Effect of round-off errors on the accuracy of randomized algorithms

Marc Daumas and Patrick Vilamajó

ÉLIAUS-PROMES (UPR 8521 CNRS) Perpignan — France

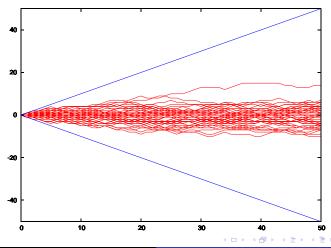
marc.daumas@univ-perp.fr

Outline

- Introduction
- 2 Applications
- 3 Probabilities
- 4 Statistics
- Concluding remarks

Characterize the accuracy of the result of a program

- Running on powerful systems
 - peta-flops ($10^{15} \approx 2^{45}$ operations each second)
 - ullet exa-flops (10¹⁸ pprox 2⁵⁴ operations each second)
- Using hardware accelerators
 - ClearSpeed (PetaPath in WP8 of PRACE FP7 project)
 - GPU (GENCI joint call for projects with Caps Entreprises)
- Operating in
 - Single-precision (ulp = 2^{-23})
 - Double precision (ulp = 2^{-52})
- Based on Monte-Carlo method
 - Description containing 2,315,737 items



Route from Narita INTL to Paris Charles de Gaulle

Waypoint		$N^{\circ}xE^{\circ}$	Dist	Worst case	Significant
			(nm)	error (1kHz)	bits
Narita INTL	JP	36×140	0	0	25
Niigata	JP	38x139	180	0.04	4.6
Khabarovsk	RU	49×135	851	0.19	2.4
Neryungri	RU	57x125	1479	0.33	1.6
Igarka	RU	67x087	2698	0.60	0.7
Naryan-Mar	RU	68x053	3458	0.77	0.4
Josie	FI	63x030	4117	0.91	0.1
Marie	FI	60x020	4433	0.98	None
Dunker	SE	59×017	4538	1.01	None
Sveda	SE	56×013	4769	1.06	None
Alsie	DK	55×010	4885	1.08	None
Paris CDG	F	49×003	5342	1.18	None

Use almost certain bounds when worst case analysis fails

Random walks with probability of moving up or down equal to 1/2

Propose theoretical strong results

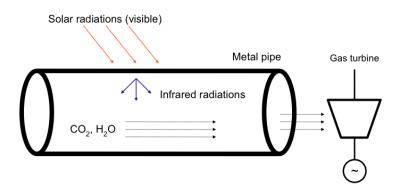
- Control software errors due to round-off and truncation errors
- We continue and use a theory
 - For extremely rare failures of very long processes
 - That can be applied to numerical analysis and hybrid systems (heat transfers, aircraft, nuclear power plants)
- Formal developments
 - \bullet Using PVS (SRI + NASA) and a previously published theory
 - Force explicit statement of all hypotheses
 - Prevent incorrect uses of theorems
- We assume in this work that round-off errors are
 - Independent variables
 - Independent of the Monte-Carlo variables

Outline

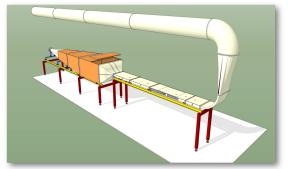
- Introduction
- 2 Applications
- 3 Probabilities
- 4 Statistics
- Concluding remarks

Outline

- Introduction
- 2 Applications
- 3 Probabilities
- 4 Statistics
- Concluding remarks


First application: solar power plant

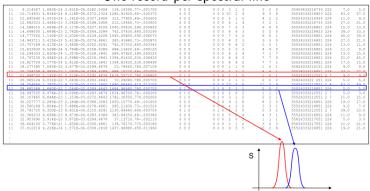
Simulations for the design of high performance solar receptors


Courtesy of Philippe Égéa (CNRS-PROMES)

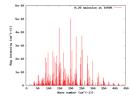
Simplified geometry

Experimental validation

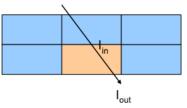
Moyen d'Essais des Écoulements Turbulents pour l'Intensification des transferts de Chaleur



Project supervised by Gabriel Olalde (CNRS-PROMES)


HITRAN-HITEMP molecular spectroscopic database

One record per spectral line



Line-by-line radiative heat transfers

Use Monte-Carlo method to estimate combined heat transfers

• Compute optical depth with backward ray tracing

Second application: greenhouse gazes

Evolution of net effect of radiative heat transfers

Courtesy of NASA

Outline

- Introduction
- 2 Applications
- 3 Probabilities
- 4 Statistics
- Concluding remarks

Probability of an inaccurate results

• Truncation error of Monte Carlo quadratures bounded by

$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{n=1}^{N}f(x_n)-\int d^du f(u_1,...,u_d)\right|\geq \epsilon\right)\leq 2\exp\left(-\frac{N\epsilon^2}{2M^2}\right)$$

- where M bounds $f(u_1, ..., u_d)$
- M/ϵ represents the significant digits of the quadrature
- ullet We focus on cases where $N\gg M^2/\epsilon^2$

