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Abstract: I will review the relationship between error-correction codes and certain mathemat-
ical models of spin glasses. I will show that there is a one to one relationship between error
correcting codes and spin glass models. Minimum error probability decoding is equivalent to
finding the magnetisation of the corresponding spin system. Convolutional codes correspond to
one-dimensional spin systems and Viterbi’s decoding algorithm to the transfer matrix algorithm
of Statistical Mechanics.

I will also show how the recently discovered (or rediscovered) capacity approaching codes
(turbo codes and low density parity check codes) can be analysed using statistical mechanics.
Turbo codes correspond to two coupled spin chains, while low density parity check codes are spin
models on a diluted random graph. It is possible to show, using statistical mechanics, that these
codes allow error-free communication for signal to noise ratio above a certain threshold. This
threshold, which corresponds to a phase transition in the spin model, depends on the particular

code, and can be computed analytically in many cases.
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The mathematical theory of communication[l,2] is probabilistic in nature.
Both the production of information and its transmission are considered as prob-
abilistic events. A source is producing information messages according to a cer-
tain probability distribution. Each message consists of a sequence of K bits ¢ =
{01, -+,0K}, 0; = £1 and it is assumed that the probability P(d) = exp —H,(&)
of any particular sequence & is known. According to Shannon the information con-
tent of the message is — In P, (&) and the average information of the source is given
by

— Z P,(3)1In P,(3)
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The messages are sent through a transmission channel. In general there is noise
during transmission (which may have different origins) which corrupts the trans-
mitted message. If a ¢ = %1 is sent through the transmission channel, because of
the noise, the output will be a real number J, in general different from o. Again,
the statistical properties of the transmission channel are supposed to be known.
Because of the noise during the transmission, there is a loss of information. The
channel capacity C is defined as the maximum information per unit time which
can be transmitted through the channel. The maximum is taken over all possible
sources.

For reasons of simplicity, we will assume in the following that all the source
symbols are statistically independent and that the noise is independent for any
pair of bits (“memoryless channel”). In the case of a memoryless channel and of a
gaussian noise, Shannon[1, 2] calculated the channel’s capacity

1 v?
C= 3 log, (1 + W)
where v? /w? is the signal to noise power ratio.

Under the above assumptions, communication is a statistical inference prob-
lem. Given the transmission channel’s output and the statistical properties of the
source and of the channel, one has to infer what message was sent. In order to
reduce communication errors, one may introduce (deterministic) redundancy into
the message (“channel encoding”) and use this redundancy to infer the message
sent through the channel (“decoding”). The algorithms which transform the source
outputs to redundant messages are called error-correcting codes. The inverse of the
redundancy (see later for a precise definition) is called the rate R of the code.

The famous Shannon coding theorem|[1, 2] states that for infinite long messages,
it is possible to communicate error free, provided the rate of the code is smaller
than the channel capacity. For practical purposes it is also required that the com-
putational complexity of the code (the amount of computation required both for
encoding and decoding) is not very large. It must be possible to encode and decode
in a reasonable amount of time. A code which is very good for very long messages
of length N but requires an exponential in N decoding time is obviously not very
interesting.

Until recently there were no known codes of reasonable computational com-
plexity allowing communication with a very small error, for noise level not too far
from capacity. This situation changed drastically with the recent discoveries of the
“capacity approaching” codes. First came the discovery of turbo codes by Berrou
and Glavieux[3] and later the rediscovery of low density parity check codes[4], first
discovered by Gallager[5, 6], in his thesis, in 1962. Both turbo codes and low den-
sity parity check (LPDC) codes are based on random constructions. Because of
this randomness, it is not easy to analyse them with the traditional methods of
communication theory.



I have shown some time ago[7 — 10] that there is a mathematical eqgivalence of
error-correcting codes to some theoretical spin-glass models.

I will explain later that it is possible to use this equivalence with spin glasses,
to study the properties of these capacity approaching codes using the methods of
statistical mechanics developped in the study of disordered systems.

