a set of orthogonal vectors b∗1, . . . ,b

∗
d with the

following properties:
• b1 = b∗1
• SPANR{b1, . . . ,bi} = SPANR{b∗1, . . . ,b∗i }

Intuition of GSO
My favorite way to think of G-S vectors is that b∗i is bi modded
out by b1, . . . ,bi−1 over R.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Orthogonalization

Given a set of vectors b1, . . . ,bd ∈ Rn the Gram-Schmidt (G-S)
process returns a set of orthogonal vectors b∗1, . . . ,b

∗
d with the

following properties:
• b1 = b∗1
• SPANR{b1, . . . ,bi} = SPANR{b∗1, . . . ,b∗i }

Intuition of GSO
My favorite way to think of G-S vectors is that b∗i is bi modded
out by b1, . . . ,bi−1 over R.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Orthogonalization

Given a set of vectors b1, . . . ,bd ∈ Rn the Gram-Schmidt (G-S)
process returns a set of orthogonal vectors b∗1, . . . ,b

∗
d with the

following properties:
• b1 = b∗1
• SPANR{b1, . . . ,bi} = SPANR{b∗1, . . . ,b∗i }

Intuition of GSO
My favorite way to think of G-S vectors is that b∗i is bi modded
out by b1, . . . ,bi−1 over R.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Orthogonalization

Given a set of vectors b1, . . . ,bd ∈ Rn the Gram-Schmidt (G-S)
process returns a set of orthogonal vectors b∗1, . . . ,b

∗
d with the

following properties:
• b1 = b∗1
• SPANR{b1, . . . ,bi} = SPANR{b∗1, . . . ,b∗i }

Intuition of GSO
My favorite way to think of G-S vectors is that b∗i is bi modded
out by b1, . . . ,bi−1 over R.

Overview The basic structure Lattices LLL Recombination

A Reduced Basis

The goal of lattice reduction is to find a ‘nice’ basis for a given
lattice.

A Reduced Basis
Let b1, . . . ,bd be a basis for a lattice, L, and let b∗j be the j th G-S
vector. Then we call the basis LLL-reduced when:

‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2 ∀i < d

A reduced basis cannot be too far from orthogonal. In particular
the G-S lengths do not drop ‘too’ fast.

Overview The basic structure Lattices LLL Recombination

A Reduced Basis

The goal of lattice reduction is to find a ‘nice’ basis for a given
lattice.

A Reduced Basis
Let b1, . . . ,bd be a basis for a lattice, L, and let b∗j be the j th G-S
vector. Then we call the basis LLL-reduced when:

‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2 ∀i < d

A reduced basis cannot be too far from orthogonal. In particular
the G-S lengths do not drop ‘too’ fast.

Overview The basic structure Lattices LLL Recombination

A Reduced Basis

The goal of lattice reduction is to find a ‘nice’ basis for a given
lattice.

A Reduced Basis
Let b1, . . . ,bd be a basis for a lattice, L, and let b∗j be the j th G-S
vector. Then we call the basis LLL-reduced when:

‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2 ∀i < d

A reduced basis cannot be too far from orthogonal. In particular
the G-S lengths do not drop ‘too’ fast.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Gram-Schmidt Length versus Orthogonality

-

v∗1 := v1

��
���

���:v2

In this picture there are
two vectors which are far
from orthogonal.

6v∗2

Small G-S Length

-

v∗1 := v1

�
�
�
�
�
�
�
��

v2

In this one the vectors
are closer to orthogonal.

6

v∗2 Larger G-S length

• LLL searches for a nearly orthogonal basis.
• It does this by ‘rearranging’ basis vectors such that later

vectors have longer G-S lengths and ’modding out’ by
previous vectors over Z.

Overview The basic structure Lattices LLL Recombination

Properties of a reduced basis

Nice traits of a reduced basis:
• The first vector is not far from the shortest vector in the

lattice. For every v ∈ L we have:

‖ b1 ‖≤ 2(d−1)/2 ‖ v ‖

• The later vectors have longer Gram-Schmidt length than
when LLL began. This is useful because of the following
property which is true for any basis, b1, . . . ,bd :

For every v ∈ L with ‖ v ‖2≤ B. If ‖ b∗d ‖2> B then
v ∈ SPANZ(b1, . . . ,bd−1).

• The basic idea is that LLL can separate the small vectors
from the large vectors, if we can create a large enough gap
in their sizes.

