
INRIA, Evaluation of Theme Architecture and Compiling

Project-team Compsys

Evaluation: March 21-22, 2012

Project-team title: Compsys

Scientific leader: Alain Darte

Research center: Inria Rhône-Alpes

Common project-team with: LIP, ENS-Lyon, CNRS, UCBL

1 Team members

Team members (Previous evaluation: April 25-26, 2007)

Insa Inria CNRS ENS-Lyon Total

DR1 / Professors Risset Darte Feautrier 3

CR2 / Assistant Professor Fraboulet Rastello 2

Permanent Engineers3

Temporary Engineer4

PhD Students 1 4 5

Post-Doc. 3 3

Total 2 4 2 5 13

External Collaborators

Visitors (> 1 month)

1 “Senior Research Scientist (Directeur de Recherche)”
2 “Junior Research Scientist (Chargé de Recherche)”
3 “Civil servant (CNRS, INRIA, ...)”
4 “Associated with a contract (Ingénieur Expert or Ingénieur Associé)”

Team members (Evaluation: March 21-22, 2012)

Misc. INRIA CNRS ENS-Lyon Total

DR / Professors Darte Feautrier 2

CR / Assistant Professor Alias, Rastello 2

Permanent Engineer

Temporary Engineer

PhD Students Colombet Iooss 2

Post-Doc.

Total 3 1 2 6

External Collaborators Gonnord Plesco 2

Visitors (> 1 month)

+ Laetitia Lecot: administrative assistant.

1



Changes in staff (since 2007)

DR / Professors Misc. INRIA CNRS ENS-Lyon total
CR / Assistant Professors

Arrival 1 1

Leaving 2 2

Comments: As was announced at the end of Compsys I (period 2004-2007), Antoine
Fraboulet and Tanguy Risset, who moved at Insa-Lyon, left the team, so as to explore
research areas closer to the activities at Insa-Lyon (namely sensors and software radio).
Compsys II (2007-2012) thus started with 3 permanent researchers (A. Darte, P. Feautrier,
F. Rastello). In January 2009, Christophe Alias integrated Compsys as an Inria research
scientist (after a post-doc in Compsys, then another post-doc in the USA). Paul Feautrier,
who had the possibility to retire, obtained an Emeritus status to continue in Compsys II
and will continue, if the project is renewed, in Compsys III (2012-2016). Laure Gonnord,
after a post-doctoral year in Compsys in 2008-2009, is now assistant professor in Lille but
part-time in Compsys as external collaborator. Compsys remains a small team, with still
the same difficulties at hiring good collaborators in program analysis, in compilation, and
even harder in high-level synthesis.

Current composition of the project-team: March 2012

Permanent members

• Christophe Alias, Inria junior research scientist.

• Alain Darte, CNRS senior research scientist.

• Paul Feautrier, ENS-Lyon professor.

• Fabrice Rastello, Inria junior research scientist.

External collaborators

• Laure Gonnord, Lille University assistant professor.

• Alexandru Plesco, Inria engineer transfer and innovation, Zettice start-up.

PhD student

• Quentin Colombet, Mediacom project.

• Guillaume Iooss, joint PhD with Colorado State University (S. Rajopadhye).

Current position of former project-team members (including PhD stu-
dents) during the 2007-2012 period:

Post-doctoral fellows

Christophe Alias post-doc in Compsys from February 2006 to December 2007,
now in Compsys as Inria junior research scientist.

Sebastian Hack post-doc in Compsys from December 2006 to December 2007, now
full professor of computer science at Saarland University, Germany.

Ouassila Labbani post-doc in Compsys from December 2006 to September 2008,
now assistant professor in University of Bourgogne, Dijon, France.

2



Laure Gonnord ATER (non-permanent research/teaching position) from Septem-
ber 2008 to June 2009, now assistant professor at Lille University, France.

Florian Brandner post-doc in Compsys from December 2009 to October 2011,
now post-doc in Danmarks Tekniske Universitet, Kongens Lyngby, Denmark.

PhD students

Nicolas Fournel PhD student (Ministry of Research grant) from 2004 to 2007
graduated in November 2007 (“Estimation and Optimization of Time and En-
ergy Performances for the Design of Embedded Systems” [p4]), now assistant
professor at Université Joseph Fourier, TimA, Grenoble.

Philippe Grosse PhD student (CEA-Leti grant) from 2004 to 2007, graduated in
December 2007 (“Dynamic Task Management in an Integrated Micro-Archi-
tecture Targeting Low Power” [p5]), now research engineer at the Fraunhofer
Institute, Erlangen, Germany.

Florent Bouchez PhD student (ENS-Lyon grant) from 2005 to 2008, graduated in
May 2009 (“A Study of Spilling and Coalescing in Register Allocation as Two
Separate Phases” [p2]), now research engineer at Kalray, Grenoble.

Clément Quinson PhD student (CNRS/STMicroelectronics grant) from 2005 to
2008. Did not graduate. Now engineer at Lumeneo, Ecquevilly, France.

Alexandru Plesco PhD student (Ministry of Research grant) from 2006 to 2010,
graduated in September 2010 (“Program Transformations and Memory Archi-
tecture Optimizations for High-Level Synthesis of Hardware Accelerators” [p6]),
now Inria ITI (engineer transfer & innovation), Zettice start-up incubation.

Benoit Boissinot PhD student (ENS-Lyon grant) from 2006 to 2010, graduated in
September 2010 (“Towards an SSA-based Compiler Back-end: Some Interesting
Properties of SSA and Its Extensions” [p1]), now engineer at Google, Zurich.

Engineers

Quentin Colombet Engineer within Minalogic Sceptre contract from 2007 to 2009,
now PhD student in Compsys.

Last INRIA enlistments

• Christophe Alias was hired at CR2 junior research assistant in 2008 and took his
position in January 2009, after he finished his post-doc at Ohio State University
(P. Sadayappan). He was promoted CR1 at the end of 2011.

2 Work progress

2.1 Keywords

Embedded systems, DSP, VLIW, FPGA, hardware accelerators, compilation, code & mem-
ory optimization, program analysis, high-level synthesis, parallelism, scheduling, polyhe-
dra, graphs, regular computations.

3



2.2 Context and overall goal of the project

Before its creation, all members of Compsys have been working, more or less, in the field
of automatic parallelization and high-level program transformations. Paul Feautrier was
the initiator of the polytope model for program transformations in the 90s and, before
coming to Lyon, started to be more interested in programming models and optimiza-
tions for embedded applications, in particular through collaborations with Philips. Alain
Darte worked on mathematical tools and algorithmic issues for parallelism extraction in
programs. He became interested in the automatic generation of hardware accelerators,
thanks to his stay at HP Labs in the PiCo project in Spring 2001. Antoine Fraboulet did
a PhD on code and memory optimizations for embedded applications. Fabrice Rastello
did a PhD on tiling transformations for parallel machines, then was hired by STMicro-
electronics where he worked on assembly code optimizations for embedded processors 1.
Tanguy Risset worked for a long time on the synthesis of systolic arrays, being the main
architect of the HLS tool MMAlpha. Finally, Christophe Alias, who joined Compsys with
a permanent position in 2009, brought his expertise on source-to-source program analysis
and optimizations as well as software development.

At this time – end of the 90s – most researchers in France working on high-performance
computing (automatic parallelization, languages, operating systems, networks) moved to
grid computing. On the contrary, we all thought that applications, industrial needs, and
research problems were more important in the design of embedded platforms. Also, we
were convinced that our expertise on high-level code transformations could be more useful
in this field. We fully shared and still share the vision of compilation and architecture
given by Bob Rau and his colleagues (IEEE Computer, sept. 2002):

“Engineering disciplines tend to go through fairly predictable phases: ad hoc, formal
and rigorous, and automation. When the discipline is in its infancy and designers do
not yet fully understand its potential problems and solutions, a rich diversity of poorly
understood design techniques tends to flourish. As understanding grows, designers
sacrifice the flexibility of wild and woolly design for more stylized and restrictive
methodologies that have underpinnings in formalism and rigorous theory. Once the
formalism and theory mature, the designers can automate the design process. This
life cycle has played itself out in disciplines as diverse as PC board and chip layout
and routing, machine language parsing, and logic synthesis. We believe that the
computer architecture discipline is ready to enter the automation phase. Although
the gratification of inventing brave new architectures will always tempt us, for the
most part the focus will shift to the automatic and speedy design of highly customized
computer systems using well-understood architecture and compiler technologies.”

With this view in mind, we were convinced of two complementary facts:
• The mathematical tools developed in the past for manipulating programs in auto-

matic parallelization were lacking in high-level synthesis and embedded computing
optimizations. Even more, they started to be rediscovered frequently under less ma-
ture forms. But they also needed to be extended to become more robust, more gen-
eral, and to address new challenges. Similarly, back-end code optimizations needed
to be revisited in the light of embedded processors features and objectives.

• Before being able to really use these techniques in HLS and embedded program
optimizations, we needed to learn from the application, the electrical engineering,
and the embedded architecture sides. We did in Compsys I – with work on traffic
generators, SoC simulation, power issues [c33, c34, j11] – but failed to hire students

1This stay at STMicroelectronics is also one of the reasons why back-end code optimizations became a
major research direction of Compsys, while the initial goal was more focused on high-level synthesis.

4



or researchers with strong electrical engineering background. With the departure of
T. Risset and A. Fraboulet, who were the main SoC experts in Compsys, this pushed
us to a stronger focus again on compiler optimizations and “fundamental” research.

Compsys specificity remains to tackle combinatorial optimization problems (graphs, lin-
ear programming, polyhedra) arising from actual compilation problems (register alloca-
tion, cache optimization, memory allocation, scheduling, consumption, generation of soft-
ware/hardware interfaces, etc.) and to validate these developments in compiler tools. To
address relevant problems and to have more impact, we believe our research efforts should
be combined with strong industrial collaborations. Our work is at the frontier between
languages and architectures, trying to identify the concepts and techniques that make the
automation, from codes to machines, possible by compilation techniques.

2.3 Objectives for the evaluation period

Compsys I (the initial proposal) had four research directions, centered on compilation
methods for embedded applications, both for software and accelerators design:

• code optimization for specific processors (mainly DSP and VLIW processors);
• platform-independent loop transformations (including memory optimization);
• silicon compilation and hardware/software codesign;
• development of polyhedral (but not only) optimization tools.

These research activities were supported by a marked investment in solid mathematical
and algorithmic studies, with the aim of constructing operational software tools, not just
theoretical results. Hence the 4th research theme, centered on the development of these
tools. In Compsys II, these four objectives were recentered into the following 3 objectives:

• back-end code optimization for both aggressive and just-in-time (JIT) compilation;
• program analysis and transformations for high-level synthesis (HLS);
• development of polyhedral tools.

2.4 Objective 1: aggressive and JIT back-end code optimizations

2.4.1 Staff

Permanent researchers Alain Darte, Fabrice Rastello.
PhD students Benoit Boissinot, Florent Bouchez, Quentin Colombet.
Post-docs Florian Brandner, Sebastian Hack.

2.4.2 Project-team positioning

Compilation for embedded processors is either aggressive or just in time (JIT). Aggressive
compilation consists in allowing more time to implement costly solutions (so, looking for
complete, even expensive, studies is mandatory): the executable code is loaded in perma-
nent memory and the compilation time to obtain it is not so significant. In particular,
for embedded systems, where code size and energy consumption usually have a critical
impact on the cost and the quality of the final product, the application is cross-compiled,
i.e., compiled on a powerful platform distinct from the target processor. JIT compilation,
on the other hand, corresponds to compiling bytecode on demand on the target processor.
The code can be uploaded or sold separately on a flash memory. Compilation is performed
at load time or even dynamically during execution. The heuristics, constrained by time
and limited resources, cannot be too aggressive: they must be fast enough.