Let me start by fixing the notations. Each information message consists of a
sequence of K bits @ = {u1,---,ux},u; = 0 or 1. The binary vector # is called the
source-word. Encoding introduces redundancy into the message. One maps 4 — &
by encoding. %@ — & has to be a one to one map for the code to be meaningful.
The binary vector # has N > K components. It is called a code-word. The ratio
R = K/N which specifies the redundancy of the code, is called the rate of the code.
One particularly important family of codes are the so-called linear codes. Linear
codes are defined by

Z=Gu

G is a binary (i.e; its elements are zero or one) (N x K) matrix and the multipli-
cation is modulo two. G is called the generating matrix of the code. Obviously by
construction all the components z; of a code-word x are not independent. Of all
the 2V binary vectors only 25X = 2VE those corresponding to a vector i, are code-
words. Codewords satisfy the linear constraints (called parity check constraints)
HZ = 0 (modulo two), where H is a (K x N) binary matrix, called the parity check
matrix. The connection with spin variables is straightforward. u; — o; = (—1)%,
z; — J; = (—1)%. It follows that u; + u; — 0;0; and

J; = (—I)Zj Giju; — C/il...kialm O, (1)

The previous equation defines the “connectivity matrix ” C' in terms of the gener-
ating matrix of the code G. Similarly one can write the parity check constraints in
the form:

(~1)2 0% Z 1 ML Ty = 1 (2)

This defines the “parity constraint matrix ” M in terms of the parity check matrix
H of the code.

Codewords are sent through a noisy transmission channel and they get cor-
rupted because of the channel noise. If a J; = +1 is sent, the output will be
different, in general a real number J“. Let us call Q(J°ut|J)d.J°u the probability
for the transmission channel’s output to be between J°% and J + dJ°%, when the
input was J. The channel “transition matrix” Q(j ‘””\j ) is supposed to be known.
We will assume that the noise is independent for any pair of bits (“memoryless
channel”), i.e.

Q(JoHJ) = Hq(Jf“tui) (3)
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Knowing the noise probability i.e. g(Jf**|.J;), the code (i.e. in the present case
of linear codes knowing the generating matrix G or the parity check matrix H) and
the channel output J out one has to infer the message that was sent. The quality
of inference depends on the choice of the code.

We will now show that there exists a close mathematical relationship between
error-correcting codes and theoretical models of disordered systems. To every possi-
ble information message (source word) 7 we can assign a probability P*o%ree (7| Jout),
conditional on the channel output Jout, Or, equivalently, to any code-word J we
can assign a probability Peode(J]Jout).,

Because of Bayes theorem, the probability for any code-word symbol (“letter”)
J; = £1, p(J;|J2*), conditional on the channel output J2**, is given by

ou a(J* | ;)

It follows that
Inp(J;|JP*) = el + Ing(JP"|J;) = 2 + hiJ; (4)
where ¢l and ¢2 are constants (non depending on J;) and

1 (™ +1)
"= o) ®)
The two previous equations illustrate the well known fact that the most general
function of a variable J = +1 is a linear function (because J2* =1 | J2k+1 = J).
h; which will play the role of an external field (see equ. (8) below) or of a coupling
constant (see equ. (10) ), is called in coding theory the log-likelyhood or the
“extrinsic information”.
It follows that

peode( J] Jouty = cl‘[5(]\/1}“”_,%‘],61 oo Jgs 1) exp (Z hiJ;) (6)
l %

where c is a normalising constant. The Kronecker d’s enforce the constraint that J
obeys the parity check equations (Equ. (2) ), i.e. that it is a code-word. The §’s
can be replaced by a soft constraint,

= =

Peode( J|Jout) = constexp [u ZM,lcl__,likl e Jy F ZhiJi] (7)
1 i

where u — 0co. We now define the corresponding spin Hamiltonian by:

= = =

_Hcode(J) — lnPcode(J| Out) — UZM]él.ulikl cen Jkl —+ Z thz (8)
1 7
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There are two models of memoryless channel noise, i.e. of g(J2%*|.J;), that are
extensively studied. The first is the “gaussian channel” for which the output J°u
can take any real value and