Overview The basic structure Lattices LLL Recombination

Properties of a reduced basis

Nice traits of a reduced basis:
• The first vector is not far from the shortest vector in the

lattice. For every v ∈ L we have:

‖ b1 ‖≤ 2(d−1)/2 ‖ v ‖

• The later vectors have longer Gram-Schmidt length than
when LLL began. This is useful because of the following
property which is true for any basis, b1, . . . ,bd :

For every v ∈ L with ‖ v ‖2≤ B. If ‖ b∗d ‖2> B then
v ∈ SPANZ(b1, . . . ,bd−1).

• The basic idea is that LLL can separate the small vectors
from the large vectors, if we can create a large enough gap
in their sizes.

Overview The basic structure Lattices LLL Recombination

Properties of a reduced basis

Nice traits of a reduced basis:
• The first vector is not far from the shortest vector in the

lattice. For every v ∈ L we have:

‖ b1 ‖≤ 2(d−1)/2 ‖ v ‖

• The later vectors have longer Gram-Schmidt length than
when LLL began. This is useful because of the following
property which is true for any basis, b1, . . . ,bd :

For every v ∈ L with ‖ v ‖2≤ B. If ‖ b∗d ‖2> B then
v ∈ SPANZ(b1, . . . ,bd−1).

• The basic idea is that LLL can separate the small vectors
from the large vectors, if we can create a large enough gap
in their sizes.

Overview The basic structure Lattices LLL Recombination

A Rough Sketch of LLL

Most variants of LLL perform the following steps in one form or
another:

1. (Gram-Schmidt over Z). By subtracting suitable Z-linear
combinations of b1, . . . ,bi−1 from bi . In fpLLL this step is
also known as the Babbai step.

2. (LLL Switch). If there is a k such that interchanging bk−1
and bk will increase ‖ b∗k ‖2 by a factor 1/δ, then do so.

3. (Repeat). If there was no such k in Step 2, then the
algorithm stops. Otherwise go back to Step 1.

The CPU cost of this algorithm will be roughly:
‘the number of switches’ times ‘the cost per switch’

Overview The basic structure Lattices LLL Recombination

A Rough Sketch of LLL

Most variants of LLL perform the following steps in one form or
another:

1. (Gram-Schmidt over Z). By subtracting suitable Z-linear
combinations of b1, . . . ,bi−1 from bi . In fpLLL this step is
also known as the Babbai step.

2. (LLL Switch). If there is a k such that interchanging bk−1
and bk will increase ‖ b∗k ‖2 by a factor 1/δ, then do so.

3. (Repeat). If there was no such k in Step 2, then the
algorithm stops. Otherwise go back to Step 1.

The CPU cost of this algorithm will be roughly:
‘the number of switches’ times ‘the cost per switch’

Overview The basic structure Lattices LLL Recombination

A Rough Sketch of LLL

Most variants of LLL perform the following steps in one form or
another:

1. (Gram-Schmidt over Z). By subtracting suitable Z-linear
combinations of b1, . . . ,bi−1 from bi . In fpLLL this step is
also known as the Babbai step.

2. (LLL Switch). If there is a k such that interchanging bk−1
and bk will increase ‖ b∗k ‖2 by a factor 1/δ, then do so.

3. (Repeat). If there was no such k in Step 2, then the
algorithm stops. Otherwise go back to Step 1.

The CPU cost of this algorithm will be roughly:
‘the number of switches’ times ‘the cost per switch’

Overview The basic structure Lattices LLL Recombination

A Rough Sketch of LLL

Most variants of LLL perform the following steps in one form or
another:

1. (Gram-Schmidt over Z). By subtracting suitable Z-linear
combinations of b1, . . . ,bi−1 from bi . In fpLLL this step is
also known as the Babbai step.

2. (LLL Switch). If there is a k such that interchanging bk−1
and bk will increase ‖ b∗k ‖2 by a factor 1/δ, then do so.

3. (Repeat). If there was no such k in Step 2, then the
algorithm stops. Otherwise go back to Step 1.

The CPU cost of this algorithm will be roughly:
‘the number of switches’ times ‘the cost per switch’

Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

A tight example of LLL


10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1




10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1




10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1




0 0 5 0
10 0 0 0

0 20 0 0
0 0 0 1




0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0




0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0




0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0



Overview The basic structure Lattices LLL Recombination

The Ideas of the van Hoeij Recombination:

Mark van Hoeij had the clever idea of using LLL to find these
0− 1 vectors. Here’s an overview:
• Every true factor, gj , corresponds with a 0–1 vector, wj ,

with r entries. Let SPANZ(w1, . . . ,ws) =: W ⊂ Zr .
• If we know any basis for W then we can find a reduced row

echelon form of the basis to find the wj and solve the
problem.