In this context, our goal was to contribute to the understanding of combinatorial
problems that arise in compilation for embedded processors (e.g., in opcode selection,
SSA conversion, register allocation, code placement in the instruction cache) to derive

5



both aggressive heuristics and JIT techniques. A first specificity of our work is that we
always aim at adding a theoretical value on the problems we address (using graph theory,
NP-completeness), even for problems that can appear “old” (such as register allocation).
The second specificity is that, thanks to the collaboration with STMicroelectronics (and
more recently with Kalray), we can implement and test our techniques directly within an
industrial compiler. After clarifying, debunking, understanding the key issues that make
the addressed problem hard, we first develop potentially-costly solutions (e.g., using integer
linear programing) for aggressive compilation. This process allows us to confront the
theory with the practice and provides a basis for designing and evaluating JIT solutions.

In Compsys II, all our activities were centered on the development of SSA-based code
optimizations. Static single assignment (SSA) is an intermediate code representation or
code property where each scalar variable is defined, textually, only once. It is becom-
ing more and more popular in retargetable compilers as it leads to simpler analysis and
optimization algorithms, easier to design, debug, and maintain (a feature increasingly
important in compilers), and is more suitable to JIT techniques, without compromising
performances too much. In Compsys I, we were the first to point out that the interference
graph of variables in SSA is chordal and to advocate, based on this property, a decou-
pled register allocator that first spills (assignment to memory, optimizing load/stores),
then colors (allocation to registers with coalescing to reduce register-to-register copies),
and finally repairs (lowering using available instructions, that possibly inserts shuffle code
and basic blocks). Compsys II was devoted to a deeper understanding of such a register
allocation strategy and, more generally, of properties of SSA (and related intermediate
representations) linked to dominance, out-of-SSA conversion, liveness analysis, etc.

2.4.3 Scientific achievements

Going out of SSA In SSA, multiplexers (called φ functions) are used to merge values
at a “join” point in the control flow graph. To generate machine code, φ functions have to
be replaced, at the end of the process, by register-to-register copy instructions on control
flow edges. Naive methods for destructing SSA, when correct, generate many useless
copies (live-range splitting), but also relies on the ability of disambiguating indirect jumps
for splitting edges. We addressed three issues: correctness, code quality (elimination of
useless copies), algorithm efficiency (speed and memory footprint). Our method, best
paper at CGO’09 [c8], separates the issues of correctness and optimization, which makes
it conceptually simpler and more robust than previous approaches that were often based on
“patches”. This correctness issue was, for a long time, a slowing factor to the development
of SSA (e.g., bugs in GCC and Jikes). Also, by exploiting SSA properties (in particular
with a liveness check algorithm, see hereafter), our algorithm outperforms the speed of the
best algorithm so far (Sreedhar) by 2x and reduces the memory footprint by 10x.

Liveness analysis in SSA One important source of error of prior out-of-SSA imple-
mentations is a bad understanding of the liveness of φ-related variables. We proposed at
CGO’08 [c9] (also best paper) a method to check the liveness of a variable at a given pro-
gram point. Our method is specialized to SSA and survives all program transformations
other than changes of the control-flow graph structure. As a bonus, it is less memory
consuming and, depending on the client, usually faster. The SSA properties we identified
for this liveness check allowed us to revisit the problem of computing liveness sets, too. By
exploiting the dominance property of (strict) SSA form and the concept of loop-nesting
forest, we designed a two-phase data-flow algorithm. Compared to traditional iterative
data-flow approaches, which perform updates until a fixed point is reached, our algorithm,
presented at APLAS’11 [c7], is twice faster on average than the fastest algorithm (Cooper).

6



Structure of interferences in SSA & SSI As previously mentioned, one of the im-
portant properties of SSA is that graph coloring under SSA is polynomial because the
corresponding interference graph is chordal. What first attracted our curiosity to SSI
(static single information, a variant of SSA with bi-directional properties) was the claim
that the interference graph in SSI is an interval graph. Our debunking paper [o5, j1] clari-
fies a number of mistakes on SSI and provides a proof (much harder than the initial proof,
which was completely wrong) for this interval graph property. We also revisited SSI for its
theoretical ability to perform both forward and backward sparse data flow analysis. This
work, still under review, aims at organizing the zoo of existing program representations
(SSA, SSI, e-SSA, SSU, etc.) that exploit live-range splitting (e.g., with φ and σ functions)
to enforce a static single information property (i.e., valid on a whole live-range).

Spilling The fact that the interference graph in SSA is chordal enables the design of a
decoupled allocator: the spilling phase that stores variables to memory to lower the register
pressure can be done before the coloring phase that assigns the other variables to registers.
This decoupling opened the door for new spilling strategies. We first made an exhaustive
study on how SSA impacts the complexity of “spill everywhere” (i.e., the whole live-range
of a spilled variable is in memory). Contrarily to our initial hopes, most problems remain
NP-complete [c12]. However, the fact they are polynomial for a fixed number of registers
suggested spill-everywhere heuristics that incrementally solve, in “polynomial” time, the
allocation problem with few registers, then “stack” the solutions. We applied this princi-
ple for split compilation [c26] (with Alchemy team): an ahead-of-time stacking algorithm
drives, through portable bytecode annotations, the decisions of a light online JIT algo-
rithm that adapts the allocation to the right target. We are also currently designing a
purely JIT “stacking” solution. In parallel, to better understand spilling in its generality
(not just spill everywhere), we developed an integer linear programming formulation, more
accurate and expressive than previous approaches, that exploits the decoupling between
spilling and coalescing (CASES’11 [c21]). The experimental comparison, in the STMicro-
electronics compiler, of various heuristics to this “optimal” solution draws, among others,
the following conclusions: a) significant savings can still be obtained in terms of static spill
costs, cache misses, and dynamic instruction counts; b) rematerialization is extremely im-
portant and SSA can pay off here; c) SSA complicates the formulation of optimal spilling,
because of memory coalescing of interfering variables; c) micro-architectural features are
significant and thus should be accounted for in the model (but it is never the case). This
deep study is still the first step for designing new aggressive and JIT spilling strategies.

Coalescing The effectiveness of the decoupled approach depends on the ability to cope
efficiently, during the coloring phase (coalescing), with the shuffle code (register-to-register
copies, edge splitting) introduced by the repairing phase (φ-functions replacement, register
constraints handling, etc.). Our first results (best paper at CGO’07 [c11]) were devoted
to the complexity of coalescing problems (aggressive, conservative, incremental, and opti-
mistic), discussing also on the structure of the interference graph (arbitrary, chordal, or
k-colorable in a greedy fashion). This study was extremely useful to point out where the
complexity comes from. In [c13] – a more practical paper – we improved the de-coalescing
phase of an optimistic approach and designed an advanced incremental conservative ap-
proach, which, contradicting the common belief, turned out to be simple to implement and
close to optimal. A good context to stress its performances was to apply it in the context
of register aliasing, which we address in [c46] with the introduction of a “semi-elementary
form”, generalizing the “puzzle” approach of Pereira and Palsberg. With the democrati-
zation of SIMD instruction set architectures, handling register aliasing will become critical

7



even though current compilers are not mature enough to fully expose it. The last step
towards the design of a practical SSA-based “coloring” algorithm – generalization of linear
scan – was the efficient handling of register constraints [c20]. Thanks to the concept of
post-repairing of violated register constraint, the spirit of decoupled register allocation
can be kept, i.e., with spilling and coloring as simple as possible, without tricky patches
to handle special cases of the instruction set architecture. The cost of repairing (as for
register-to-register copies used to get rid of φ-functions) is encapsulated in the coloring
objective function, through affinities and dislikes (negative weight affinities). We applied
this method to develop both a graph-based approach (extension of conservative coalescing
to handle register dislikes) and a scan-based decoupled approach (new tree scan coalescer).

Parallel copies All decoupled approaches, and even out-of-SSA translation, rely on
shuffle code represented as parallel copies (involving registers but also memory slots) in
basic blocks and also, implicitly, on critical edges, i.e., edges that flow from a block with
several successors to a block with several predecessors. To optimize such copies, we pro-
posed a new back-end optimization called parallel copy motion [c10]. The technique is
to move copy instructions in a register-allocated code from a program point, possibly an
edge, to another. In contrast with traditional schedulers that must preserve data depen-
dences, our copy motion can permute register assignments so that a copy can “traverse”
all instructions of a basic block, except those with conflicting register constraints. As the
interplay of this optimization with the scheduler is high, we pushed this idea further to
perform code motion (of copies) on register-allocated data dependence graphs. This tech-
nique [c15] can eliminate useless copies and reorder instructions, while preserving a valid
register assignment. It is a step forward the design of register-pressure aware schedulers.

2.4.4 Collaborations

Our work on back-end code optimizations were done in tight collaboration with colleagues
from STMicroelectronics (Benôıt Dupont de Dinechin, Christophe Guillon, François de
Ferrière). After we proposed SSA-based decoupled register allocation, Sebastian Hack
(Karlsruhe) got the same idea independently and became a close collaborator. Then, Jens
Palsberg, Fernando Pereira, Philip Brisk (UCLA) started to explore this area too and
became partners on many aspects (students, tutorials, PhD defenses, joint papers, etc.).
The work on split compilation, one of the topics of the Mediacom project, was the outcome
of a collaboration with the Alchemy Inria team (Albert Cohen, Boubacar Diouf).

2.4.5 External support

• SCEPTRE project, collaboration with STMicroelectronics (compilation team).
• MEDIACOM project, collaboration with STMicroelectronics (compilation team)

and Alchemy Inria team (A. Cohen).
• FAPEMIG-INRIA (Brazil-France funding mechanism), collaboration with Federal

University of Minas Gerais, Brazil (F. Pereira).
• PROCOPE (Germany-France funding mechanism), collaboration with Saarland Uni-

versity (S. Hack).

2.4.6 Self assessment

Our activities with STMicroelectronics were a huge success for us, not only for the con-
tracts we get. Being able to work within a complete industrial compiler made our study
more relevant and more than just theoretical. Based, among others, on this success story,
Inria and STMicroelectronics established a general agreement for joint research projects

8



(Alain Darte was part of the corresponding committee). Also, through this activity, Comp-
sys succeeded to attract young researchers: two PhD students from ENS-Lyon (Florent
Bouchez [p2] and Benoit Boissinot [p1]), two top-level post-docs (Sebastian Hack and Flo-
rian Brandner), one engineer from STMicroelectronics (Quentin Colombet) join Compsys
for a PhD, a past student (Cédric Vincent) was hired by STMicroelectronics.

As for scientific results, the comments we got from other researchers were very encour-
aging. For example, Keith Cooper (specialist of register allocation since he advised Preston
Briggs PhD thesis) concluded his analysis of the PhD manuscript of Florent Bouchez by
“Taken together, the chapters of Florent Bouchez’s Ph.D. thesis form the most complete
exploration of the theory of register allocation that I have seen”. We received three consec-
utive best paper awards at CGO, a conference with mainly practical contributions, which
was also, for us, a sign that many researchers think that tightening theory and practice
is fundamental. We were also asked to give tutorials (CASES’08 [o13], CGO’09 [o12],
LCPC’09 [o7]) on the new view we proposed on register allocation. This recognition
helped us organizing the very first international workshop on SSA (see hereafter).

This topic is not yet finished, but low-hanging fruits are rare. Beating 30 years of
heuristics, even if we improved the theoretical understanding, is not obvious. In 2010-
2011, Fabrice Rastello left Compsys for a sabbatical, renewing his centers of interest, all
Nano2012 projects were cancelled, and manpower on back-end code optimizations has
been reduced at STMicroelectronics (due to strategic options). For all these reasons, this
activity will now slow down, unless Compsys can hire new researchers on this topic.