(Jgt = Ji)?

q(J7" ;) = cexp— 2

2w
where w? is the variance of the gaussian noise and ¢ a normalising constant. The

other is the “ binary symmetric channel ”, for which the output is a binary variable,
ie. Jo = £1, and

q(J7 | Ti) = (1= p)dsoue g, +DOgout _y,

i.e. every symbol J; is transmitted without error with probability 1—p and is flipped

with probability p. For the gaussian channel the field h; is given by (see equation

(5)) hi = J¢¥t /w?, while for the binary symmetric channel h; = $J2** In((1—p)/p).
Alternatively, one may proceed by solving the parity check constraints

{2
JZ = Ck]_"'kio-kl .. .O'kz

by expressing the codewords in terms of the sourcewords.

=

PsouTee(F| JO%) = const. exp (Z hiC,il,,.kiokl - OF,;) (9)

where the h;’s are given as before. The logarithm of Pouree(g| jout),

Hsource(a_») — _In Psource(0—_»|j'out) - _ Z hicliln-k,'o-kl O, (10)
%

In equation (10), and in equation (8), the h;’s, are known because the channel
output is known (see equation (5)). They are known numbers once the channel
output is known.

We imagine the case where we transmit the same word a large number of
times. Because of the randomness of the noise, every time we will get a different
channel output, althowgh the input was the same. We will consider the ensem-
ble of all these transmitions and the ensemble of the resulting outputs. This is
completely analogous to the case of disordered magnetic systems, where in every
sample the positions of the magnetic ions is fixed, but one considers the ensemble
of samples obtained with the same experimental procedure (i.e. exactly the same
chemical composition, exactly the same concentrations, etc). In statistical mechan-
ics one computes the average value of an observable in this ensemble. There are
two reasons for doing this. The first reason is that “good” observables, as for ex-
ample the magnetization per spin, the energy per spin etc, are “self-averaging”. An
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observable is called self-averaging if its probability distribution over the ensemble
of samples becomes a delta function when the size of the sample becomes large.
(This property of self-averaging has been recently studied by probabilists and they
proved it in several cases. They call it concentration of the measure.) The other
reason is that we have developped the tools of computing analytically the ensemble
average. Without averaging we are unable, up to now, to perform any analytical
computation.

Viewed in this way, the Hamiltonian defined in equation (8) is the Hamiltonian
of a spin system with multispin interactions with infinite ferromagnetic coupling and
a random external magnetic field, while the Hamiltonian in equation (10), is a spin
glass Hamiltonian. I will show later that the error probability per bit is simply
related to the magnetization of the corresponding spin model (at the appropriate
temperature, see later). It follows that the error probability per bit is self-averaging.

We have given two different statistical mechanics formulations of error correct-
ing codes. One in terms of the souceword probability P*°“"“® and the other in terms
of the codeword probability Pc°%¢,

Because of the one to one correspondence between codewords and sourcewords,
the two formulations are equivalent. In practice however it may make a difference.
It may be more convenient to work with P*°%7°¢ rather than P4, depending on
the case. For the case of turbo codes (see later) it will be more convenient to define
another probability, the “register word” probability.

It follows that the most probable symbol sequence (“word maximum a pos-
teriori probability” or “ word MAP decoding”), i.e. the symbol sequence that
maximises the probability P*°%T¢¢ or P°°% (depending on the case), is given by the
ground state of this Hamiltonian (H?¢ or H®°“°¢). Instead of considering the
most probable symbol sequence, one may only be interested in the most probable
value 77 of the i’th symbole or “bit” 7;[9,10,11], ignoring the values of the other
symboles (“symbol MAP decoding”). The sequence of the most probable symboles
does not necessarily coincide with the most probable sequence. Because 7; = +1,
the probability p; for 7, = 1 is related to the average of 7, m;, by p; = (1 +m;)/2.

m; = — Z T, exp—H(T) Z= Z exp—H(7) 7P =sign (m;) (11)

{Tl"'TN} {Tl"'TN}

In the previous equation m; is obviously the thermal average at temperature T' =
1. It is amusing to notice that T' = 1 corresponds in spin glasses to Nishimori’s
temperature[14].