• We can create a lattice, L, which contains W . If we make
sure that the vectors in W are short while the vectors in
L \W are long, then LLL can find W .

• So we begin by taking the standard basis for Zr as our
basis for L. Then we will add entries which should be short
for true factors and perhaps long for the others.

But what can we use for this task?

Overview The basic structure Lattices LLL Recombination

The Ideas of the van Hoeij Recombination:

Mark van Hoeij had the clever idea of using LLL to find these
0− 1 vectors. Here’s an overview:
• Every true factor, gj , corresponds with a 0–1 vector, wj ,

with r entries. Let SPANZ(w1, . . . ,ws) =: W ⊂ Zr .
• If we know any basis for W then we can find a reduced row

echelon form of the basis to find the wj and solve the
problem.

• We can create a lattice, L, which contains W . If we make
sure that the vectors in W are short while the vectors in
L \W are long, then LLL can find W .

• So we begin by taking the standard basis for Zr as our
basis for L. Then we will add entries which should be short
for true factors and perhaps long for the others.

But what can we use for this task?

Overview The basic structure Lattices LLL Recombination

The Ideas of the van Hoeij Recombination:

Mark van Hoeij had the clever idea of using LLL to find these
0− 1 vectors. Here’s an overview:
• Every true factor, gj , corresponds with a 0–1 vector, wj ,

with r entries. Let SPANZ(w1, . . . ,ws) =: W ⊂ Zr .
• If we know any basis for W then we can find a reduced row

echelon form of the basis to find the wj and solve the
problem.

• We can create a lattice, L, which contains W . If we make
sure that the vectors in W are short while the vectors in
L \W are long, then LLL can find W .

• So we begin by taking the standard basis for Zr as our
basis for L. Then we will add entries which should be short
for true factors and perhaps long for the others.

But what can we use for this task?

Overview The basic structure Lattices LLL Recombination

The Ideas of the van Hoeij Recombination:

Mark van Hoeij had the clever idea of using LLL to find these
0− 1 vectors. Here’s an overview:
• Every true factor, gj , corresponds with a 0–1 vector, wj ,

with r entries. Let SPANZ(w1, . . . ,ws) =: W ⊂ Zr .
• If we know any basis for W then we can find a reduced row

echelon form of the basis to find the wj and solve the
problem.

• We can create a lattice, L, which contains W . If we make
sure that the vectors in W are short while the vectors in
L \W are long, then LLL can find W .

• So we begin by taking the standard basis for Zr as our
basis for L. Then we will add entries which should be short
for true factors and perhaps long for the others.

But what can we use for this task?

Overview The basic structure Lattices LLL Recombination

The Ideas of the van Hoeij Recombination:

Mark van Hoeij had the clever idea of using LLL to find these
0− 1 vectors. Here’s an overview:
• Every true factor, gj , corresponds with a 0–1 vector, wj ,

with r entries. Let SPANZ(w1, . . . ,ws) =: W ⊂ Zr .
• If we know any basis for W then we can find a reduced row

echelon form of the basis to find the wj and solve the
problem.

• We can create a lattice, L, which contains W . If we make
sure that the vectors in W are short while the vectors in
L \W are long, then LLL can find W .

• So we begin by taking the standard basis for Zr as our
basis for L. Then we will add entries which should be short
for true factors and perhaps long for the others.

But what can we use for this task?

Overview The basic structure Lattices LLL Recombination

The van Hoeij Approach

The i th Trace of a polynomial

We define the i th trace of g:

Tri(g) :=
N∑

j=1

αi
j

where αj are the roots of g.
So if g1,g2 are polynomials then
Tr1(g1 · g2) = Tr1(g1) + Tr1(g2).
Also it is a fact that Tri(g) is always in the coefficient ring of g.

This works well because:
• The Trace is additive.
• The Trace of a polynomial in Z[x] is boundable, while in Zp

this can be arbitrarily ‘large’.

Overview The basic structure Lattices LLL Recombination

The van Hoeij Approach

The i th Trace of a polynomial

We define the i th trace of g:

Tri(g) :=
N∑

j=1

αi
j

where αj are the roots of g.
So if g1,g2 are polynomials then
Tr1(g1 · g2) = Tr1(g1) + Tr1(g2).
Also it is a fact that Tri(g) is always in the coefficient ring of g.

