

Energy-Efficient Scheduling Algorithm of Task Dependent Graph on DVS-Unable Cluster System

Yan Ma, Bin Gong, Lida Zou Shandong University

- Preliminary Knowledge
- Related Work
- Our System Model
- Our Scheduling Algorithm
- Case Study and Experimental Result
- Conclusion and Future Work

Preliminary Knowledge-1

- Power Management in HPC need researching?
 - High operation cost: Shanghai Supercomputing Center
 - Low reliability: Pflops system; temperature effect
 - Environmental effect: Carbon dioxide; chip miniature

Preliminary Knowledge-2

Shandong High Performance Computing Center

- Current power-saving measures
 - choose products whose performance match their power
 - install low-power cooling devices and heat sinks
 - enhance equipment maintenance
- Drawback? \rightarrow power-aware software based method
- Power-aware task scheduling algorithm
 - Wireless sensor network, embedded system
 - Scheduling objective:
 - save energy with no (little) performance loss

Preliminary Knowledge-3

- System-level power saving techniques
 - Dynamic Voltage Scaling (DVS)
 - Reduce supply voltage of PE
 - power will generate square-reduction when supply voltage decreases in CMOS circuit.
 - Dynamic Power Management (DPM): selectively turn off system components when they are idle.

- Preliminary Knowledge
- Related Work
- Our System Model
- Our Scheduling Algorithm
- Case Study and Experimental Result
- Conclusion and Future Work

Related Work-1

	Authors and papers	Objective	Application	Environment	Methods
	Kim et al. [8]	Energy optimization with specified deadline	Bag of tasks	Cluster	DVS for processing elements
	Freeh et al. [9,10,11]	Energy optimization	MPI program	HPC	DVS for non- critical node
	Qin et al. [12,13,14]	Energy efficient without performance loss	Parallel application	Cluster	DVS or Task duplication
U.	Cameron et al. [15,16,17,1 <mark>8</mark>]	Phase based energy efficient	Scientific application	Cluster	DVS

Related Work-2

- Analysis of previous work
 - Unavailability of DVS technique
 - Inadaptability of data-intensive application
 - Neglect of static power in PE
- Our objective
 - Application: data-intensive, DAG
 - System: DVS-Unable cluster system
 - Objective: minimize the execution time
 - Constraint: maintain low energy consumption

- Preliminary Knowledge
- Related Work
- Our System Model
- Our Scheduling Algorithm
- Case Study and Experimental Result
- Conclusion and Future Work

Dependent Task Model

DVS-Unable Cluster System

Fig.1. Dependent task model

Fig.2. DVS-Unable Cluster System

Power Model

• Computation energy, executing task T_i :

$$E_{comp}^{i} = (P_{static} + P_{dynamic}) \cdot t_{i} = (P_{static} + P_{dynamic}) \cdot cc_{i} / s$$

• Communication energy, PE_i transfers data to PE_j

 $E_{comm} = P_{comm} * dd_{ij}$

- Note:
 - Pure communication time: t_{comm}
 - Shutdown cost: $t_{DPM} \& e_{DPM}$
 - Algorithm must check if the time and energy saving after DPM can compensate the cost of executing DPM.

- Preliminary Knowledge
- Related Work
- Our System Model
- Our Scheduling Algorithm
- Case Study and Experimental Result
- Conclusion and Future Work

Energy-efficient Scheduling Framework

Fig.3. The energy-efficient scheduling framework of task dependency graph on DVS-Unable cluster system

山东省高性能计算中

Shandong High Performance Computing Center

Task Clustering (TC)

- Task clustering is to assign all the tasks in a cluster to the same resource, and aims to reduce data transfer cost between tasks.
- CASS-II algorithm [23]
 - Firstly, it computes parameter top_i for each task according to formula (1)
 - Secondly, it computes another parameter $bottom_j$ for each task from bottom to up according to formula (2)
 - Lastly, in the bottom computation process, it selects the task whose priority=top+bottom value is the largest to try to merge with its dominant successor into a cluster:
 - If the *bottom* values of current task and all the tasks in the cluster do not increase, the actual merger can be performed
 - else, the current task becomes a separate cluster.