When all messages are equally probable and the transmission channel is mem-
oryless and symmetric, i.e. when q(J?“|J;) = q(—J¢"*| — J;), the error probability
is the same for all input sequences. It is enough to compute it in the case where

all input bits are equal to one, i.e. when the transmitted code-word is the all zero’s
1—m ¥

35— where

code-word. In this case, the error probability per bit P, is P, =
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md = % Zf;l Ti(d) and Ti(d) is the symbole sequence produced by the decoding
procedure.

This means that it is possible to compute the bit error probability, if one is
able to compute the magnetization in the corresponding spin system.

Let me give a simple example of an R = 1/2 “convolutional” code. From
the N source symbols (letters) u;’s we construct the 2N code-word letters z}, z2,
k=1,---,N.

T} = Ui+ Uim1 + Uimg , L] = Ui+ Ui o (12)
It follows that
J,i = 0kO0Ok—10k—2 , Jg = 0kOk—2 (13)
(1,k) _ (2,k)  _
ikl iinks - 5kaik1 6k7ik2 +16kaik3 +2 Ciklik3 - 5kaik1 6k7ik3 +2 (]‘4)

The corresponding spin Hamiltonian is

1
—-H = E Z Jkl;’omTka_1Tk—2 + JZ,outTka_2 (15)
k

Here I assumed a Gaussian noise. In that case, Equ. (5) reduces to hy = J2* /w?,
where w? is the variance of the noise. This is a one dimensional spin glass Hamilto-
nian. In fact it is easy to see that convolutional codes correspond to one dimensional
spin systems. Their ground state can be found using the T" = 0 transfer matrix
algorithm. The 7" = 0 transfer matrix algorithm corresponds to the Viterbi algo-
rithm in coding theory. For symbol MAP decoding, one can use the 7" = 1 transfer
matrix algorithm. The 7' = 1 transfer matrix algorithm is the BCJR algorithm in
coding theory[15].

I have illustrated above the mathematical correspondance between disordered
spin systems and error correcting codes. Using this correspondance it has been pos-
sible to analyse both LPDC codes and turbocodes using the methods of statistical
mechanics. Most of the results have been obtained with the “replica” method. (For
a lucid exposition of this method see reference (16)). This is a method developped in
the context of spin-glass theory and which has not yet been made rigorous. Within
the “replica” method there are approximation schemes. The simplest is the replica
symmetric approximation. For symbol MAP decoding, i.e. for the temperature
T =1, there are very strong arguments that replica symmetry is not broken. It is
outside the scope of the present paper to explain the replica method.

To fix the notations, let me remind that Gallager’s low density parity check
(k,1) codes are defined by choosing at random a sparse parity check K x N matrix
H as follows. H has N columns (we consider the case of codewords of length N).
Each column of H has k elements equal to one and all other elements equal to zero.
Each row has [ non zero elements.

It is convenient to use graphical representations (slightly different from Tan-
ner’s graphical representation used in coding theory) to represent the interaction
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terms appearing in the Hamiltonian. Each spin is represented by a point in the
graph. The spins which are multiplied by the same coupling are connected by a
line. It follows from equation (8) that Gallager’s k, ! codes correspond to random
“diluted” (sparse) graphs. Such models are called diluted spin models with [-spin
infinite strength ferromagnetic interactions in an external random field. It is known
that in the case of extreme dilution, one can analyse these models in the mean field
approximation. Very sparse graphs have locally a tree structure, i.e. there are no
loops of short length. In such a graph with N vertices, the size of the typical loop
is known to be In N. This is the reason why one can apply mean field in this case.