2.5 Objective 2: program analysis and transformations for HLS

2.5.1 Staff

Permanent researchers Christophe Alias, Alain Darte, Paul Feautrier.
PhD students Hadda Cherroun, Alexandru Plesco, Clément Quinson.
Post-docs Ouassila Labbani.

2.5.2 Project-team positioning

With the advent of parallelism in supercomputers, the bulk of research in code transfor-
mation resulted in (semi-)automatic parallelization, with many techniques based on the
description and manipulation of nested loops with polyhedra. Embedded systems gener-
ated new problems in high-level code optimization, especially for loops, both for optimizing
embedded applications and transforming programs for high-level synthesis (HLS) (where
loop unrolling and basic block scheduling of the loop body have been, for a long time,
the only loop optimizations). Everything that has to do with data storage is of prime
importance as it impacts power consumption, performance, and chip area.

On the application side, multimedia applications often make intensive use of multi-
dimensional arrays, in sequences of (nested) loops, which make them good targets for
static program analysis. In practice, the applications are rewritten several times, by the
compiler or developer, to go from a high-level algorithmic description down to an optimized
and customized version. But for memory optimizations, the high-level description is where
the largest gain can be obtained because global program analysis and transformations can
be done: analyzing multimedia applications at the source level is thus important. On the
architecture side, the hardware, in particular memories, can be customized. When design-
ing/optimizing a programmable embedded system, adequate parameters can be selected
for cache and scratch-pad memories to achieve the smallest cost for the right performance
for a given application or set of applications. In HLS, memories (size, topology, connections
between processing elements) can even be fully customized for a given application.

9



Embedded systems are thus good targets for memory optimizations. But powerful
compile-time program and memory analysis are needed to (semi-)automatically generate
a fully-customized and optimized circuit from a high-level C-like description. Also, new
specification languages or compilation directives are needed to express communicating
processes and their communication media: processes communicating through FIFOs or
shared memories are a good target. Our objective in this topic was to adapt and ex-
tend high-level transformations, previously developed for automatic parallelization, to the
context of HLS and embedded computing optimizations. Such techniques started to be
rediscovered under various forms and we thought our previous expertise could be useful
both for the dissemination of already-known techniques and the development of new ones.

2.5.3 Scientific achievements

Static memory allocation and reduction When designing hardware accelerators,
one has to solve both scheduling (when is a computation done?) and memory allocation
(where is the result stored?). This is important to exploit pipelines between functional
units, or between external memories and hardware accelerators, and save memory space.
An example is image processing, for which it is preferable to store only a few lines and not
the entire frame, data being consumed quickly after being produced. Reducing memory
size can be done by re-mapping each array so that it reuses its memory locations when they
contain a dead value (intra-array reuse). In Compsys I, in a collaboration with HP Labs
(Rob Schreiber, PiCo project), we showed that all previous approaches are particular cases
of a general technique based on the construction of admissible lattices (see patent [o15]).
A stand-alone tool was developed for generating such a lattice and a corresponding linear
mapping with modulo (see the software tool Cl@k and Section 2.6.3).

After the theory, we developed the algorithms needed to implement these memory reuse
strategies, i.e., the interface with programs and the required program analysis (analysis of
the lifetimes of individual array elements). The resulting tool Bee was implemented thanks
to the source-to-source transformer ROSE, developed by D. Quinlan (Livermore). The
technique was demonstrated on benchmarks borrowed from IMEC, thanks to P. Clauss,
S. Verdoolaege, and F. Balasa [o1, c1]. The combination Cl@k+Bee was the first imple-
mentation for array contraction based on modular mappings. As a side effect, this provides
the most aggressive algorithm for converting arrays into scalars. This technique was also
used in Chuba (see hereafter in this section) for defining the local memory required by
its underlying “double-buffering”-like execution. Nevertheless, more work remains to be
done for deriving faster and better heuristics, for speeding-up the program analysis, and
for coupling scheduling, memory reuse, and memory size constraints.

First studies in high-level synthesis At the end of Compsys I and beginning of Comp-
sys II, our preliminary activities on HLS focused on identifying how compiler techniques –
back-end scheduling and high-level transformations – could be integrated in existing HLS
tools. This research thus also required an important effort in analyzing these tools.

The thesis of Hadda Cherroun [p3] focused on scheduling iterations of loops, extracted
from multi-dimensional techniques, taking into account resource constraints. The idea
was a two-levels scheduling, in which the “fronts” generated by the first-level schedule are
refined using combinatorial optimization methods. Several branch-and-bound algorithms,
incorporating reweighting techniques similar in spirit to Johnson’s algorithm, were de-
signed [j2] as well as scheduling techniques using graph coloring [c19].

As part of the PhD work of Clément Quinson, we analyzed the instruction scheduling
approach used in UGH, the HLS tool developed at LIP6. To guide the synthesis, the user
constrains the scheduler with a pre-allocation (draft data path) of some scalar variables

10



to physical registers. To increase its freedom, the scheduler relaxes output dependences
between different writes and adds anti dependences on the fly to preserve the program
semantics. We proved that deciding if a deadlock will appear with this strategy is NP-
complete, which implies a need for backtracking or register duplication [c24]. These issues
are related to Bernstein’s conditions [j7], the scheduling of register-allocated codes, and
the phase-ordering problem (for register allocation & scheduling) in standard compilers.

Finally, in the PhD work of Clément Quinson and Alexandru Plesco, we studied the
impact of high-level transformations, applied at source level before HLS tools (namely
Catapult-C, Pico, and C2H). These studies [c27, c43], hard to “sell” by publications,
were nevertheless the starting point on our more advanced work on communication opti-
mizations for HLS (see hereafter in this section) and on the analysis of while loops (see
Section 2.6.3), for termination and iterations counting.

Program analysis for Array-OL Array-OL is a formalism that combines the stream-
ing paradigm with template programming. It was introduced to ease the implementation
of data-intensive signal processing as found in sonar and radar software. Based on the
work of Alain Demeure at Thales in the 1980s, it has been developed both by Thales’ TRT
and the University of Lille LIFL. Array-OL is not a programming language, but a devel-
opment tool in which a design is specified by annotations on a graphic interface. In the
context of the Martes ITEA project (see Section 3.3), Ouassila Labbani and Paul Feautrier
developed a tool for the extraction of Array-OL specifications from legacy C code [c39].
The tool reused part of the Syntol scheduler for parsing and semantic analysis as well as
new program analysis to make data movements explicit, as required in Array-OL [o16].

Program analysis and communication optimization for HLS Today, HLS tools
are clearly becoming more mature for generating hardware accelerators with an optimized
internal structure, thanks to efficient instruction scheduling techniques, resource sharing,
and finite-state machines generation. However, interfacing them with the outside world,
i.e., integrating the automatically-generated hardware accelerators within the complete
design, with optimized communications, so that they achieve the best throughput, re-
mains a very hard task, reserved to expert designers. In a previous work [j10] (at the end
of Compsys I), we focused on how to feed non-programmable accelerators – systolic arrays
generated by the HLS tool MMAlpha – with external data, thanks to a customized com-
munication module. Following our preliminary study on source-to-source transformations
for HLS, our goal in Compsys II was to improve the design of these interfaces, trying to
consider the HLS tool as a back-end for more advanced front-end transformations.

Using the C2H HLS tool from Altera, which can synthesize hardware accelerators
communicating to an external DDR-SDRAM memory, we showed that it is possible to
restructure the application code, to generate adequate communication processes entirely
in C, and to compile all of them with C2H, so that the resulting application makes full us-
age of the memory bandwidth [c3]. These transformations and optimizations combine, in
an interleaved manner, techniques such as double buffering, array contraction, loop tiling,
software pipelining, among others. We showed how to perform the required analysis and
optimizations automatically using polyhedral techniques [c4, c5]. A unique feature is that
we can pipeline tiles, exploit inter-tile data reuse, and space locality to improve DDR ac-
cesses, and even cope with approximations [o2, o3]. These techniques were incorporated in
an automatic source-to-source transformation tool, called Chuba (see Section 3.2), which
is the core of Alexandru Plesco PhD [p6]. This study shows that HLS tools can indeed be
used as back-end optimizers for front-end optimizations, as in standard compilation where
high-level transformations can be developed on top of assembly-code optimizers.

11



High-level synthesis with pipelined arithmetic In HLS, the target circuit must not
only be efficient, but also produce quality results, thanks to specific arithmetic operators.
Producing such operators is the specialty of the Arenaire Inria project, which develops
FloPoCo, an open-source FPGA-specific generator that converts functional descriptions
into pipelined floating-point arithmetic operators. These pipelined operators need a fine
optimization of the data and control paths to deliver performances. As current HLS tools
usually provide an abstraction that hides the back-end details, a purely source-to-source
approach was not enough in this case. We developed an algorithm to generate, from a C
program, an hardware accelerator that efficiently uses these pipelined operators, reschedul-
ing the initial program execution to keep the operator’s pipeline as busy as possible, while
minimizing the memory accesses. This new schedule is then used to generate the VHDL
code of finite state machines (FSM) controlling the data-flow through the arithmetic op-
erator [c6]. We also addressed the problem of generating control FSMs of multiple parallel
computing cores accelerating the same application [o4]. A startup, Zettice, is currently
in incubation around the technologies developed in this section and the previous one.

2.5.4 Collaborations

Our research activities on HLS involved collaborations and informal contacts with the Inria
project Cairn (S. Derrien), the Inria project Arénaire (F. Dupont de Dinechin, B. Pasca),
STMicroelectronics (HLS team), Thales (through the Martes project), colleagues from the
french HLS community (in particular F. Pétrot at TimA and A. Greiner at LIP6).

2.5.5 External support

• PhD support CNRS/STMicroelectronics.
• S2S4HLS project, with STMicro (HLS team) and Cairn Inria team (S. Derrien).

2.5.6 Self assessment

On the positive side, we think that we made slow but strong progress on program analysis
and transformations for HLS. In particular, the automation of optimized communications
with inter-tile reuse and automated “double-buffering”-like execution, which generalizes
some work on scratch-pad memory optimizations and kernel offloading for GPUs, offers
interesting perspectives, beyond HLS. But, before getting any fundamental results, such
research requires a lot of efforts and time due to the interaction with HLS tools and FPGA
platforms (tough developments and use).

On the negative side, except for Alexandru Plesco, we never succeeded to find students
and hire researchers with a strong architecture/synthesis background and who can, at the
same time, understand mathematics and computer science. In 2010 and 2011, all actors of
the french HLS community tried to structure their efforts through two ANR proposals but,
despite the coordinating and writing efforts, these proposals were rejected. It seems in
retrospect that the HLS community has yet to find a clearer balance between new research
and industrial development. The same is true for our unfruitful collaboration with the
HLS team of STMicroelectronics. Finally, we also regret to have missed the opportunity
to participate in the network of excellence ArtistDesign. We were affiliate members at its
start (in 2007) but, at this time, we were more involved in back-end code optimizations
with STMicroelectronics. It is only at the end of Compsys II that our activities started
to be connected to the topics addressed in ArtistDesign. Also, the small size of Compsys
unfortunately does not allow us to be everywhere.

12



2.6 Objective 3: development of polyhedral tools

2.6.1 Staff

Research staff Christophe Alias, Alain Darte, Paul Feautrier, Laure Gonnord
PhD students Alexandru Plesco
Post-docs Fabrice Baray (in Compsys I).

2.6.2 Project-team positioning

Since the times of Pip and of the Polylib, Compsys has been active in the implementation
of basic mathematical tools for program analysis and synthesis. Pip is still developed by
Paul Feautrier and Cédric Bastoul, while the Polylib is now taken care of by the Inria
Camus project, which introduced Ehrhart polynomials. These tools are still in use world-
wide, but it is interesting to observe that they have been reimplemented many times
with (sometimes slight) improvements: consider for instance the Parma Polylib, Sven
Verdoolaege’s ISL and barvinok libraries, or the Jollylib of Reservoir Labs. More recently,
other groups also made a lot of efforts towards the democratization of the use of polyhedral
techniques, in particular the Alchemy Inria project, with the development of Graphite in
GCC, and Sadayappan’s group in the USA, with the development of Pluto.