This works well because:
• The Trace is additive.
• The Trace of a polynomial in Z[x] is boundable, while in Zp

this can be arbitrarily ‘large’.

Overview The basic structure Lattices LLL Recombination

The same example but with van Hoeij

• Let’s show van Hoeij’s approach on the previous example:
f = x4 − 11.

• f ≡ (x − 41)(x + 41)(x − 38)(x + 38) mod 125
• The absolute value of any root of f cannot exceed

4
√

11 ≈ 1.82116.
• So |Tr1(gk)| ≤ 4 · 1.82116 ≈ 7.2846 and
|Tr2(gk)| ≤ 4 · 1.821162 ≈ 13.266.

• Now find the Traces for our local factors:
Tr1(f1) = 41,Tr1(f2) = −41,Tr1(f3) = 38,Tr1(f4) = −38.
While Tr2(f1) = Tr2(f2) = 56 and Tr2(f3) = Tr2(f4) = −56.

Overview The basic structure Lattices LLL Recombination

Example Continued;
f ≡ (x − 41)(x + 41)(x − 38)(x + 38)

Because of space we will show both Tr1 and Tr2 in our lattice,
although in practice the second trace would not be added until
after the first LLL run.

1 0 0 0 41/7.2846 56/13.266
0 1 0 0 −41/7.2846 56/13.266
0 0 1 0 38/7.2846 −56/13.266
0 0 0 1 −38/7.2846 −56/13.266
0 0 0 0 125/7.2846 0
0 0 0 0 0 125/13.266


(1,1,0,0,0) and (0,0,1,1,0) are small vectors, but trial division
will show that they do not correspond with true factors.
Whereas using both traces will show (1,1,1,1,0,0) will be the
smallest vector in this lattice.

Overview The basic structure Lattices LLL Recombination

Example Continued;
f ≡ (x − 41)(x + 41)(x − 38)(x + 38)

Because of space we will show both Tr1 and Tr2 in our lattice,
although in practice the second trace would not be added until
after the first LLL run.

1 0 0 0 41/7.2846 56/13.266
0 1 0 0 −41/7.2846 56/13.266
0 0 1 0 38/7.2846 −56/13.266
0 0 0 1 −38/7.2846 −56/13.266
0 0 0 0 125/7.2846 0
0 0 0 0 0 125/13.266


(1,1,0,0,0) and (0,0,1,1,0) are small vectors, but trial division
will show that they do not correspond with true factors.
Whereas using both traces will show (1,1,1,1,0,0) will be the
smallest vector in this lattice.

Overview The basic structure Lattices LLL Recombination

Example Continued;
f ≡ (x − 41)(x + 41)(x − 38)(x + 38)

Because of space we will show both Tr1 and Tr2 in our lattice,
although in practice the second trace would not be added until
after the first LLL run.

1 0 0 0 41/7.2846 56/13.266
0 1 0 0 −41/7.2846 56/13.266
0 0 1 0 38/7.2846 −56/13.266
0 0 0 1 −38/7.2846 −56/13.266
0 0 0 0 125/7.2846 0
0 0 0 0 0 125/13.266


(1,1,0,0,0) and (0,0,1,1,0) are small vectors, but trial division
will show that they do not correspond with true factors.
Whereas using both traces will show (1,1,1,1,0,0) will be the
smallest vector in this lattice.

Overview The basic structure Lattices LLL Recombination

Amortizing Costs

Factor

mod p

Hensel

Lift

Add data

to lattice

LLL and

test output

f - -

?

�

�

-
�Success

Overview The basic structure Lattices LLL Recombination

Gradual reduction
In a LATIN2010 we have analysed the complexity of a useful
LLL technique.

B-reduction
We call a basis, b1, . . . ,bs a B-reduced basis if:
• b1, . . . ,bs form a reduced basis.
• ‖ b∗s ‖2≤ B.

B-reducing the following r × r matrix uses less than
O(r2(r +B)) LLL switches. No matter how large the entries are!

D
1 ∗

. . .
...

1 ∗



Overview The basic structure Lattices LLL Recombination

Gradual reduction
In a LATIN2010 we have analysed the complexity of a useful
LLL technique.

B-reduction
We call a basis, b1, . . . ,bs a B-reduced basis if:
• b1, . . . ,bs form a reduced basis.
• ‖ b∗s ‖2≤ B.

B-reducing the following r × r matrix uses less than
O(r2(r +B)) LLL switches. No matter how large the entries are!

