
Modeling Internet Physical Topology
(Draft)

Nicolas SCHABANEL

CR CNRS – Laboratoire de l’Informatique du Parallélisme – ÉNS Lyon
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1 About the Internet

What is Internet? Internet is a hierarchical network composed of communication de-
vices, the routers, interconnected with point-to-point links. The interconnection between
the Autonomous systems composes the top level of the hierarchy. An autonomous sys-
tem (AS) is basically a local network with a gateway to the outside (for instance, the local
network of an university). Autonomous systems are of various types or, more precisely,
belong to different domains (Stub domains, Transit domains, or Multi-homed domains).
Basically, Transit domains interconnect Stub domains. The graph we will consider is the
graph whose nodes are the ASs and whose edges are the link between them.

Links between autonomous systems are unknown: network companies keep their net-
work structure secret. This motivates the need of a model: because the real network is
unknown, one needs a model to design algorithms or calibrate structures for the Internet.

What do we know about the Internet topology? Measurements of Internet topology
are mostly done using BGP tables or traceroutes. BGP tables are routing tables stored in
routers to route the messages: it contains where to route (to which neighboring router)
what according to its destination. Unfortunately the tables are mostly private (for the
same reason as before). Traceroutes allow in some circumstances to trace the route fol-
lowed by a message to its destination. Tracing a lot of messages to various destinations
allows to get some picture of the Internet. Routeviews.org offers to the community the re-
sults of their monthly“crawls” on their website [14]. This is a precious tool for researchers.
This picture is however partial: Shenker et al [7] estimate by analyzing known local neigh-
borhoods that at least 25% to 50% of the links are missed in the current Internet measure-
ments.

Broido and Claffy [3] took a picture of the internet based on traceroutes and BGP tables
between 20 nodes which did accept to cooperate: they detected about 665,000 nodes in



2000 with an average degree1 of about 4. The study of Faloutsos et al [9] revealed that the
distribution of the degrees of the ASs in the Internet follows some kind of power law with
exponent −2.2: the number of nodes with degree d is about 1/d2.2. This was unexpected
by the network community. This initiated the quest for new network models.

On the dynamics side, Routeviews provides very useful datas. From 1998 to 2000,
about 200 to 400 new ASs appeared in Internet every month, while 20 to 150 ASs dis-
peared every month. For the same period of time, about 400 to 1000 new links were
created every month, while 200 to 800 links dispeared. When a new AS was created its
initial degree is most of time 1, some times 2, rarely more. The same fact holds for the
dead ASs.

2 Some Models for the Internet

Various models have been designed for the Internet topology. The very first models based
on traditional random graphs produced disconnected graphs or exponential law on de-
grees for the desired proportion of links. Here is a list of models that produce connected
graph that verify power laws on vertex degrees.

• Power law random graph by Aiello, Chung and Lu [1],

• Brite by Medina, Matta and Byers [13],

• Inet by C. Jin and Q. Chen and S. Jamin [11],

• Preferential attachment (Rich get richer) by Albert and Barabasi [2],

• GPL by Bu and Towsley [4],

• Nem by Magoni and Pansiot [12],

• HOT by Fabrikant, Kousoupias ad Papadimitriou [8].

All these models build different graphs. We will present some of them. For instance
the now classical Albert and Barabasi [2] model builds a graph by adding nodes one by
one: when inserted, the node is linked to a fixed number of already present nodes chosen
randomly, proportionally to their current degrees. This model is based on the “rich get
richer” or “preferential attachment” principle. The model in [8] constructs a rooted tree
(this is thus as is, a very poor model for the internet): nodes are added one by one; each
inserted node is linked to a single node, the node that minimizes a linear tradeoff between
the hop distance to the root and the euclidean length of the link. Both models yield power
laws on degrees. As is, because it constructs a tree, the later model is useless to model
the internet; interestingly enough, it captures an important idea that will be discussed in
Section 4, and it can be generalized to realistic models. Note that none of these models

1The degree of a node in a graph is the number of its neighbors.
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takes into account the particular hierarchy of Internet autonomous systems. The other
models try to include this hierarchy.

3 Observations on Internet measures and models

Remarks on target parameters. Most of the Internet topology models aim to obtain as
closely as possible the value of the parameters (approximately) measured on the Internet:
mainly, the exponent of the power law on degrees, the average clustering coefficient, the
average path length. A lot of critics can be addressed to this approach:

Exponent of the power law on degrees. The computation of the exponent is subject to
large error: small variation on the distribution has a huge impact on the exponent
computation. Consider for example, a power law 1/i2 for i from 1 to 100. When
computing the exponent of the closest power law using linear regression in the log-
log space, a shift of the data of 0.5 to the left or the right induces a variation from
1.85 to 2.19 for the exponent (we use MatLab for these computations). Therefore,
focusing on the exact measured exponent can not be a reasonable aim for model
designers.