Compsys II has continued in its tradition, focusing on the introduction of new concepts
and techniques to extend the polytope model, with a shift toward tools that may prepare
the future of parallel computing. For instance, PoCo and c2fsm are able to parse general
programs, not just SCoPs (static control programs), while the efficient handling of Boolean
affine formulas is a prerequisite for the construction of non-convex approximations. Cl@k
is the first step towards memory optimization in stream languages and may be useful in
all kind of situations. Our work on Chuba introduces new analysis related to the lifetimes
of array elements and the possibility of handling approximations. Finally, our work on
the analysis of while loops is both an extension of the polytope model itself (i.e., beyond
SCoPs) and of its applications (interest in program termination and possibly WCET tools).

2.6.3 Scientific achievements

Critical and admissible lattices At the end of Compsys I, as a result of our formal-
ization, in a common model, of all intra-array reuse techniques, we developed Cl@k, a
stand-alone combinatorial optimization tool that computes or approximates the critical
lattice for a given 0-symmetric polytope. (An admissible lattice is a lattice whose inter-
section with the polytope is reduced to 0; a critical lattice has minimal determinant.) It
also computes the successive minima of such polytopes. Cl@k completes the Polylib
suite, enabling yet another kind of optimizations on polyhedra, with modulo operations.
Its initial application was the automatic derivation, in a sequential program, of array map-
pings that enable memory reuse thanks to modulo operations. In Compsys II, we used
it with no change for designing memory mappings for our “double-buffering”-style kernel
offloading in Chuba. Other applications are foreseen, which will require some extensions.

Polyhedral compilation framework Usually, implementing a polyhedral analysis is a
long, difficult, and bug-prone task. The programmer must be familiar with many different
libraries (Polylib/ISL, Piplib, Cloog to quote a few), each with its own format and API,
which complicates the programming and lengthens the development time. There is a need
for a common interface to these tools as well as for an higher level of abstraction. PoCo
provides such an interface and enables the manipulation of high-level objects (e.g. polyhe-
dra, operations, schedules), rather than vectors and matrices. These features, which can

13



seem simple at first glance, allow the programmer to quickly prototype polyhedral tools.
PoCo, developed by Christophe Alias, is the result of a systematic effort to restructure
the code into reusable functions and objects along 6 years of development. The tools Bee,
Rank, and Chuba were built thanks to PoCo’s high level interface, which made their
development more robust and stable.

Analysis of while loops: towards irregular programs The polyhedral model is
inherently limited to programs with static control: only DO loops, no while loops, tests on
loop counters only. The only data structures are scalars and arrays, and the index functions
must be affine in the surrounding loop counters. Many computational kernels fail to fit in
this model by a small margin: see for instance Gaussian elimination with pivoting, or the
Singular Value Decomposition, which uses the break statement. There is a time-honored
approach for handling irregular problems, which dates back to the pioneering work of
Floyd and Manna. The program is first converted into an affine interpreted automaton –
combination of a finite state machine (FSM) and a list of variables – whose behavior is
a superset of the program behavior. A transition can be fired only if an affine constraint
on the variables is satisfied, and its effect is an affine assignment of new values to the
variables (or more generally an affine relation between input and output variables). One
can compute invariants for each state, i.e., constraints on the variables that are satisfied
whenever the control reaches this state. In general, the invariant cannot be computed
exactly and must be over-approximated, using techniques from abstract interpretation.

In program termination, a ranking function is a function to a well-founded set that
decreases at each transition. By establishing a strong link – exposed in the survey pa-
pers [c23, j4] – between the work of Karp, Miller, and Winograd on recurrence equations,
the multi-dimensional scheduling techniques we invented in the 1990s for loops, and the
concept of ranking functions, we have been able to bring to the program termination
community many results developed for the detection of parallel loops. Our technique for
generating multi-dimensional affine ranking functions subsumes several algorithms pro-
posed by this community. In addition, coupled with counting methods in polytopes, it
can provide upper bounds on the number of iterations, which can be of interest for the
WCET (worst-case execution time) community. This work was presented at SAS’10 [c2].
A complete software suite was developed, which first uses c2fsm to convert the C source
into an interpreted automaton. Aspic, developed by Laure Gonnord, is then responsible
for computing invariants as polyhedral approximations. Finally, Rank builds a ranking (if
any) using Pip and computes upper bounds on the number of iterations using the Ehrhart
polynomial module of the Polylib. The first two stages of this tool chain (c2fsm and
Aspic) were presented at TAPAS’10 [c29].

Simplification of Boolean affine formulas Up to now, in the polyhedral model, one
has only considered conjunctions of affine inequalities, or, equivalently, convex polyhedra.
The expressive power of these formulas is enough to handle simple abstractions like DO
loop iteration domains or elementary dependences. However, as soon as one wants to
handle more complex objects, like value-based dependences or conditionals in loop nests,
one must consider unions of polyhedra or even formulas using the full range of Boolean
operators, including negations and disjunctions. Algorithms on such formulas have a
tendency of generating highly redundant formulas of exponentially increasing size. Paul
Feautrier developed an algorithm and a tool for the elimination of redundancies [o18],
which has already found a use in the simplification of FSMs for high-level synthesis.

14



Transitive closure of Boolean affine relations Since the seminal paper of Bill Pugh
et al., it has been noticed that the transitive closure operator (a.k.a. Kleene star) is an
important tool for program analysis. For instance, to analyze and summarize the effect
of an inner loop in a set of nested loops, one needs to compute the transitive closure
of the inner loop body. Since the transitive closure of a Boolean affine relation is not
necessarily affine, one must resort to over- or under- approximations, depending on the
context. All known algorithms, for instance by Bill Pugh, by François Irigoin, or by
Sriram Sankaranarayanam, reduce to the construction and summation of the distance
polyhedron of the given relation. Paul Feautrier has proposed a new algorithm, based on
the decomposition of a preorder into an equivalence relation and a partial order, which
reduces to Pugh and Irigoin algorithms in simple cases, but can be extended to more
complex formulations. This work in progress has been presented at IMPACT’12 [c28].

2.6.4 Collaborations

The development of our software tools (excluding those related to back-end code opti-
mizations and developed in STMicroelectronics compilers) is not supported by any formal
collaboration. However, we have regular discussions with colleagues from the Inria teams
Alchemy (A. Cohen, C. Bastoul, S. Verdoolaege), Cairn (S. Derrien), Camus (V. Loechner,
P. Clauss), the PIPS group (F. Irigoin, B. Creusillet, R. Keryell), people at Reservoir Labs
(B. Meister, N. Vasilache), the Pluto group (Sadayappan, Ramanujam, U. Bondhugula),
the team of S. Rajopadhye, etc.

2.6.5 External support

No specific support.

2.6.6 Self assessment

We believe that our effort to convert abstract theorems and algorithms into practical soft-
ware is worthwhile and on the whole successful. A crucial point is that while abstract
complexity results are important, they should not deter us to attack NP-complete prob-
lems, which may have feasible solutions in practical cases. The recent success of SAT and
SMT solvers, due to improved algorithms and processors, is a case in point.

In its developments, Compsys is using a wide choice of languages, including OCaml,
C++, and Java. This is both an advantage and a drawback. When associating tools, it
forces communication through files (or Unix pipes), at some cost in performance. On the
other hand, having independent tools simplifies maintenance and evolution. Having our
tools converge to a common language would be a major effort, which cannot be considered
unless additional manpower is made available, possibly by INRIA.

All our tools are “free software”, but Compsys has no fixed policy on distribution and
licensing. This is a point that should be settled in the near future.

3 Knowledge dissemination

3.1 Publications

The following table summarizes all international conferences with a selection process, but
with no distinction between top conferences and smaller workshops. See details in the
bibliography section. We point out that publication in journals is usually not the target
for us, unless we want to publish results with a more theoretical depth, with all details, and
when speed of publication is not an issue. We therefore in general submit to conferences,

15



targeting top conferences first. However, recently, we experienced a surprising change in
the review process: acceptance is much more random, with very arguable reviews, while
reviews for journals are more balanced and even often less demanding.

2007 2008 2009 2010 2011 2012 Total

PhD Thesis 3 1 2 6

Journal 3 1 1 1 1 7

Conference (*) 13 4 4 9 12 4 46

Book chapter 1 5 6

Book (edited) 1 1

Patent 1 1

Technical report 5 1 6 12

Deliverable 2 2 3 2 1 10

Major journals for our field include ACM TECS, TOPLAS & TODAES, IEEE Trans-
actions on Computers, the International Journal of Parallel Programming (IJPP), the
Journal of VLSI Signal Processing, operation research journals (e.g., RAIRO-OR):

• IEEE Transactions on Embedded Computing Systems: 1
• RAIRO Operations Research: 1
• Journal of VLSI Signal Processing: 1
• ACM Transactions on Design Automation of Electronic Systems: 1

Major conferences in the field are CGO, CASES, DATE, DAC, ASAP, SAS, CC, CODES,
LCTES, plus some conferences on parallelism such as PACT, PPoPP, IPDPS.

• ASAP, International Conference on Application-Specific Systems, Architectures, and
Processors: 4 (including one short paper).

• CGO, International Symposium on Code Generation and Optimization: 3 (and three
consecutive best paper awards in 2007, 2008, 2009).

• LCTES, Languages, Compilers, and Tools for Embedded Systems: 3.
• CASES, International Conference on Compilers, Architecture, and Synthesis of Em-

bedded Systems: 3.
• PPoPP, Symposium on Principles and Practice of Parallel Programming: 1 (short

paper/poster).
• PACT, International Conf. on Parallel Architectures and Compilation Techniques: 1.
• SAS, Static Analysis Symposium: 2.
• CC, Compiler Construction: 1 (best paper award for S. Hack, post-doc in Compsys).

3.2 Software

We develop three kinds of software tools (see also our 2011 activity report).
• Compiler-like research tools that are used internally to implement, validate, and

improve ideas presented in our papers. These tools are usually intended to be pro-
gressively extended (e.g., Syntol, PoCo, Chuba).

• Stand-alone software tools that solve particular polyhedral problems and whose goal
is to contribute to the polyhedral community (e.g., Pip, Cl@k, Simplifiers).

• Developments in external tools (e.g., LAO, Open64, UGH) to incorporate specific
algorithms designed by Compsys (e.g., register allocation, liveness analysis).

PIP Tool for parametric integer programming (www.piplib.org), developed by Paul
Feautrier, then slightly improved in collaboration with Cédric Bastoul and Sven
Verdoolaege. Freely available under the GPL and widely used (worldwide) in the
polyhedral community.

16



Syntol Research tool developed by Paul Feautrier, Hadda Cherroun, Ouassila Labbani,
for studying communicating regular processes (CRP) and their scheduling in a mod-
ular fashion. Not distributed. Used in the Martes project [o16, c39].

Cl@k Stand-alone tool, developed within Compsys I by Fabrice Baray and Alain Darte
for computing an admissible lattice (with reduced determinant) for a 0-symmetric
polytope. Used to derive array mappings (linear mappings plus modulo operations)
that enable the reuse of array cells (kind of sliding windows). Available on demand
(see also http://www.ens-lyon.fr/LIP/COMPSYS/clak/).

PoCo Polyhedral compilation framework, used by Bee, Chuba, and Rank, that provides
many features to quickly prototype polyhedral analysis and optimizations. Front-
end based on EDG (via Rose). Roughly 20000 lines of C++. Registration at APP
(“agence de protection des programmes”) in progress (since May 2011).