D
1 ∗

. . .
...

1 ∗



Overview The basic structure Lattices LLL Recombination

B-reduction, cont.
Gradual B-reduce:

1. Scale down the last entries by 2kr so that all final entries
have absolute value ≤ 2r .

2. Run LLL.
3. Throw out the final vectors with G-S length > B.
4. Scale the last entries back up by 2r , return to step 2.

• This approach uses many calls to LLL, but the entries will
always have a bounded size.

• We can bound the total number of switches.
• When the input is a van Hoeij matrix with one trace we can

use B = r + 1.
• This allows us to bound LLL switches O(r3) instead of
O(r2H)

Overview The basic structure Lattices LLL Recombination

B-reduction, cont.
Gradual B-reduce:

1. Scale down the last entries by 2kr so that all final entries
have absolute value ≤ 2r .

2. Run LLL.
3. Throw out the final vectors with G-S length > B.
4. Scale the last entries back up by 2r , return to step 2.

• This approach uses many calls to LLL, but the entries will
always have a bounded size.

• We can bound the total number of switches.
• When the input is a van Hoeij matrix with one trace we can

use B = r + 1.
• This allows us to bound LLL switches O(r3) instead of
O(r2H)

Overview The basic structure Lattices LLL Recombination

B-reduction, cont.
Gradual B-reduce:

1. Scale down the last entries by 2kr so that all final entries
have absolute value ≤ 2r .

2. Run LLL.
3. Throw out the final vectors with G-S length > B.
4. Scale the last entries back up by 2r , return to step 2.

• This approach uses many calls to LLL, but the entries will
always have a bounded size.

• We can bound the total number of switches.
• When the input is a van Hoeij matrix with one trace we can

use B = r + 1.
• This allows us to bound LLL switches O(r3) instead of
O(r2H)

Overview The basic structure Lattices LLL Recombination

B-reduction, cont.
Gradual B-reduce:

1. Scale down the last entries by 2kr so that all final entries
have absolute value ≤ 2r .

2. Run LLL.
3. Throw out the final vectors with G-S length > B.
4. Scale the last entries back up by 2r , return to step 2.

• This approach uses many calls to LLL, but the entries will
always have a bounded size.

• We can bound the total number of switches.
• When the input is a van Hoeij matrix with one trace we can

use B = r + 1.
• This allows us to bound LLL switches O(r3) instead of
O(r2H)

Overview The basic structure Lattices LLL Recombination

B-reduction, cont.
Gradual B-reduce:

1. Scale down the last entries by 2kr so that all final entries
have absolute value ≤ 2r .

2. Run LLL.
3. Throw out the final vectors with G-S length > B.
4. Scale the last entries back up by 2r , return to step 2.

• This approach uses many calls to LLL, but the entries will
always have a bounded size.

• We can bound the total number of switches.
• When the input is a van Hoeij matrix with one trace we can

use B = r + 1.
• This allows us to bound LLL switches O(r3) instead of
O(r2H)

Overview The basic structure Lattices LLL Recombination

An Example


0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

 has a vector of length
√

102


0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90



−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

 (7 swaps)

(
−1 1 0 301
−1 0 1 802

)(
5 −8 3 −2
−8 13 −5 −97

)
(2 swaps)

A single call to LLL uses 24 swaps.

Overview The basic structure Lattices LLL Recombination

An Example


0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

 has a vector of length
√

102


0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90



−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

 (7 swaps)

(
−1 1 0 301
−1 0 1 802

)(
5 −8 3 −2
−8 13 −5 −97

)
(2 swaps)

A single call to LLL uses 24 swaps.

Overview The basic structure Lattices LLL Recombination

An Example


0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

 has a vector of length
√

102


0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90



−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

 (7 swaps)

(
−1 1 0 301
−1 0 1 802

)(
5 −8 3 −2
−8 13 −5 −97

)
(2 swaps)

A single call to LLL uses 24 swaps.

Overview The basic structure Lattices LLL Recombination

An Example


0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

 has a vector of length
√

102


0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90



−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

 (7 swaps)

(
−1 1 0 301
−1 0 1 802

)(
5 −8 3 −2
−8 13 −5 −97

)
(2 swaps)

A single call to LLL uses 24 swaps.

Overview The basic structure Lattices LLL Recombination

An Example


0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

 has a vector of length
√

102


0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90



−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

 (7 swaps)

(
−1 1 0 301
−1 0 1 802

)(
5 −8 3 −2
−8 13 −5 −97

)
(2 swaps)

A single call to LLL uses 24 swaps.