Fixed and floating point numbers

- Floating point: $v = m \times 2^e$
 - e is an integer called the exponent
 - m is the signed mantissa
- IEEE 754 standard on floating-point arithmetic uses
 - Sign-magnitude notation for the mantissa
 - An implicit first bit $(b_0 = 1)$ for the mantissa in most cases

$$v = (-1)^s \times b_0.b_1 \cdots b_{p-1} \times 2^e$$

Some circuits such as the TMS320 use two's complement

$$v = (b_0.b_1 \cdots b_{p-1} - 2 \times s) \times 2^e$$

ullet Fixed point: e is a constant and b_0 cannot be forced to 1

Individual measurement errors of physical constants

- v is a constant obtained from a database
- It is commonly admitted that
 - Natural constants follow a logarithmic distribution
 - Trailing digits are approximately uniformly distributed
- The difference between v and the actual value \overline{v} is
 - In the range $\pm \text{ulp}(v)/2$ with

$$ulp(v) = 2^{e-p+1}$$
 (unit in the last place)

- Modeled by a uniformly distributed random variable X
- Less accurate constants use larger ranges $\pm u/2$

Individual errors of fixed or floating point operations

- Round-off errors created by operators $(+, \times, \div, \sqrt{})$ are discrete
- Distributions are very specific (not necessarily uniform)
- We may have to bound
 - Their ranges
 - Their moments

Accumulated round-off error of Monte-Carlo simulation

- Round-off errors δ_n are between $\pm Mu/2$
- Monte Carlo averages the values and the errors
- Probability of a large accumulation is bounded by

$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{n=1}^{N}\delta_{n}\right| \geq \epsilon\right) \leq 2\exp\left(-\frac{N\epsilon^{2}}{2M^{2}u^{2}}\right)$$

ullet We focus on cases where $\epsilon/{\it Mu}\ll 1$

Accumulated round-off error of Monte-Carlo simulation

- First application sums only positive numbers
 - Various orders of magnitude
 - Partial absorption of small floating point numbers
 - Total absorption of $f(x_n)$ is not permitted
 - $\delta_n = f(x_n)$ would be correlated with the Monte Carlo process
- Second application sums positive and negative numbers
 - Transfers increase during daytime and decrease at night with the quantity of greenhouse gazes in the atmosphere
 - Magnifying effect of cancellations between night and day.

Outline

- Introduction
- 2 Applications
- 3 Probabilities
- 4 Statistics
- Concluding remarks

Validity of the hypotheses

- On the random variables
 - Law (uniform or logarithmic), parameters, symmetry
 - Identity (sometimes) and independence
- Impossible to set beforehand (build counter-example)
- A posteriori estimation (instrument the code)
- High quality level
 - Proofs validated by PVS
 - Very low probability of failure (10^{-9})

Develop and instrument real size applications

- Manage huge sets of data
 - GPU
 - ClearSpeed
- Converging problematic with BioWIC project of the ANR
- Theoretical and applied work

Outline

- Introduction
- 2 Applications
- 3 Probabilities
- Statistics
- Concluding remarks

Working with formal methods

- Positioning a theory is a key issue
 - Too simple, we will be blocked by its limitations
 - Too evolved, we may not be able to use it (never finished)
- Its maturation is also a key issue
 - Formal tools block on any shadow area of a proof
 - Lester (among others) decided to follow textbooks
- Some decisions relate only to educational methods
 - Separate discrete and continuous variables
 - Use sections $[X \le x]$ instead of the inverse image of Borel sets
- Milestone: Results proved but not fully certified formally yet

Formal proof assistants

- Used in areas where
 - Common misunderstandings can falsify key assumptions
 - Errors can cause loss of life
 - Errors can cause significant financial damage
- Used for floating-point arithmetic and probabilistic or randomized algorithms
- Proof assistants include
 - ACL2 (UT Austin)
 - HOL (Cambridge)
 - Coq (INRIA)
 - PVS (SRI and NASA)

Example of an increasingly common misunderstanding

- Attribute to articles the bibliometric properties of their journal
- One example from the American Mathematical Society
 - "Quantitative Assessment of Research Citation Statistics"
 - //www.awm-math.org/CitationStatistics-FINAL.PDF
 - Numbers of citations follow power laws
 - Impact factor is
 - 0,434 for the Proceedings (short articles less than 10 pages)
 - 0,846 for the Transactions (longer articles)
 - Probability of a random article of the Proceedings to have no less citations than a random article of the Transactions: 62%

Conclusions and future work

- Worst case error analysis provides exponential bounds $O(A^n)$ suitable for small and toy applications
- Backward error analysis used to provide linear bounds O(n) suitable for high performance computing
- We provide in this work sublinear bounds $O(\sqrt{n})$ suitable for peta- and exa-scale computing
- Our scheme is suitable to obtain the highest assurance level (EAL) of the ISO 15408 and 18045 standards establishing the Common Criteria for Information Technology Security Evaluation

Wider picture

- Most (all ?) recent applications of high performance computing are randomized algorithms
 - Countless references
- This work is about discrete probabilities...
 - Work of Joe Hurd
 - Work of Philippe Audebaud & Christine Paulin
- ... and continuous and general probabilities
 - Work with David Lester
 - Work with David Lester, Erik Martin-Dorel and Annick Truffert

Acknowledgment

This work has been partially funded by

• The EVA-Flo project of the ANR

Many thanks for you attention

• Any question?