Bee Source-to-source optimizer for array contraction, with analysis of the lifetime of array
elements and memory mapping based on Cl@k. Roughly 2500 lines of C++. Binary
of Bee+Cl@k [c1] made available for the Cairn HLS toolbox Gecos, through the
S2S4HLS project. APP registration in progress (May 2011).

Chuba Source-level optimizer that offloads a C kernel onto FPGA, with optimized com-
munications to an external DDR memory [p6, c4]. Currently designed to be used as a
front-end to the Altera HLS tool C2H. Roughly 1000 lines of C++. APP registration
in progress (May 2011). Software at the heart of the Zettice start-up initiative.

C2fsm Extraction, from a C program, of an interpreted automaton. Not distributed yet.
Used to interface C programs with the abstract interpretation tool Aspic [c29] (see
details on Aspic at http://laure.gonnord.org/pro/aspic).

RanK Stand-alone tool to decide (when possible) the termination of an interpreted au-
tomaton. Connected to 2̧fsm and Aspic to handle C while loops and to give an upper
bound on their number of iterations (kind of WCET) [c2]. Roughly 3000 lines of
C++. See http://www.ens-lyon.fr/LIP/COMPSYS/Tools/Ranking/.

Simplifiers Stand-alone tool for the simplification of affine Boolean expressions [o18],
in particular Quasts (quasi affine selection trees) extensively used in the polyhe-
dral community. Not yet distributed. See also http://www.ens-lyon.fr//LIP/

COMPSYS/Tools/Simple/.

Developments in LAO and Open64 All our aggressive and JIT code optimizations
are implemented within the compiler toolchain Open64/LAO of STMicroelectronics
(mainly in the research branch, some are then rewritten in the industrial branch).
These algorithms concern SSA construction and destruction, liveness analysis, in-
struction cache optimizations, register allocation (coalescing, spilling, register con-
straints). This enables experimental studies, evaluation of algorithms, comparison
of different approaches, and bug tracking as our techniques push the STMicroelec-
tronics compiler beyond its limits.

MinIR MinIR (minimalist intermediate representation) is a new intermediate represen-
tation, designed to ease the interconnection of compilers, static analyzers, code
generators, and other tools [c40]. In addition to its specification, generic core
tools have been developed to offer a basic toolkit and to help the connection of
client tools. See details at http://www.assembla.com/spaces/minir-dev/wiki

and https://compilation.ens-lyon.fr/.

17



3.3 Industrial contracts and technology transfer

In 2004, we started a tight collaboration with the compilation team of STMicroelectronics
(Christian Bertin, Benôıt Dupont de Dinechin, Christophe Guillon, François de Ferrière).
From 2006 to 2012, this joint research effort was funded through larger governmental
contracts, Sceptre (2006-2009) and Mediacom (2009-2012), see also Section 4.

Sceptre project (2006-2009) Sceptre was funded by the “pôle de compétitivité” Mi-
nalogic (http://www.minalogic.org/). This project, led by STMicroelectronics,
and with many partners mainly from Rhône-Alpes, aimed at the development of a
toolkit to ease the implementation of multimedia algorithms and the generation of
optimized codes for a multiprocessor reconfigurable platform. Our specific task was
to work on combinatorial optimization problems coming from back-end optimization,
in particular the removal of static single assignment (SSA), register allocation, and
code placement for instruction cache optimization. This project was acknowledged
in 2009 by the government as a great success and as the first Minalogic project that
ended on time and smoothly.

Mediacom project (2009-2012) This contract started in September 2009 as part of
the R&D funding mechanism Nano2012 and as the continuation of Sceptre. Media-
com focused on both aggressive optimizations and the application of the previously-
developed techniques to just-in-time (JIT) compilation and implied four Inria teams:
Alf, Alchemy, Arénaire, and Compsys. Unfortunately, due to a unilateral decision
of the government, all fundings related to Nano2012 were cancelled, or at least
frozen, in 2011 and 2012. Inria guaranteed the salary of PhD students and of some
engineers/post-docs already in place, but all other salaries and the travelling budget
were cut. Our activities continued but in a less ambitious format.

This long-term collaboration with the compilation team of STMicroelectronics was a real
success, with a gain for both parties. This gives us access to real industrial compila-
tion problems, to a set of representative benchmarks, to the ST assembly code optimizer
in which we develop (LAO and Open64), and to an industrial expertise in compilers
and processor architecture. Conversely, we help them develop new strategies, understand
previously-published approaches that need accurate readings for a correct implementation,
and our development activities contribute to debug their compiler.

In terms of scientific results, our joint efforts led to important contributions in in-
struction cache optimization, register allocation, and static single assignment (SSA). In
particular, Compsys was the first group to push the use of SSA for register allocation and
to completely deconstruct the classic view on register allocation. With our colleagues from
STMicroelectronics, we are now well-identified internationally for this contribution. In ad-
dition to our results and publications (see also Section 2.4), this research created a lot of ac-
tivity in seminars, tutorials [o13, o12, o7], organization of workshops (for example, we orga-
nized the first seminar on SSA in Autrans (http://www.cdl.uni-saarland.de/ssasem/)
and we were involved in the organization of CGO’11), research proposals, hiring of young
researchers (in both directions), PhDs [p2, p1], etc. This success also contributed to the
signature of a R&D national agreement between Inria and STMicroelectronics (to which
Alain Darte participated) and the activation of several other Nano2012 projects.

To support our second research axis (high-level loop transformations and high-level
synthesis (HLS)), we established a second activity with STMicroelectronics, but with the
HLS team (Pascal Urard, Roberto Guizzetti, Thierry Michel, Michel Favre). It was first
supported by a CNRS/STMicroelectronics PhD funding (Clément Quinson), then as part
of a second Nano2012 contract, S2S4HLS.

18



S2S4HLS project (2009-2011) S2S4HLS (source to source transformations for high-
level synthesis) started in January 2009. The goal of this project, initiated by the
Cairn Inria team, was the study and development of source-to-source program trans-
formations, in particular loop transformations, that are worth applying on top of
HLS tools. This includes restructuring transformations, program analysis, memory
optimizations and array reshaping, etc. Our activities on the HLS tool UGH [c24],
on the optimization of DDR communications with the HLS tool C2H [c3], and on the
analysis of while loops [c2] arose in this context but we did not really succeed to find
a good match between our activities and STMicroelectronics interests. Nevertheless,
some of our tools (Cl@k and Bee) were integrated to Cairn’s toolbox. Finally, we
were about to hire a post-doc on this topic when all Nano2012 projects were frozen.
These successive difficulties pushed us to quit the project in Spring 2011.

Until 2008, Compsys was also involved in the Martes ITEA project (http://www.
martes-itea.org/public/news.php focusing on a model-driven approach to real-time
embedded systems development, using UML and SystemC.

Martes project (2006-2008) This project was completed in September 2008. The
french partners of the project have focused their work on the interoperability of
their respective tools using a common UML meta-model. A post-doc (Ouassila Lab-
bani) was hired through Martes to focus on the interaction between Syntol (see Sec-
tion 3.2) and the parallel design environment SPEAR of Thales Research [c39, o16].
A gateway, partially based on the Eclipse framework, was implemented and has
been successfully demonstrated at several review meetings. The Martes project won
a Silver Award at the 2008 ITEA Symposium.

Finally, to compensate the funding difficulties of Nano2012 projects and to prepare
the future of the team, Compsys is now involved in a new industrial project led by
Kalray (http://www.kalray.eu/).

ManyCoreLabs project (2012-2016) Kalray is a french start-up, partly arising from
CEA and STMicroelectronics, whose activity is to develop new manycore processors
for embedded computing. The ManyCoreLabs project, funded by the BGLE pro-
gram (“briques génériques du logiciel embarqué”, see http://www.industrie.gouv.
fr/fsn/logiciel-embarque), is led by Kalray and involves many many partners,
both academics and from industry (mainly potential customers for Kalray MPPA
architecture). The role of Compsys in this project, in line with the objectives of
Compsys III, is to explore compilation techniques for streaming-like languages for
this platform. The kick-off meeting will be held in March 2012.

3.4 Teaching

No Compsys member has teaching duties (except Paul Feautrier until 2009). However,
Compsys tries to be in charge of compilation courses at ENS-Lyon and/or UCBL.

“Compilation” Master 1, ENS-Lyon This 36 hours course, which presents all the
basics of compilation (from parsing to code generation), was done by Paul Feautrier
(2008, 2009), then by Christophe Alias (2010, 2011).

“Advanced code optimizations” Master 2, ENS-Lyon This 24 hours course cov-
ers advanced code optimizations in connection with Compsys activities: software
pipelining, intermediate code representations, SSA, register allocation, polyhedral
optimizations, high-level synthesis, etc. It was shared by Alain Darte (2007, 2009,
2010, 2011), Fabrice Rastello (2007, 2009), and Paul Feautrier (2008, 2011).

19



Here are some other activities directly linked to teaching and education:
• Paul Feautrier was in charge of the L3 “compilation project” in 2008-2009 and gave

a M1 course on “operational research” in 2007-2008.
• Christophe Alias gave a L3-level “introduction to compilation” course at ENSI

Bourges (2010, 2011) and a L2-level lab on “computer architecture” at UCBL in
2011. He belongs to the teaching council of the Computer Science Department of
ENS-Lyon and organized two Winter Master School for students: “Beyond the PC.
Application-specific systems: design and implementation” (in 2010) and “Verifica-
tion and certification of software” (in 2012).

• Alain Darte was the vice-president of the admission exam to ENS-Lyon, responsible
for computer science, from 2001 to 2010. He was also author of the 2008 exam [j3].

Other activities, such as participation to hiring committees, to PhD or habilitation (HDR)
jurys, are to be found in Compsys annual reports.

3.5 General audience actions

None.

3.6 Visibility

Prizes and awards Compsys received 5 paper awards since 2007: at AICCSA’07 [c19],
at CC’07 [c38] (work finalized by S. Hack while post-doc in Compsys), and three consecu-
tive best paper awards at CGO (CGO’07, CGO’08, CGO’09), which is the best or one of
the best conferences in compilation/code optimization. These three papers concerned the
complexity of register coalescing [c11], a fast liveness check algorithm in SSA [c9], and an
efficient technique to go out of SSA [c8].

Paul Feautrier received from the Euro-Par Steering Committee an award “in recog-
nition of his outstanding contributions to parallel processing” (2009). He was also the
special guest of a “Paul Feautrier evening” organized during CGO’11, with all his past
and present international colleagues.

Editorial boards Compsys participates to the editorial boards of the following journals:

• ACM Transactions on Embedded Computing Systems (ACM TECS): Alain Darte.

• Parallel Computing: Paul Feautrier.

• International Journal of Parallel Programming: Paul Feautrier.

Program committees Compsys participates to the following program committees:

ACCA International workshop “analyze to compile, compile to analyze”, Laure Gonnord
(2011 – organizer).

CASES ACM International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, Alain Darte (2009, 2011), Fabrice Rastello (2008).

CC International Conference on Compiler Construction, Alain Darte (2008, 2011, 2012),
Paul Feautrier (2009).

CGO ACM/IEEE International Symposium on Code Generation and Optimization, Fab-
rice Rastello (2009, 2011 – local chair).

20



CPC International Workshop on Compilers for Parallel Computing, Alain Darte (steering
committee, 2013 – organizer).

DATE International Conference on Design, Automation, and Test in Europe, Alain
Darte (2007, 2011, 2012).

EUROPAR International Conference on Parallel Computing, Alain Darte (2009).

IMPACT International workshop on polyhedral compilation techniques, Christophe Alias
(steering committee, 2011 – organizer, 2012), Paul Feautrier (2012).

LCTES ACM Conference on Languages, Compilers and Tools for Embedded Systems,
Alain Darte (2012).

NPC IFIP International Conf. on Network and Parallel Computing, Alain Darte (2007).