Gallager[5, 6] proposed an approximate iterative decoding algorithm for LDPC
codes. This is an iterative computation of the log-likelyhood (or extrinsic informa-
tion or cavity field, according to the terminology) h;(t), where ¢ is the iteration time.
The probability p(o;) of the spin o; is related to h; by p(o;) = exp(h;)/cosh(h;).
hi(0) is given by equ. (5). At t = 1 one considers the interaction of o; with his
neighbors o; on the graph. Let us remind that the interaction (see equ. (8) where
the limit u — oo has to be taken) imposes the product of the spins present in an
interaction term to be equal to plus one. Taking into account this information,
together with the values of h;(0), one computes h;(1). It easy to imagine how this
procedure can be iterated. At time ¢ one takes into account the information com-
ing from all the spins which are up to distance ¢ on the graph. It is hoped that
this procedure will converge to a fixed point for p(o;) after a reasonable number of
iterations. It is obvious that this number of iterations will depend on the amount
of noise. If the noise is too strong there will be no convergence.

This updating of h;(t), which today is called the sum-product algorithm, would
be exact in a graph without loops. It is approximate because of the presence of
loops on a random graph. It is worth noticing that decoding with the sum-product
algorithm is equivalent to “solving” the corresponding spin model, i.e. computing
the local magnetizations, by iteration of the Thouless Anderson Palmer[17] (TAP)
equations, which where invented fifteen years later in the context of mean field
spin glasses. A more general derivation for spin glasses, called the cavity method,
was later developped by Mézard, Parisi and Virasoro[18]. The same algorithm was
rediscovered recently in computer science, where it is called the belief propagation
algorithm.

As we saw, low density parity check codes are based on a random construction,
a random parity check matrix more precisely. We will see that the same is true for
Turbo Codes, a random permutation in that case. By the same random construc-
tion, for example in Gallager’s case matrices with fixed k£ and I, we can construct
several codes, i.e. there exist several random matrices even if k£ and [/ are fixed. In
order to be able to use statistical mechanics, we have to consider the ensemble of
codes defined by these matrices and compute the average error probability per bit
in this ensemble. This is justified because it can be shown a posteriori that the
error probability per bit is self-averaging.
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Low density parity check codes have been analysed using Statistical Mechanics
methods by Kabashima Kanter and Saad[19,20] in the replica symmetric approx-
imation. More recently Montanari[21] was able to go beyond replica symmetry.
He established the entire phase diagram of LDPC codes. For k, | — oo with rate
R =1 — k/I fixed, he showed that k,l codes can be analysed without replicas,
similarly to the random energy model of Derrida[22]. There is a phase transition
in this model, which occurs at a critical value of the noise n.. Phase transitions
can appear only in the infinite volume limit (the thermodynamic limit), i.e. in
the limit of strings of symbols of infinite length. n. separates a zero error phase,
i.e. a phase with a magnetization equel to one, from a high error phase. It turns
out that n., in this limit, coincides with Shannon’s channel capacity. For finite &k
and [ Montanari found an exact one step replica symmetry breaking solution. He
computed the location of the phase transition, i.e. the critical value of the noise n,
for which the phase transition occurs. n. is given in terms of an implicit equation
which has to be solved numerically. n. has a simple asymptotic expansion for large
k, | and fixed rate R. For the binary symmetric channel with error probability p,
the first term of the asymtotic expansion for the threshold p.(k,1) is

1-R
pc(k7 l) = pg - 2(1I1(p2) _ lIl(l _p(c))) (1 - 2pg)2k + O((l - 2p2)4k)
pY is the threshold for k, [ — oo, i.e. the threshold provided by the channel capacity.
We see that the approach to the k, | — oo limit is exponential.

The thresholds above were obtained by maximising the appropriate probabil-
ities. This means that they can only be reached by an optimal (but unknown)
decoder. The actual decoder may behave differently.

