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Discrete Event Dynamic Systems

Discrete Event Dynamic Systems (DEDS)are essentially characterized by an
countable state space E.

The instants when the system changes its state are called events and are
countable (denoted (Tn)n∈N ∈ R). Time is not discrete, but remarkable dates
corresponding to the events are distinguished and form a countable set.
Time-driven systems: synchronous models
Event-driven systems: asynchronous models

Most man-made systems fall in either of these frameworks (computers,
manufacturing systems, communication networks).
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Evolution of a DEDS

If one looks at the evolution of a DEDS, at events, one gets:

xn+1 = Fn(xn, Tn, an, ξn)

Tn+1 = Gn(Tn, xn, an, ξn)

where xn, xn+1 ∈ E are the states of the systems at events n and n+ 1.

Tn is the instant of the n-th event.

an, bn ∈ A are actions of the controller (if the system is controlled).

(ξn)n∈N is a random process, often called noise or perturbations.
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Evolution of a DEDS (II)

xn+1 = Fn(xn, Tn, an, ξn)

Tn+1 = Gn(Tn, xn, an, ξn)

If Fn and Gn do not depend on n and on Tn, the system is called time
homogeneous.

If Fn and Gn do not depend on ξn then the system is deterministic else, it is
stochastic.
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Problems to solve

• Prove that Tn/n has a limit when n→∞. (First order limit) and compute it.

• Prove that xn has a limit when n → ∞. (in the stochastic case, Pr(xn = i)
has a limit when n→∞, called a stationary regime), and compute it. (Second
order limits)

• Choose an, bn such that the system satisfies some (asymptotic) property.

• Choose an, bn to minimize some cost function, using the available information.
no information: open-loop systems
full information: close-loop systems
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Petri Nets

• Bipartite graph G (places P
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Petri Nets

• Bipartite graph G (places P and transitions Q).
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Petri Nets

• Bipartite graph G (places P and transitions Q).

• Arcs C(p, q) and C(q, p)
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Petri Nets

• Bipartite graph G (places P and transitions Q).

• Arcs C(p, q) and C(q, p)

• Initial marking M0 in places coding the current state.
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Evolution of the marking: token game

A transition q is firable under marking M if M > C(·, q)
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Evolution of the marking: token game

A transition q is firable under marking M if M > C(·, q).

A firable transition can fire (an event) The marking becomes M ′(p) =
M(p)− C(p, q) + C(q, p)
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Petri Nets: modelling power

Petri Nets is a classical tool to model Discrete Event Dynamic Systems.

Advantages: Graphical as well as a mathematical tool. Compact model
(compared with the state space automaton).
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Modelling with Petri Nets

Natural model for distributed systems with

concurrency,
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Modelling with Petri Nets

Natural model for distributed systems with

concurrency,

synchronizations,
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Modelling with Petri Nets

Natural model for distributed systems with

concurrency,

synchronizations,

asynchronous superpositions.
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Modelling with Petri Nets

Natural model for distributed systems with

concurrency,

synchronizations,

asynchronous superpositions,

mutual exclusions.
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Example 1: Critical section in railways

A section of a rail way

Critical section

Petri net models and the (max,plus) algebra is being used to model the futute
high speed railway for Thalys in the Netherlands.
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Manufacturing Systems: jobshops

N types of products are being manufactured by M different machines.

Product 1: M1,M2,M3

Product 2: M1,M3,M2

Product 3: M1,M2

Petri nets are used to compute the schedule and the performance (identify the
bottle neck). [Proth,Xie]
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Manufacturing Systems: Kanban

Manufacturing chain avoiding stocks

empty stock demand

end of productionfull stocknew item

Petri nets were used to compute the performance of such systems. [Baccelli]
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Communication networks: window control

Window size

acks

Source packets destination

[Baccelli,Bonald] Window control is used in the TCP protocol.
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Communication networks: leaky buckets

buffer
finite

tokens

packets

[Chang]
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Timed Petri nets

σp(n) is the n-th holding time in place p.

φq(n) is the n-th firing time of transition q.

With no loss of generality, we may assume that σp(n) = 0 for all places p, by
using a local transformation.

σ1 = 0 σ2 = 0

φq(n) = σp(n)

σp(n)
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Markovian Approach: Reachability Graph

The reachability graph is an automata:

• Alphabet: Q (set of transitions)

• State space: all markings reachable from M0

• Initial state: M0

• Transitions: M
q−→M ′ if firing q leads from M to M ′.
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Markovian Approach: Reachability Graph

0111010010 01001

1

2

3

4

1 3

2 4
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Markovian Approach: exponential firing times

Assume that φq(n) is exponentially distributed and i.i.d.: Pr(φq(n) > t) =
e−λqt.

Assume that conflicts are solved using the race policy:

when two timed transitions compete for a token, they both initiate their
firings.

The first one to finish gets the token. The firing of the other one aborts.

Theorem The reachability graph of an exponential Petri net under the race
policy is a Continuous Time Markov Chain.
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An example

0111010010 01001

φ(λ4)φ(λ2)

φ(λ1) φ(λ3)

λ1 λ3

λ2 λ4

Petri net with exponential firing times and the resulting infinitesimal generator.
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Markovian Approach: Asymptotic Issues

The net reaches a stationary regime which can be computed by solve a linear
system: πQ = 0, where Q is the infinitesimal generator matrix of the Markov
Chain.

Problems:

State space may be infinite.

In the bounded case, the size of the automata is exponential in the size of the
Petri net.