PARCO International Conference on Parallel Computing, Paul Feautrier (2011).

PLDI ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, Alain Darte (2008, 2009 – first “fun ideas and thoughts” (FIT) session).

SCOPES International Workshop on Software and Compilers for Embedded Systems,
Alain Darte (2009, 2010).

Tutorials, keynote talks, contributions to books Following our research on SSA
and register allocation, Fabrice Rastello, Florent Bouchez, and Alain Darte, in collab-
oration with Sebastian Hack, Fernando Pereira, Jens Palsberg, and Philip Brisk, orga-
nized three successive tutorials on “SSA-based register allocation” at CASES’08 [o13],
CGO’09 [o12], and LCPC’09 [o7].

Alain Darte gave a keynote talk at MEMOCODE’10 on “understanding loops: the
influence of the decomposition of Karp, Miller, and Winograd” [c23] and at IMPACT’11
on “approximations in the polyhedral model” [o14]. Paul Feautrier gave a keynote talk at
LCPC’09 on “the polytope model, past, present, future” [o17].

Paul Feautrier has been an active participant in the elaboration of the Encyclopedia
of Parallel Programming, (David Padua ed.), recently published by Springer 2. He
has been a member of the scientific committee and has contributed four entries, on array
layout for parallel computing [j6], Bernstein’s conditions [j7], dependences [j8], and the
polyhedral model (with Christian Lengauer) [j9]. Alain Darte also contributed a chapter
on the parallelism detection in loops [j4]. Following the workshop he organized in 2009
(see hereafter), Fabrice Rastello coordinated a book “SSA-based compiler design” [b1], to
be published by Springer 3 and dedicated to static single assignment (SSA),

Organization of scientific events

SSA In 2009, Fabrice Rastello and Sebastian Hack, with the help of Compsys mem-
bers, organized the very first international workshop entirely focused on static single
assignment (SSA), although SSA was introduced in the late 80s. It regrouped 55
people during 4 days (see http://www.prog.uni-saarland.de/ssasem/), including
personalities involved in the very first developments of SSA. This unique initiative
gave rise to a book, coordinated by Fabrice Rastello, covering all aspects of SSA
(semantics, analysis, optimizations, tools), that should be ready by the end of 2012.

2http://www.springer.com/computer/swe/book/978-0-387-09765-7
3http://www.springer.com/engineering/circuits&systems/book/978-1-4419-6201-0

21



French compilation days Until 2010, the french compiler community had no official
national meetings. Fabrice Rastello, with the help of Laure Gonnord, decided to
motivate the different french actors to meet regularly. All groups whose activities are
related to compilation were contacted and the first “compilation day” was organized
in September 2010 in Lyon. The next sessions took place in Aussois (2010), Dinard
(2011), and Saint-Hippolyte (2011). This effort is a success: the community is
now well identified and such an event occurs at least once a year (see http://

compilation.gforge.inria.fr/).

CGO In 2011, for the very first time, CGO was organized outside the USA (see http:

//www.cgo.org/cgo2011/). Its organization involved members from the Alchemy
and Compsys teams. Fabrice Rastello was responsible for the local organization in
Chamonix, including the definition of new satellite workshops such as IMPACT’11
(co-organized by Christophe Alias), WIR’11 (co-organized by Florent Bouchez),
ACCA’11 (co-organized by Laure Gonnord).

IMPACT Christophe Alias was the main organizer of IMPACT’11 (international work-
shop on polyhedral compilation techniques). This workshop was the very first in-
ternational event on this topic, although it was introduced by Paul Feautrier in the
late 80s. After its first very successful edition, IMPACT continued: IMPACT’12 was
recently held as part of HIPEAC in Paris, IMPACT’13 will take place in Berlin.

Thematic quarter The Labex MILYON (http://milyon.universite-lyon.fr/) was
created to fund the organization of 3-months period on specific topics in mathematics
and computer science in Lyon. Compsys proposed to organize, in 2013, a thematic
quarter centered on compilation, in connection with languages and architectures,
with invited researchers and several events (CPC’13, HIPEAC meetings, summer
schools, french compilation days, etc.). MILYON should fund around 75-100 Keuros.

4 External funding

For a description of the Martes European project, and the industrial contracts Sceptre,
Mediacom, and S2S4HLS, see Section 3.3. The table provided Page 23 indicates the budget
allocated to our project-team in Keuros, with two columns: the budget excluding salaries
and the budget for salaries. Other salaries, not covered by these contracts are out of the
budget of the team, and only the number of such scholarships is provided.

5 Objectives for the next four years

Compsys has always focused on the development of fundamental concepts or techniques
whose applicability should go beyond a particular architectural or language trend. For
instance, the core of our work on back-end optimizations was based on the mathematical
properties of the SSA form. We also explored new techniques related to the polyhedral
model (scheduling, memory mapping, simplification) as well as new applications (program
termination, high-level synthesis). We will continue this type of research: we will try to
push the theory beyond current knowledge, as independently as possible of technological
trends (but aware of them of course) and we will develop small stand-alone tools – either
as proofs of concepts or to be used as basic blocks in larger tools/compilers developed
by others – and our own experimental prototypes. In particular, we will try to push
polyhedral techniques beyond their present limits, using approximation techniques, and
dynamic or runtime optimizations.

22



(Keuros) 2007 2008 2009 2010 2011 2012

European projects

ITEA MARTES 4 39.65 4 37.75

Industrial contracts

STMicro1 9 4

Hewlett Packard2 7 68

SCEPTRE 10 24.66 10 39.56 10 36.76

S2S4HLS 5 7 73 20.73 73 20.73

MEDIACOM 12 84.46,7 93 80.26,7 93 41.16

ManycoreLABS 8 24.3

Other funding

Inria dotation 15 15 15 10 12 12

ENS-Lyon dotation 5 1 4 3 3 2

CNRS dotation 3 1 1 5 2 1

Rhône-Alpes 64

Total 53 64.2 31 83.2 39 36.7 37 90.4 17 80.2 23 65.4

Scholarships (number of) between year-1 and year, excluding those supported by the above projects

Post-doc 29,10 111

PhD 64,8,12,13,14,15 44,8,14,15 24,15 24,15 116

ITI Inria 14

1 left-over of a direct contract with STMicroelectronics (Compsys I)
2 left-over due to patents with HP in 2002 3 cancelled, due to Nano2012 problems
4 Alexandru Plesco 5 Ouassila Labbani 6 Quentin Colombet 7 Florian Brandner
8 Clément Quinson 9 Sebastian Hack 10 Christophe Alias 11 Laure Gonnord 12 Nicolas Fournel
13 Philippe Grosse 14 Florent Bouchez 15 Benoit Boissinot 16 Guillaume Iooss

The polyhedral model is neither a programming language nor an execution model; its
status is rather that of a compiler intermediate representation (IR), albeit very different
from usual IRs, like abstract syntax trees (AST) or control flow graphs (CFG). As such,
it can be generated from several sequential high-level languages, like C and Fortran, or
streaming languages like CRP (communicating regular processes, an extension of Kahn
process networks), or equational languages like Alpha. While the structure of the model
is the same in all three cases, it may enjoy different properties: for instance, the existence
of a schedule is guaranteed for sequential programs, but it has to be checked in the other
two cases. The import of the polyhedral model is that many questions relative to a
program behavior and performances, and the applicability of many transformations, can
be answered precisely and efficiently by applying well-known mathematical results to the
model. The price to pay is that the expressive power of polyhedral programs is severely
limited: they cannot handle either dynamic data structures or dynamic control.

Meanwhile, the evolution of the technology landscape has led to the introduction of
massively parallel architectures at all levels of the performance spectrum, from embedded
appliances to high-performance computers. Processor counts of a thousand up to a billion
are now contemplated. Parallel applications, parallel compilers, and parallel languages
must scale up to these figures. It is no longer possible to restrict oneself to the study
of small regular kernels. Several research groups are attempting to trade predictability
for expressiveness, in the form of parallel libraries whose behavior is completely data
dependent and cannot be analyzed at compile time, see for instance the Galois system
(Keshav Pingali) or the Concurrent Collections (Intel, Kathleen Knobe). One should
note, however, that these groups are wondering how to detect and take advantage of
regular program parts (SCoPs) in order to improve the performance of their systems.

The feeling at Compsys is that there is a continuum of approaches for parallel program-
ing, with the polyhedral model at one of the extremities, and purely dynamical low-level

23



approaches at the other one. Most research teams start from one of these extremities and
try to move, step by step, in the other direction. The work on parallel libraries is an
attempt to alleviate the well-known difficulties of thread programming. The objective of
Compsys will be to move in the opposite direction, i.e., to enlarge the applicability of the
polyhedral model in a controlled and manageable way. But, instead of being driven by ar-
chitecture issues or by languages features, we want to be driven by compiler issues, i.e., by
what we know can be automated. We will also extend the polyhedral model itself, which
has still many unsolved problems, mainly related to resources and memory constraints,
especially in the context of hardware synthesis.

5.1 Inside the polyhedral model

This part of Compsys activity is mostly directed by the needs of hardware synthesis. The
steps of the design of an accelerator circuit for streaming applications are (1) scheduling,
(ii) sizing the local memories and specifying the communications inside the accelerator
chip, (iii) specifying the communications with the external memory and the host processor,
and (iv) generating the VHDL description of the chip. All these steps are interdependent,
and cannot be solved in one pass due, in part, to the lack of a precise formal model,
and also to the emergence of non linear problems. Compsys will attempt to improve this
situation. Some possible optimization problems are sketched below. For that, polyhedral
tools must be extended to handle problems beyond the reach of direct linear programming
methods, such as scheduling under resource constraints or memory management. A step
in this direction has been our work on array contraction with modulos or the introduction
of sophisticated polyhedral optimizations to cope with tiling, pipelining, and data reuse
simultaneously. All these extensions stress the polyhedral model and require new objective
functions, new optimizations techniques, and a better control of complexity and scalability.

5.1.1 Communication with the external memory

Since the bandwidth to the external memory is limited, this is the most important perfor-
mance optimization. Our solution consists in maximizing data reuse along the execution
of the kernel, by identifying first reads and last writes for each array cell. The problem
has been fully solved in the context of Alexandru Plesco PhD thesis, for the case of a
perfect loop nest, optimized with loop tiling but run sequentially. It remains to extend
it to more general kernels and to address parallel execution. Besides, this approach may
need excessive amounts of local memory. This can be alleviated either by spilling to an
external memory (live-range splitting), by not exploiting full data reuse, by multi-level
tiling, or by slowing down the schedule.

5.1.2 Scheduling

When scheduling communicating processes, the obvious solution is firstly to compute
local schedules for each process, then to compute inter-process schedules. As the CRP
experience has shown, this is not the best way, as the processor schedules cannot be
adjusted in order to simplify communications. Another drawback is that resource and
memory constraints are not taken into account: for instance, it is not possible to construct
pipelined schedules, except in an ad hoc and restricted way. Much progress is needed in
this direction, in particular in the light of streaming specification or execution.

24



5.1.3 Access to local memories

Modern FPGAs have multiple local memory banks, which are easier to build than multi-
port memories. The problem is how to partition the data set of the application in such a
way that access to far-away memories is minimized. The schedule must also be adapted
to the limited parallelism allowed by the number of available memory banks.

5.1.4 Control generation

The last step is the actual generation of the FPGA code. In hardware, control is the
responsibility of a finite state machine (FSM), instead of a program counter as for software.
The main question here is: how many FSMs for a given application? The construction
of only one global FSM is possible and easy from the compiler point of view, but poses
difficult problems for the clock signal distribution, and limits the amount of parallelism.
One FSM per process or even more seems more attractive, as faster clocks can be used,
but synchronization hardware is needed when two processes must exchange data.