The only alternative to statistical mechanics to theoretically understand LPDC
codes and turbocodes is the method of “density evolution” which was devised by
Richardson and Urbanke[23]. This method, applied to Gallager’s k, [ codes, consists
in considering the ensemble of Gallager’s codes with fixed k£ and [ and the ensem-
ble of channel outputs, when the input is the all zeros codeword. This method
of considering an ensemble of codes and an ensemble of channel outputs is very
new in coding theory. It can be considered as the rediscovery by coding theorists
of the methods developped in the seventies in the study of disordered systems.
Richardson and Urbanke study the probability density P(h) of the log-likelyhoods
(or cavity fields) h;, for this ensemble. As we stated earlier, the sum product decod-
ing algorithm can be viewed as a time evolution process of these h;’s. They study
how P(h) evolves with “time”, i.e. when iterating the decoding algorithm. They
showed that the probability density converges to the zero error limit provided the
noise is less than some value n’?. They computed n®? performing a local stability
analysis of density evolution, starting from the no error regime. n” is not equal
to the threshold n. computed by statistical mechanics for regular Gallager codes,
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i.e. the decoding is not optimal near the threshold. The reason for this is not yet
understood. See the remarks at the end of this paper for a possible explanation.

Turbo Codes also have been analysed using statistical mechanics[24, 25]. They
are based on recursive convolutional codes. An example of non recursive convolu-
tional code was given in Equ. (12). The corresponding recursive code is given, most
conveniently, in terms of the auxiliary bits b;, defined below. The b;’s are stored in
the encoder’s memory registers, that’s why I call b the the “register word”.

T; = Ui, T7 =bi +bi_a, by =u; +bi_1 +bi_2 (16)
It follows that the source letters u; are given in terms of the auxiliary “register
letters” b;

u; = b; +bi_1 + b2 (17)

All additions are modulo two.

To construct a turbo code, one artificially considers a second source word v, by
performing a permutation, chosen at random, of the original code-word . So one
considers v; = up(;) where j = P(i) is a (random) permutation of the K indices i
and a second “register word” ¢;, ¢; = v; + ¢;—1 + ¢;_2. Obviously

Vi =C+Cic1+ G2 =u;j =bj +bj_1+bj_a, j=P(i) (18)

Equ. (18) can be viewed as a constraint on the two register words b and ¢. Finally
in the present example, a rate R = 1/3 turbo code, one transmits the N = 3K
letter code-word 3:21 = u,, xf =b; +b;_o, a:f‘ =c¢;+ci_9,t=1,---, K. Let’s call, as
before,

Je=(-1)%, a=1,2,3

(2

the channel inputs and J; “h the channel outputs. In the previous, for reasons of
convenience, we formulated convolutional codes using the source-word probability
psovree and LDPC codes using the code-word probability Pcode.

The statistical mechanics of turbo codes is most conveniently formulated in
terms of the “register words” probability PT¢9(&, 7|J°*t) conditional on the channel
outputs Jou¢, where 7, = (—1)% and o; = (—1)%. The logarithm of this probability
provides the spin Hamiltonian

1 t,1 t,2 t,3
—-H = — E T T 1Th—2 + I T Th—2 + I Ok Ok—2 (19)
k

Because of Equ. (18), the two spin chains 7 and & obey the constraints
00 10; 2 = TjTj_1Tj—2, J = P(i) (20)

(As previously, we have considered the case of a Gaussian noise of variance w?.)
This is an unusual spin Hamiltonian. Two short range one dimensional chains are
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coupled through the infinite range, non local constraint, Equ. (20). This constraint
is non local because neighboring #’s are not mapped to neighboring j’s under the
random permutation. It turns out that this Hamiltonian can be solved by the
replica method.

The equations one gets cannot be solved exactly as in the case of LPDC codes.
One can verify that, when the noise is sufficiently weak, zero error probability is
a solution of the equations. One can perform a local stability analysis of this zero
error probability solution.

One finds a phase transition at a critical value of the noise n..;;. For noises less
than ngs, it is possible to communicate error free. (For example for the R = 1/3
Turbo Code we described above we get that the error probability vanishes for signal
to noise ratio above © ~ —2.240 db.) In this respect, turbo codes are similar to
Gallager’s LDPC codes. The statistical mechanical models however, are completely
different.