Overview The basic structure Lattices LLL Recombination

The LATIN2010 algorithm for factoring
This method generalizes to the following type of matrix:

DN
. . .

D1
1 ∗ · · · ∗

. . .
...

. . .
...

1 ∗ · · · ∗


• A matrix of this particular form provably solves

factorization. Uses an absurd amount of Hensel lifting.
• Now we can factor polynomials using O(Nr2) LLL switches.
• The original LLL paper used O(N2(N + H)) switches.
• This gave a new complexity for factoring. Still not with a

very practical algorithm (because of the absurd amount of
Hensel Lifting).

Overview The basic structure Lattices LLL Recombination

The LATIN2010 algorithm for factoring
This method generalizes to the following type of matrix:

DN
. . .

D1
1 ∗ · · · ∗

. . .
...

. . .
...

1 ∗ · · · ∗


• A matrix of this particular form provably solves

factorization. Uses an absurd amount of Hensel lifting.
• Now we can factor polynomials using O(Nr2) LLL switches.
• The original LLL paper used O(N2(N + H)) switches.
• This gave a new complexity for factoring. Still not with a

very practical algorithm (because of the absurd amount of
Hensel Lifting).

Overview The basic structure Lattices LLL Recombination

The LATIN2010 algorithm for factoring
This method generalizes to the following type of matrix:

DN
. . .

D1
1 ∗ · · · ∗

. . .
...

. . .
...

1 ∗ · · · ∗


• A matrix of this particular form provably solves

factorization. Uses an absurd amount of Hensel lifting.
• Now we can factor polynomials using O(Nr2) LLL switches.
• The original LLL paper used O(N2(N + H)) switches.
• This gave a new complexity for factoring. Still not with a

very practical algorithm (because of the absurd amount of
Hensel Lifting).

Overview The basic structure Lattices LLL Recombination

The LATIN2010 algorithm for factoring
This method generalizes to the following type of matrix:

DN
. . .

D1
1 ∗ · · · ∗

. . .
...

. . .
...

1 ∗ · · · ∗


• A matrix of this particular form provably solves

factorization. Uses an absurd amount of Hensel lifting.
• Now we can factor polynomials using O(Nr2) LLL switches.
• The original LLL paper used O(N2(N + H)) switches.
• This gave a new complexity for factoring. Still not with a

very practical algorithm (because of the absurd amount of
Hensel Lifting).

Overview The basic structure Lattices LLL Recombination

Being Practical

My goal

To get the best complexity for the most practical algorithm we
must show that early attempts at recombination do not hurt the
complexity.

The tools:
• LLL never alters AD:=

∏
‖ b∗i ‖

• We are searching for very small vectors
• A B-reduced basis must have vectors with bounded norm
• We can control the size of our new data (with gradual

feeding)
• This allows us to know that progress is being made with

each LLL call.

Overview The basic structure Lattices LLL Recombination

Nearing the end

LLL costs
We can now prove a complexity of O(r7) for the total cost of
LLL. (Using fast arithmetic this is O(r6 log r)).

Other costs
The cost of Hensel lifting can be bounded* by O(N4 · (N +H)2).
(Using fast arithmetic this drops to O(N2(N + H))). We have
introduced some matrix multiplications with the new technique
adding a cost of O(r3N2(N + H)) (fast: O(r2N2(N + H))).

Showing Practicality

We must show that the algorithm is practical. This can only be
done with an implementation of the algorithm as it was proved.

Overview The basic structure Lattices LLL Recombination

Some timings

Poly r NTL H-bnd FLINT H-bnd
P1 60 .248 29311 .136 8933

P2 20 .376 11437 .144 1122/44

P3 28 1.036 11629 .320 1131/62

P4 42 1.956 13745 1.452 780/160

P5 32 .088 1951 .036 2326

P6 48 .276 19152 .160 2338/76

P7 76 1.136 3778 .900 1974

P8 54 3.428 13324 1.700 1184

M12_5 72 12.429 131171 4.156 11180

M12_6 84 21.697 131555 7.780 13190/380

S7 64 .340 2978 .336 4741

T1 30 3.848 7495 1.180 740

T2 32 3.18 7200 1.216 743

Overview The basic structure Lattices LLL Recombination

Thank You

Thank you for your time!

	Overview
	1

	The basic structure
	1

	Lattices
	1

	LLL
	1

	Recombination
	1