5.2 Beyond the polyhedral model

As explained previously, we want to be able to go beyond the standard static control parts
(SCoPs), to deal with a larger class of kernels. This can be done in several ways that need
to be explored. Each extension requires to rethink the model that underlies the standard
polyhedral techniques and poses complexity and scalability issues.

5.2.1 Incremental extensions

A proposal is to start from an existing purely polyhedral tool, e.g., Syntol, and to enlarge
it by progressively introducing control in it. Syntol deals with regular process networks,
which have a computational part and a communication part. Introducing conditionals
in the computational part is easy: the method of “if conversion” offers a ready made
solution. Introducing while loops is more difficult; using speculation may be a solution.
The last step would be the introduction of conditional writes, which may necessitate major
modifications in the communication protocol.

5.2.2 Dealing with approximations

The basic idea is to construct a polyhedral over-approximation of an irregular program, i.e.,
a program which has more operations, a larger memory footprint, and more dependences
than the original. One can then parallelize the approximated program using polyhedral
tools, and then return to the original, either by introducing guards, or by insuring that
approximations are harmless. This technique is the standard way of dealing with ap-
proximated dependences. We also studied the impact of approximations in our work on
Chuba, for optimizing remote communications. It is clear however that this method will
apply only to mildly non-polyhedral programs. The restriction to arrays as the only data
structure is still present. Its advantage is that it subsumes in a coherent framework many
disparate tricks: the extraction of SCoPs, induction variable detection, the omission of
non-affine subscripts, or the conversion of control dependences into data dependences. The
link with the techniques developed in the PIPS compiler (based on array region analysis)
is strong and will have to be explored.

25



5.2.3 Inductive compilation

There have been many attempts to trace the execution of a sequential program and to
infer properties to be used in optimization and/or parallelization: the inspector/executor
method, speculative parallelization for instance. Our proposal here is to apply sophisti-
cated pattern matching techniques (one may say, polyhedral pattern matching techniques)
to trace analysis. The inferred properties (regular access patterns, linear evolution of vari-
ables, absence of dependences) will be fed back to the compiler to be used to advantage
in the generation of the target code. However, since no amount of experimentation can
prove a theorem, the compiler will have to prepare two versions of the code, to be selected
at run time depending on the truth or falsehood of the inference. This approach is one of
the few methods that can be applied to machine or assembly code. Collaborations with
the Camus Inria team already exist on this topic.

5.2.4 Regular programs in general

A program is called regular if its behavior can be predicted at compile time, and is relatively
independent of its data. There probably exist many families of regular programs, but the
only one that has been extensively studied is the family of static control programs, i.e., of
programs that fit in the polyhedral model. To design other regular models, one needs to
create new “parallel” data structures (i.e., data structures in which accessing a random
element does not depend “too much” on the size of the structure), new control structures
(e.g., natural enumerators) and new accessor functions (functions relating a position in
the execution domain to an element of a data structure). Optimization and parallelization
may rely on ad hoc transformations, specially adapted to the selected data and control
structures, or use the universal concept of dependence, which must be adapted and whose
decidability must be checked. This is a radical departure from the current concepts in
parallel programming, and is a subject for long term research.

6 Bibliography of the project-team

The following references are those published during the evaluation period, i.e., 2007-2012.
Most of them are directly related to the core topics of Compsys II. A few of them reflect re-
search started earlier, in the context of Compsys I or research performed by non-permanent
members (typically post-doc), but during their stay in Compsys II. Earlier references can
be found on Compsys web site http://www.ens-lyon.fr/LIP/COMPSYS if needed.

Doctoral dissertations and “Habilitation” theses

[p1] Benoit Boissinot. Towards an SSA-Based Compiler Back-End: Some Interesting
Properties of SSA and Its Extensions. PhD thesis, École normale supérieure de Lyon,
September 2010.

[p2] Florent Bouchez. A Study of Spilling and Coalescing in Register Allocation as Two
Separate Phases. PhD thesis, École normale supérieure de Lyon, April 2009.

[p3] Hadda Cherroun. Scheduling for High-Level Synthesis. PhD thesis, Université des
Sciences et de la Technologie Houari Boumediene, Alger, December 2007.

[p4] Nicolas Fournel. Estimation et optimisation de performances temporelles et
énergétiques pour la conception de logiciels embarqués. PhD thesis, École normale
supérieure de Lyon, November 2007.

26



[p5] Philippe Grosse. Gestion dynamique des tâches dans une architecture mi-
croélectronique intégrée à des fins de basse consommation. PhD thesis, École normale
supérieure de Lyon, December 2007.

[p6] Alexandru Plesco. Program Transformations and Memory Architecture Optimiza-
tions for High-Level Synthesis of Hardware Accelerators. PhD thesis, École normale
supérieure de Lyon, September 2010.

Edition of books

[b1] Fabrice Rastello, editor. SSA-Based Compiler Design. Springer, 2012.

Articles in referred journals and book chapters

[j1] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. SSI properties
revisited. ACM Transactions on Embedded Computing Systems, 2010. Special Issue
on Software and Compilers for Embedded Systems, to appear.

[j2] Hadda Cherroun, Alain Darte, and Paul Feautrier. Reservation table scheduling:
Branch-and-bound based optimization vs. integer linear programming techniques.
RAIRO-OR, 41(4):427–454, December 2007.

[j3] Alain Darte. Quelques propriétés mathématiques et algorithmiques des ensembles
convexes. Énoncé et corrigé de l’épreuve de mathématiques et informatique, concours
d’entrée aux ENS de Cachan, Lyon et Ulm, session 2008. Revue de Mathématiques
Spéciales, 119(1), 2008.

[j4] Alain Darte. Optimal parallelism detection in nested loops. In David Padua, editor,
Encyclopedia of Parallel Programming. Springer, 2011.

[j5] Paul Feautrier. Les compilateurs. In Jean-Eric Pin, editor, Encyclopédie de
l’Informatique. Vuibert, 2007.

[j6] Paul Feautrier. Array layout for parallel processing. In David Padua, editor, Ency-
clopedia of Parallel Programming. Springer, 2011.

[j7] Paul Feautrier. Bernstein’s conditions. In David Padua, editor, Encyclopedia of
Parallel Programming. Springer, 2011.

[j8] Paul Feautrier. Dependences. In David Padua, editor, Encyclopedia of Parallel Pro-
gramming. Springer, 2011.

[j9] Paul Feautrier and Christian Lengauer. The polyhedron model. In David Padua,
editor, Encyclopedia of Parallel Programming. Springer, 2011.

[j10] Antoine Fraboulet and Tanguy Risset. Master interface for on-chip hardware accel-
erator burst communications. Journal of VLSI Signal Processing, 2(1):73–85, 2007.

[j11] Philippe Grosse, Yves Durand, and Paul Feautrier. Methods for power optimiza-
tion in SOC-based data flow systems. ACM Transactions on Design Automation of
Electronic Systems, 14(3):1–20, 2009.

27



[j12] Marie Rastello, Fabrice Rastello, Hervé Bellot, Frédéric Ousset, François Dufour,
and Lorenz Meier. Size of snow particles in a powder-snow avalanche. Journal of
Glaciology, 57(201):151–156, March 2011.

[j13] Antoine Scherrer, Nicolas Larrieu, Pierre Borgnat, Philippe Owezarski, and Patrice
Abry. Non Gaussian and long memory statistical characterisations for internet traffic
with anomalies. IEEE Transactions on Dependable and Secure Computing (TDSC),
4(1):56–70, 2007.

Publications in conferences and workshops

[c1] Christophe Alias, Fabrice Baray, and Alain Darte. Bee+Cl@k: An implementation
of lattice-based array contraction in the source-to-source translator ROSE. In ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’07), volume 42-7, pages 73–82, San Diego, USA, June 2007. ACM
Press.

[c2] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart programs. In
17th International Static Analysis Symposium (SAS’10), pages 117–133, Perpignan,
France, September 2010. ACM press.

[c3] Christophe Alias, Alain Darte, and Alexandru Plesco. Optimizing DDR-SDRAM
communications at C-level for automatically-generated hardware accelerators. An ex-
perience with the Altera C2H HLS tool. In 21st IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP’10), pages 329–
332, Rennes, France, July 2010. IEEE Computer Society.

[c4] Christophe Alias, Alain Darte, and Alexandru Plesco. Optimizing remote accesses for
offloaded kernels: Application to high-level synthesis for FPGA. In 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’12),
New Orleans, USA, February 2012. IEEE Computer Society. Short paper.

[c5] Christophe Alias, Alain Darte, and Alexandru Plesco. Optimizing remote accesses for
offloaded kernels: Application to high-level synthesis for FPGA. In 2nd International
Workshop on Polyhedral Compilation Techniques (IMPACT’12), Paris, January 2012.

[c6] Christophe Alias, Bogdan Pasca, and Alexandru Plesco. Automatic generation of
FPGA-specific pipelined accelerators. In 7th International Symposium on Applied
Reconfigurable Computing (ARC’11), pages 53–66, Belfast, UK, March 2011. Springer
Verlag.

[c7] Benoit Boissinot, Florian Brandner, Alain Darte, Benoit Dupont de Dinechin, and
Fabrice Rastello. A non-iterative data-flow algorithm for computing liveness sets
in strict SSA programs. In 9th Asian Symposium on Programming Languages and
Systems (APLAS’11). Springer Verlag, December 2011.

[c8] Benoit Boissinot, Alain Darte, Benôıt Dupont de Dinechin, Christophe Guillon, and
Fabrice Rastello. Revisiting out-of-SSA translation for correctness, code quality,
and efficiency. In International Symposium on Code Generation and Optimization
(CGO’09), pages 114–125. IEEE Computer, March 2009. Best paper award.

28



[c9] Benoit Boissinot, Sebastian Hack, Daniel Grund, Benôıt Dupont de Dinechin, and
Fabrice Rastello. Fast liveness checking for SSA-form programs. In Sixth An-
nual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO’08), pages 35–44, Boston, USA, April 2008. ACM Press. Best paper award.

[c10] Florent Bouchez, Quentin Colombet, Alain Darte, Christophe Guillon, and Fabrice
Rastello. Parallel copy motion. In 13th International Workshop on Software & Com-
pilers for Embedded Systems (SCOPES’10), pages 1–10, St. Goar, Germany, June
2010. ACM Press.

[c11] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of regis-
ter coalescing. In International Symposium on Code Generation and Optimization
(CGO’07), pages 102–114. IEEE Computer, March 2007. Best paper award.

[c12] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of spill
everywhere under SSA form. In ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’07), volume 42-7, pages 103–
112, San Diego, USA, June 2007. ACM Press.

[c13] Florent Bouchez, Alain Darte, and Fabrice Rastello. Advanced conservative and op-
timistic register coalescing. In International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES’08), pages 147–156, Atlanta, GA, USA,
October 2008. ACM Press.

[c14] Florian Brandner. Completeness of automatically generated instruction selectors.
In 21st International Conference on Application-specific Systems Architectures and
Processors (ASAP’10), pages 175–182, Rennes, France, July 2010. IEEE Computer
Society.

[c15] Florian Brandner and Quentin Colombet. Copy elimination on data dependence
graphs. In Symposium on Applied Computing (SAC’12), Trento, Italy, March 2012.
ACM Press.

[c16] Florian Brandner and Alain Darte. Compiler-driven optimization of the worst-case
execution time. In Laure Gonnord and David Monniaux, editors, Workshop “Analyse
to Compile, Compile to Analyse” (ACCA’11), held with CGO’11, Chamonix, April
2011.

[c17] Florian Brandner, Viktor Pavlu, and Andreas Krall. Execution models for processors
and instructions. In 28th Norchip Conference (NORCHIP’10), November 2010.