Clustering coefficient. The clustering coefficient of a node is the probability that two of
its neighbors are connected. One striking fact on social networks is that their aver-
age clustering coefficient are “high” (at least higher than expected according to tra-
ditional random graphs). Some think that it may be an explanation of small-world
phenomenon. An important critic regarding focusing on clustering coefficient is
that the clustering coefficient essentially measures the proportion of triangle-like
neighborhood in the graph: this coefficient drops quadratically with the degree of
the nodes and has thus significant value only for small degree nodes. One can also
construct graphs with high clustering coefficient that are not small-worlds. A rea-
sonable guess to explain the relatively large value of the clustering coefficient is that
social networks have a lot of very small degree nodes with high clustering coeffi-
cient (Internet graph for instance is full of triangle-like neighborhood).

mean eccentricity. Social graphs are often small-world graphs and thus have very small
diameters (from 5 to 20). In that case, most of the nodes have an eccentricity of about
half the diameter, independently of the real graph.

As a conclusion, these parameters may not be useful to discriminate between good and
bad models for social networks. An important axis of research is certainly to find relevant
and discriminating parameters to measure on networks to obtain consistent results.

A careful study of the validity of a model. The first important step in network model-
ing was made by Albert and Barabasi. They proposed in [2] a simple process based on
the principle “rich get richer” that constructs a graph verifying a power law on vertex
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degrees. Other models have been proposed since but because of its simplicity, this model
and its variant are widely studied. As mentioned above, analyzing the usual parameters
is not really relevant. A recent study by Shenker et al [7] proposed a way around to de-
termine whether Albert and Barabasi model is a good model for Internet topology: they
confronted the dynamics of the model to the measured dynamics of the Internet. Based
on nodes and links births and deaths over time, their careful analysis concludes that the
dynamics are different: the model Albert and Barabasi based on ”linear preference” is not
a good model for the internet.

In this study, Shenker et al [7] also point out that measurement of the Internet are
very partial: their analysis of local neighborhoods in Internet topology allows them to
conclude that in the current Internet measurements, at least 25% to 50% of the links are
missed. Furthermore when these links are added, the distribution on degrees is not a
strict power law anymore as in [2].

4 HOT models

It is well-known that power laws (or more precisely heavy tailed distributions) are pretty
common when one does statistics over links, objects or structures built by social or hu-
man individuals. Examples are the distributions of : the number of coauthors (degree in
cocitation graph), the degree of routers in Internet, the number of inlinks and outlinks
in the URLs graph (known as web graph), or even the size of forest fires in US Fish and
Wildlife Service Lands, etc... This fact is usually stated as “Power laws are the signature
of human activities”. The “rich get richer” principle in [2] does not really explain this fact,
since it is not really a social value in any human society (even if it can be claimed as a fact
anyway).

Carlson and Doyle [5, 6] propose another explanation (Highly Optimized Tolerance):
Power laws appear when one tries to optimize an objective function subject to tolerance to
failure. For example, firemen try to draw the minimum number of roads thru the forests
to limit fire spreading. This approach has been recently restated by Fabrikant, Koutsou-
pias and Papadimitriou [8] as follows (Heuristically Optimized Tradeoff): power laws
may appear when one greedly optimizes a “balanced” tradeoff between two objective
functions. They show on a very basic model for network growth (it constructs a rooted
tree) that if one links every new node to the node minimizing a linear combination of the
hop distance to the root and of the euclidean length of the link, one gets a graph with an
heavy tailed law on the degrees of the nodes when the linear tradeoff between the two
objective functions are balanced, while it is an exponential law when the linear tradeoff
is very unbalanced. This tree generating process may seem basic at first, but as men-
tioned by the authors it has a lot of natural generalizations that yields “realistic looking”
networks.

With Kenyon, we are currently working on extending this approach to more realistic
models for the Internet. We have shown that the phase transitions still occur if two links
are drawn instead of one at the creation of the nodes. With Alvarez-Hamelin, we have
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also simulated a more sophisticated variant where between nodes insertions, a number
of links that minimizes the tradeoff, are drawn between existing nodes. All these models
produce also to power laws on degrees. And they also “look” reasonnable.

5 Defining the good questions about Internet modeling

The main question remains open: how to validate a model of the Internet? One way may
be to ask: why are we looking for models of the Internet? The answer to this question
will certainly help to determine proper parameters to measure.

Since Internet models will a priori be used to simulate networks behavior, a pertinent
parameter would be the “network behavior” of the model. An example of such a param-
eter would be: are the BGP tables close to the one in the Internet? What does close mean
for BGP tables? Can we handle these notions theoretically?

Another approach is given by [7]: includes the dynamics in the study. A good model
for the Internet should produce from the graph of the Internet in 1998, a graph “similar”
to the graph of Internet in 2000.
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