High-Level Outline

e FEAST as filtered subspace iteration, for Hermitian problems
e FEAST for non-Hermitian problems

e SS method as filtered Krylov subspace method




Some Function Approximation Connections

The filter function p(\) plays a crucial role in convergence, and convergence rate
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Let’s examine the construction of a Gaussian based p(\) in detail
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For Gauss-Legendra rule, (wg,tx), k=1,2,...,q,
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Just by the generic form, can only conclude p(u) = O(1/u),

and not clear at all if |up(u)| is small for large pu.
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Just by the generic form, can only conclude p(u) = O(1/u),

and not clear at all if |up(u)| is small for large pu.

While for a finite interval |[—A, A] we can examine p(u) numerically,

we NEED a better justification for |u| > A.
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Standard theory on Gaussian-Legendra quadrature says:
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But f_ll fu(t)dt =0 for |u| > 1, and thus

‘/_11 fu(t)dt—p(u)‘ = |p(p)|,  for |u| > 1



Recap: for any pu > 1,
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o &,(1) is decreasing for pu > 1

Thus, evaluation £,(A) at a single point A

gives a bound on |p(u)| for all u > A.
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Bound &(u) vs. Actual |p (1) |, a=4,10
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Logo of | pyes (W) | @and E(u)

Bound &(u) vs. Actual |p (1) |, 9=6,12

u Values



Formal-verification based method is an alternative (dormant work that can use
help to revive).

p(p) is a rational function, no poles. Can use FV to enumerate all local
min/max.
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Some Computer Arithmetic Connections

For Gauss-Legendra rule, (wg,tr), k =1,2,...,q,

() ~ p(p) = %Zwk Re (cb(fgk—) l«b) s = sin(mtg/2).




Some Computer Arithmetic Connections

For Gauss-Legendra rule, (wg,tr), k =1,2,...,q,

(1) ’;kae( Atr) ) s = sin(mty/2).

ty) —

EZ wy Re (6(tx) (9(t5)T — A) "

l\D

If computed exactly, p(A)x = p(A)x -

Let (A, x) be an eigenpair for A: Ax = Ax /\



Some Computer Arithmetic Connections

For Gauss-Legendra rule, (wg,tr), k =1,2,...,q,
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Let (A, x) be an eigenpair for A: Ax = Ax /\
If computed exactly, p(A)x = p(A)x v

But solutions of the linear systems are not exact.



Some Computer Arithmetic Connections

For Gauss-Legendra rule, (wg,tr), k =1,2,...,q,

() ~ p(p) = %Zwk Re (cb(fgk—) l«b) s = sin(mtg/2).

k=1
Let (A, x) be an eigenpair for A: Ax = Ax /\
If computed exactly, p(A)x = p(A)x v

But solutions of the linear systems are not exact.
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Some Computer Arithmetic Connections

For Gauss-Legendra rule, (wg,tr), k =1,2,...,q,
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Some Computer Arithmetic Connections

For Gauss-Legendra rule, (wg,tr), k =1,2,...,q,

() ~ p(p) = %Zwk Re (cb(fgk—) l«b) s = sin(mtg/2).
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X = X/ (o(tr) = A)



Some Computer Arithmetic Connections
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Some Computer Arithmetic Connections
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(d(te)I — A)xp = x;  Xi = Solve(¢(ty)] — A, x)
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Some Computer Arithmetic Connections
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Some Computer Arithmetic Connections
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[terative refinement (for higher accuracy) relies critically on accurate residual:

residual vector = x — AgXp = x — (¢(tg)Xp — ApXp)



Some Computer Arithmetic Connections

q q Q O (tk)
> wrd(te)xe vs > wee(tr) X =o'
k=1 k=1

(d(te)I — A)xp = x;  Xi = Solve(¢(ty)] — A, x)

X = X + Ag,
U Wy,
error|| < rwz || A :O(—) _—
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[terative refinement (for higher accuracy) relies critically on accurate residual:
residual vector = x — ApXp = x — (P(tr) Xk — ApXy)

Can use various computer arithmetic technique such as two-sum and error-free
transformation (e.g. Rump’s method)



Concluding Remarks

Integral-based methods and approximate spectral projectors are very
useful tools.

They can be used in different contexts: subspace iterations, Krylov
methods, spectrum estimation (not covered), and more.

Sakurai and collaborators proposed SS method 2003; Polizzi proposed
FEAST 2008.

Tang/Polizzi published detail analysis on FEAST 2014.

Intel Math Kernel Library has incorporated in it a FEAST-based
eigensolver.

Many problems need to be solved still; do jump in!

Will include more references in posted material.