Figure 1 shows the results of a numerical simulation for the Turbo Code pre-
sented above. The bit error probability vanishes above a certain value of the signal
to noise ratio, but the value of this threshold seems to be slightly different from the
one we obtain from our equations. This disagreement could have different origins.
One possibility is that the true threshold is different from that provided by the
local stability analysis (possibility of a first order phase transition. Local stability
analysis assumes there is a second order transition). Another possibility is that
the turbodecoding algorithm does not find the optimal configuration for this code
(possibility of a “dynamical transition”). It was explained above that the algo-
rithm tries to find the configuration which maximises the appropriate probability
function. It may happen that this function has a large number of local maxima
and that the algorithm is trapped in one of them. A third possibility is that when
close to the threshold, convergence becomes extremely slow and that one should
run the algorithm for an infinite time to reach the correct threshold. (This is called
“aging”). It would be interesting to understand which of the above scenaria occurs.

Let me also mention that, under some reasonable assumptions, the iterative
decoding algorithm for turbo codes (turbodecoding algorithm), can be viewed[25]
as a time discretisation of the Kolmogorov, Petrovsky and Piscounov equation[26].
It is known that this KPP equation has traveling wave solutions. The velocity of the
traveling wave, which is computable analytically, corresponds to the convergence
rate of the turbodecoding algorithm. The agreement with numerical simulations is
excellent, as this is illustrated in Figure 2.

I would like to conclude by pointing out some open questions.

As it was emphasised above, belief propagation decoding is expected to work
in the absence of loops. For random graphs the typical loop length L ~ log N,
where N is the number of vertices. For N = 106, L ~ 10. However it is known
empirically that, in the case of a not very weak noise, one has to iterate ¢ times the
decoding algorithm with ¢ >> L (¢t ~ 150 is a typical value), i.e. in practice one

11



cannot ignore the presence of loops. It is not known why the algorithm works in
the presence of loops as it does in practice.

We saw that there is a phase transition both in LDPC codes and in Turbo
Codes. What is the order of the phase transition? This question is particularly
relevant for turbo codes where we assumed a second order transition. Without this
assumption we are unable to compute the signal to noise threshold above which
communication is error free.

Using statistical mechanics we computed the properties of infinite systems, i.e.
infinite message length in the case of error correction codes. In practice of course
all messages have finite length. In some applications this length is short. What are
the finite size effects? We know from the theory of phase transitions that near a
phase transition finite size effects can be very important. Is there finite size scaling?
The answer will depend on the order of the phase transition.

It is empirically known that the number of iterations required for the decoding
algorithm to converge increases dramatically as the noise increases and one gets
close to the phase transition. How does the decoding complexity behave as one
approaches the zero error noise threshold? Is there a critical slowing down, as it is
usually the case for physical systems near a phase transition? As it was said before,
the decoding algorithms both for LDPC codes and turbo codes are heuristic and
there are not known results as one approaches the phase transition.

It is well known that disordered systems often exhibit a “glassy” behaviour.
This means that below a certain temperature they get trapped in metastable states
and do not reach equilibrium in any finite time. Is there a glassy phase in decod-
ing? In other terms, do the heuristic decoding algorithms reach the threshold of
optimum decoding (which we computed by equilibrium statistical mechanics) in a
finite number of iteration steps, or is there a (lower) noise “dynamical” threshold
(“dynamical” transition in the language of disordered systems) where the decoding
algorithm gets trapped in metastable states? In that case the decoding algorithm
would be unable to reach optimal performance as computed by equilibrium statis-
tical mechanics.

I hope that at least some of the above questions will be answered in the near
future.
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Figure Captions

Figure 1:

Numerical results for the average error probability per bit of the Turbo Code
described in the text (gaussian channel). Stars (%) are obtained for a random
permutation, diamonds (¢) correspond to the identity permutation. The continuous
curve corresponds to the uncoded message. The leftmost vertical line is located at
the Shannon capacity, while the rightmost one is the threshold computed using
statistical mechanics (see text).

Figure 2:

The dynamics of the turbo decoding algorithm in the low-noise regime. Trian-
gles, diamonds and circles represent the average extrinsic information as a function
of the number of iterations for different sizes (L = 5000, 50000, 500000) of the source
message. Notice that the saturation after a large number of iterations is a finite
size effect. The slope of the straight line describes the asymptotic behavior for an
infinitely long message and is obtained analytically from the KPP equation.
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