[c18] G. Chelius, A. Fraboulet, and E. Fleury. Worldsens: A fast and accurate develop-
ment framework for sensor network applications. In 22nd Annual ACM Symposium
on Applied Computing (SAC’07), Seoul, Korea, March 2007. ACM.

[c19] Hadda Cherroun and Paul Feautrier. An exact resource constrained-scheduler using
graph coloring technique. In 5th ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA’07), pages 554–561. IEEE Computer Society,
May 2007. Best paper award.

[c20] Quentin Colombet, Benoit Boissinot, Philip Brisk, Sebastian Hack, and Fabrice
Rastello. Graph coloring and treescan register allocation using repairing. In Interna-
tional Conference on Compilers, Architectures, and Synthesis of Embedded Systems
(CASES’11), Taipei, Taiwan, October 2011. IEEE Computer Society.

29



[c21] Quentin Colombet, Florian Brandner, and Alain Darte. Studying optimal spilling
in the light of SSA. In International Conference on Compilers, Architectures, and
Synthesis of Embedded Systems (CASES’11), Taipei, Taiwan, October 2011. IEEE
Computer Society.

[c22] Benoit Combemale, Laure Gonnord, and Vlad Rusu. A generic tool for tracing
executions back to a DSML’s operational semantics. In 7th European Conference
on Modelling Foundations and Applications (ECMFA’11), volume 6698 of Lecture
Notes in Computer Science, pages 35–51, Birmingham, United Kingdom, June 2011.
Springer Verlag.

[c23] Alain Darte. Understanding loops: The influence of the decomposition of Karp,
Miller, and Winograd. In 8th ACM/IEEE International Conference on Formal Meth-
ods and Models for Codesign (MEMOCODE’10), pages 139–148, Grenoble, France,
July 2010. IEEE Computer Society. Invited paper.

[c24] Alain Darte and Clément Quinson. Scheduling register-allocated codes in user-guided
high-level synthesis. In 18th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP’07), pages 554–561. IEEE Computer
Society, July 2007.

[c25] Florent de Dinechin, Jean-Michel Muller, Bogdan Pasca, and Alexandru Plesco. An
FPGA architecture for solving the table maker’s dilemma. In 22nd IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP’11),
Santa Monica, CA, September 2011. IEEE Computer Society.

[c26] Boubacar Diouf, Albert Cohen, Fabrice Rastello, and John Cavazos. Split register
allocation: Linear complexity without the performance penalty. In International Con-
ference on High-Performance Embedded Architectures and Compilers (HiPEAC’10),
volume 5952 of Lecture Notes in Computer Science, pages 66–80. Springer Verlag,
January 2010.

[c27] Nicolas Farrugia, Michel Paindavoine, and Clément Quinson. On the need for semi-
automated source-to-source transformations in the user-guided high-level synthesis
tool. In High-Level Synthesis: Back to the Future (DAC’08 workshop), June 2008.
Poster.

[c28] Paul Feautrier. Approximating the transitive closure of a boolean-affine relation. In
2nd International Workshop on Polyhedral Compilation Techniques (IMPACT’12),
Paris, January 2012.

[c29] Paul Feautrier and Laure Gonnord. Accelerated invariant generation for C pro-
grams with Aspic and C2fsm. In Workshop on Tools for Automatic Program Analy-
sis (TAPAS’10), volume 267-2 of Electronic Notes in Theoretical Computer Science,
pages 3–13, September 2010.

[c30] N. Fournel, M. Minier, and S. Ubéda. Survey and benchmark of stream ciphers for
wireless sensor networks. In Workshop in Information Security Theory and Practices
(WISTP’07), Heraklion, Crete, Greece, May 2007.

[c31] Nicolas Fournel, Antoine Fraboulet, Guillaume Chelius, Eric Fleury, Bruno Allard,
and Olivier Brevet. Worldsens: Embedded sensor network application development
and deployment. In 26th Annual IEEE Conference on Computer Communications
(INFOCOM’07), Anchorage, Alaska, USA, May 2007. IEEE.

30



[c32] Nicolas Fournel, Antoine Fraboulet, Guillaume Chelius, Eric Fleury, Bruno Allard,
and Olivier Brevet. Worldsens: From lab to sensor network application development
and deployment. In International Conference on Information Processing in Sensor
Networks (IPSN’07), demo session, Cambridge, MA, USA., April 2007. ACM.

[c33] Nicolas Fournel, Antoine Fraboulet, and Paul Feautrier. eSimu: A fast and accurate
energy consumption simulator for embedded systems. In IEEE International Work-
shop: From Theory to Practice in Wireless Sensor Networks, Helsinki, Finland, June
2007.

[c34] Nicolas Fournel, Antoine Fraboulet, and Paul Feautrier. Fast and instruction ac-
curate embedded systems energy characterization using non-intrusive measurements.
In PATMOS Workshop - International Workshop on Power And Timing Modeling,
Optimization and Simulation, Göteborg, Sweden, September 2007.

[c35] Antoine Fraboulet, Guillaume Chelius, and Eric Fleury. Worldsens: Development
and prototyping tools for application specific wireless sensors networks. In IPSN Track
on Sensor Platforms, Tools and Design Methods (SPOTS’07), Cambridge, MA, USA.,
April 2007. ACM.

[c36] Abdoulaye Gamatie and Laure Gonnord. Static analysis of synchronous programs
in Signal for efficient design of multi-clocked embedded systems. In ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES’11), pages 71–80, New York, NY, USA, 2011. ACM.

[c37] L. Gonnord and J.-P. Babau. Quantity of resource properties expression and run-
time assurance for embedded systems. In ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA’09), pages 428–435, Rabat, Morocco,
May 2009.

[c38] Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for optimal coa-
lescing. In Shriram Krishnamurthi and Martin Odersky, editors, Compiler Construc-
tion (CC’07), volume 4420 of Lecture Notes In Computer Science, pages 111–125,
Braga, Portugal, March 2007. Springer. Best paper award.

[c39] Ouassila Labbani, Paul Feautrier, Eric Lenormand, and Michel Barreteau. Elemen-
tary transformation analyses for Array-OL. In ACS/IEEE International Conference
on Computer Systems and Applications (AICCSA’09), pages 362–367, Rabat, Mo-
rocco, May 2009.

[c40] Julien Le Guen, Christophe Guillon, and Fabrice Rastello. MinIR, a minimalistic
intermediate representation. In Florent Bouchez, Sebastian Hack, and Eelco Visser,
editors, Workshop on Intermediate Representations (WIR’11), held with CGO’11,
pages 5–12, Chamonix, April 2011.

[c41] Qingda Lu, Christophe Alias, Uday Bondhugula, Sriram Krishnamoorthy, J. Ra-
manujam, Atanas Rountev, P. Sadayappan, Yongjian Chen, Haibo Lin, and Tin
fook Ngai. Data layout transformation for enhancing locality on NUCA chip mul-
tiprocessors. In International ACM/IEEE Conference on Parallel Architectures and
Compilation Techniques (PACT’09), pages 348–357. ACM Press, September 2009.

[c42] David Monniaux and Laure Gonnord. Using bounded model checking to focus fix-
point iterations. In Eran Yahav, editor, Static analysis (SAS’11), volume 6887 of
Lecture Notes in Computer Science, pages 369–385. Springer Verlag, 2011.

31



[c43] Alexandru Plesco and Tanguy Risset. Coupling loop transformations and high-
level synthesis. In SYMPosium en Architectures nouvelles de machines (SYMPA’08),
February 2008.

[c44] Marie Rastello, Fabrice Rastello, Hervé Bellot, Frédéric Ousset, and François Dufour.
Size of snow particles in a powder-snow avalanche. In ASME Fluids Engineering
Division Summer Meeting 2009 (FEDSM’09), August 2009.

[c45] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, Chris-
tian W. Probst, Sven Karlsson, and Tommy Thorn. Towards a time-predictable
dual-issue microprocessor: The Patmos approach. In Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, DATE Workshop PPES’11,
volume 18, pages 11–21, Grenoble, France, March 2011.

[c46] André Tavares, Quentin Colombet, Mariza Bigonha, Christophe Guillon, Fernando
Pereira, and Fabrice Rastello. Decoupled graph-coloring register allocation with hi-
erarchical aliasing. In 14th International Workshop on Software & Compilers for
Embedded Systems (SCOPES’11), pages 1–10, St. Goar, Germany, June 2011. ACM
Press.

Other: research reports, patents, tutorials, keynotes, etc.

[o1] Christophe Alias, Fabrice Baray, and Alain Darte. Lattice-based array contraction:
From theory to practice. Research Report 2007-44, INRIA, November 2007.

[o2] Christophe Alias, Alain Darte, and Alexandru Plesco. Kernel offloading with opti-
mized remote accesses. Research Report RR-7697, INRIA, July 2011.

[o3] Christophe Alias, Alain Darte, and Alexandru Plesco. Program analysis and source-
level communication optimizations for high-level synthesis. Research Report RR-7648,
INRIA, June 2011.

[o4] Christophe Alias, Bogdan Pasca, and Alexandru Plesco. FPGA-specific synthesis of
loop-nests with pipelined computational cores. Research Report RR-7674, INRIA,
July 2011.

[o5] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. SSI revisited.
Research Report RR2009-24, LIP, July 2009.

[o6] Benoit Boissinot, Sebastian Hack, Daniel Grund, Benôıt Dupont de Dinechin, and
Fabrice Rastello. Fast liveness checking for SSA-form programs. Research Report
RR2007-45, LIP, ENS-Lyon, France, September 2007.

[o7] Florent Bouchez, Philip Brisk, Sebastian Hack, Jens Palsberg, and Fabrice Rastello.
SSA-based register allocation. In 22nd International Workshop on Languages and
Compilers for Parallel Computers (LCPC’09), Newark, October 2009. Tutorial.

[o8] Florent Bouchez, Alain Darte, and Fabrice Rastello. Improvements to conservative
and optimistic register coalescing. Research Report RR2007-41, LIP, ENS-Lyon,
France, March 2007.

[o9] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of spill every-
where under SSA form. Research Report RR2007-42, LIP, ENS-Lyon, France, March
2007.

32



[o10] Florian Brandner, Benoit Boissinot, Alain Darte, Benôıt Dupont de Dinechin, and
Fabrice Rastello. Computing liveness sets for SSA-form programs. Research Report
RR-7503, INRIA, April 2011.

[o11] Florian Brandner and Quentin Colombet. Parallel copy elimination on data depen-
dence graphs. Research Report RR-7735, INRIA, September 2011.

[o12] Philip Brisk, Alain Darte, Jens Palsberg, and Fabrice Rastello. SSA-based regis-
ter allocation. In International Symposium on Code Generation and Optimization
(CGO’09), Seattle, March 2009. Tutorial.

[o13] Philip Brisk, Sebastian Hack, Jens Palsberg, Fernando Pereira, and Fabrice Rastello.
SSA-based register allocation. In International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems(CASES’08, part of ESWEEK’08), Atlanta,
October 2008. Tutorial.

[o14] Alain Darte. Approximations in the polyhedral model. In 1st International Work-
shop on Polyhedral Compilation Techniques (IMPACT’11), CGO’11 Workshop, Cha-
monix, April 2011. Keynote talk.

[o15] Alain Darte and Rob Schreiber. System and method of optimizing memory usage
with data lifetimes. US patent number 7363459, April 2008.

[o16] Paul Feautrier. Elementary transformation analysis for Array-OL. Research Report
6193, INRIA, May 2007.

[o17] Paul Feautrier. The polytope model, past, present, future. In 22nd International
Workshop on Languages and Compilers for Parallel Computers (LCPC’09), Newark,
October 2009. Keynote talk.

[o18] Paul Feautrier. Simplification of Boolean affine formulas. Research Report RR-7689,
INRIA, July 2011.

[o19] Sebastian Hack. Register allocation for programs in SSA form. DATE’07 PhD Forum
Poster, April 2007.

33