The exponential assumption is not valid in many cases. Even semi-markov
generalizations are not always appropriate.
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(max,plus): Event Graphs

Event graphs are Petri nets such that all the places have exactly on input and
one output transition.

Event Graphs model systems involving synchronizations.

Event Graphs cannot model systems involving choices or asynchronous
superposition.
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(max,plus): State space

The usual state M(t): marking at time t is replaced by the counters N(t) or
timers X(n).

[Cohen, Quadrat, Viot]

Note that
Mij(t) = Ni(t)−Nj(t),

Mij(t) = max{n|Xi(n) 6 t} −max{n|Xj(n) 6 t}.
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(max,plus):Evolution Equations

1

2

3

p(1,3)

p(2,3)

N3(t) = min
(
N1(t− σ1,3 − φ1), N2(t− σ2,3 − φ2) + 2

)

X3(n) = max
(
X1(n) + σ1,3 + φ1, X2(n− 2) + σ2,3 + φ2

)
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(max,plus): Algebra

Rmax = (R ∪ {−∞},⊕,⊗) is an idempotent semi-ring with −∞ as a null
element and 0 as unity.

∞⊕ a = a

0⊗ a = a

−∞⊗ a = −∞

Idempotent: a⊕ a = a.

Matrix operations:

(A⊕B)ij = Aij ⊕Bij

(A⊗B)ij = ⊕kAik ⊗Bkj
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(max,plus): linear systems

The evolution equation of an event graph:

X3(n) = max
(
X1(n) + σ1,3 + φ1, X2(n− 2) + σ2,3 + φ2

)
can be rewritten

X3(n) =
(
X1(n)⊗ (σ1,3 + φ1)

)
⊕
(
X2(n− 2)⊗ (σ2,3 + φ2)

)
An event graph is a (max,plus) linear system. The evolution equation forms a

Bellman Chain:
X(n+ 1) = X(n)⊗A.
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(max,plus):Spectral theorem

Theorem Let A be a (max,plus) irreducible matrix. then,

∃n0, c, λ, ∀n > n0, An+c = cλ⊗An

Corollary In a live, strongly connected event graph,

∀n > n0, X(n+ c) = cλ+X(n).
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(max,plus): Computational issues

All the ingredients can be computed in polynomial time in the size of the
system

cyclicity c: O(N2) Denardo

Cycle time λ: O(N3) Karp, O(N) Howard

Coupling time: n0 O(Nk) Arguelles
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(max,plus): Extensions

This approach can be extended to arbitrary one-bounded Petri nets using
(max,plus) automata.

This has close links with heap of pieces (à la Tetris).

However, the computation of the cycle time is more difficult in the general
case (open problem)

[Gaubert, Mairesse]
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(max,plus): stochastic case

We assume that the firing times and the holding times are random variables

X(n+ 1) = X(n)⊗A(n).

If the firing times and the holding times form stationary ergodic sequences.
More precisely, A(n) = A◦θn, where θ is an ergodic flow in the probability space.
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(max,plus): Kingman theorem

Theorem First order theorem

limn→∞
X(n)
n

= γa.s,

where γ is the Lyapounov exponent of the system.

Proof Let ξm,m+k = |A(m)⊗ · · · ⊗A(m+ k)|,

ξm,m+k 6 ξm,m+p + ξm+p,m+k is sub-additive.

Kingman’s sub-additive ergodic theorem concludes the proof.

Theorem Second order theorem

limn→∞(Xi(n)−Xj(n)) exists a.s.

[Baccelli, Foss, 95]
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(max,plus):Sub-additivity

m

m+p

m+k

ξm,m+k 6 ξm,m+p + ξm+p,m+k
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(max,plus): Computational issues

Approximate the Lyapounov exponent γ is NP-Hard.

[Gaubert, Blondel, 99]

For multidimensional Bernouilli cases, a development en series of γ can be
computed (the size of the coefficients grows exponentially).

Computing the asymptotic regime is even harder.
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The saturation rule: routed Petri nets

Stochastic Petri nets have conflicts which can be solved using routing
functions:

rp(n) gives the transition where the nth token entering place p is routed to.

The routing is weakly fair if

∀q, limn→∞1rp(n)=q =∞.
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The saturation rule: Blocking transitions

Consider a live and bounded weakly fair routed Petri net (well-formed).

If an arbitrary transition is blocked after some time, then the evolution stops
in finite time and the final state is unique.

[G. Mairesse, Haar]
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The saturation rule: the monotone-separable framework

Consider an I-O discrete event system.

The input is a Marked Point Process I.

The input is a Marked Point Process O.

The system is given as an operator φ and φ(I) = O. φ is monotone-separable
if it is

Causal φ(X) > X
Homogeneous φ(X + c) = φ(X) + c
Monotone: X 6 Y ⇒ φ(X) 6 φ(Y )
Separable: max(φ(X)) 6 min(Y )⇒ φ(X + Y ) = φ(X) + φ(Y ).
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The saturation rule: Asymptotic results

A system satisfying the monotone-separable framework is non-expansive for
the L∞-norm. This implies to existence of a Lyapounov exponent γ0.

The firing times and the holding times form unbounded joint stationary ergodic
sequences.

The routing is made of an iid sequences.

γ0 = lim
n→∞

1
n

Last (n at time 0)
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The saturation rule: Computing the firing rates

Let R be the routing matrix. Then the firing rates in the system λ satisfy
λ = λR.

This gives an easy way to compute λ up to a multiplicative constant.
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Some open questions

1) minimal representation of a (max,plus) system.

2) Compute the Lyapounov exponent in interesting cases.

3) Investigate the cases where the dynamic is not non-expansive.
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