 $top_{i} = \begin{cases} 0, \dots, T_{i} is.entry.node \\ \max\{top_{j} + t_{j} + t_{ji}, (j,i) \in E\}, \dots, otherwise \end{cases} \dots (1) \quad bottom_{j} = \begin{cases} t_{j}, \dots, T_{j} is.exit.task \\ \max\{bottom_{i} + t_{ji}, (j,i) \in E\}, \dots, otherwise \end{cases} \dots (2)$

Dynamic Power Management (DPM)

• Steps of DPM

 only when idle period exceeds a certain threshold can performing DPM method reduce time and energy.

 $t_{threshold} = \max\{t_{DPM}, e_{DPM} / P_{static}\}$

- If $t_{idle} > t_{threshold}$, the processor can be turned off in the idle period. - Else, the processor does not shut down.

Task Duplication (TD)-1

- Task duplication is to use the idle time of resources to duplicate task running in another resource
- 1) Select duplicated candidate tasks:
 - find dominant predecessor for each task
 - dominant predecessor not in its cluster, become candidate task.
- 2) Make an attempt to duplicate candidate tasks
 - Duplication conditions
 - bottom values of duplicated task and all the tasks in the cluster not increase
 - *increased energy* not exceed a given threshold, $\Delta E = E_2 E_1 \le E_{threshold}$
 - In the process of computing E2, if the new idle time exceeds the time threshold, it need call DPM function.

Task Duplication (TD)-2

- **Computation** of ΔE
 - If it cannot execute DPM in the idle period caused by duplication, then the energy variability caused by duplication is $\Delta E^1 = P_{dynamic} \cdot t_j - P_{comm} \cdot dd_{ji}$
 - If it can execute DPM in the idle period caused by duplication, then the energy variability caused by duplication is $\Delta E^2 = P_{dynamic} \cdot t_j - P_{comm} \cdot dd_{ji} - \Delta E_{DPM}$

Task Assignment (TA)

- Assign each cluster to a processor
- Note:
 - It applies for corresponding number of processors to cluster system according to the result of task clustering.
 - Execution is non-preemptive and predictive
 - The application has the right of executing duplication and DPM technique for applied processors

- Preliminary Knowledge
- Related Work
- System Model
- Scheduling Algorithm
- Case Study and Experimental Result
- Conclusion and Future Work

Case Study

Fig.4. Task clustering result of instance in Figure 3

Fig.5. Result of executing DPM of instance in Figure 3

Tas <mark>k</mark>	DP			
n1	21-1			
n2	n1			
n3	n1			
n4	-			
n5	_			
n6	n3,n4			
n7	n2			

n1 is candidate task of {n6, n3, n4}
Make an attempt of duplication
Check two conditions
1. First, the bottom value of n1 is *newbottom(n1)=6.5+1=7.5 < bottom(n1)=8*;
2. Second, compute Δ*E* no idle time, no call DPM

 $\Delta E = \Delta E^{1} = 60 \times 1 - 1.5 \times 0.5 \times 100 = -15 Joul < 0.5 \times 100 =$

$$E_{threshold} = 25 Joul$$

Experimental Result

- Comparison objects
 - EAD: last(i)-lact(j)<cj,i, threshold</p>
 - PEBD: last(i)-lact(j)<cj,i, cost ratio</p>
 - ESTD: bottom value, threshold, static
- Two kinds of applications
 - Synthetic workflow
 - Real application workflow
- Evaluation Parameters
 - Execution time
 - Energy consumption
- Analysis
 - last(i)-lact(j)<cj,i: ignore the pure communication time between tasks
 - Cost ratio: easier to duplicate
 - Ignore static power

- Preliminary Knowledge
- Related Work
- System Model
- Scheduling Algorithm
- Case Study and Experimental Result
- Conclusion and Future Work

Conclusion and Future Work

Conclusion

- Provide a novel energy-efficient scheduling framework for high-communication applications in DVS-Unable HPC environment.
- Focus on the communication energy and static energy of PE.
- Consider complex priority constraints, data transmission and the conflict of multiple scheduling indicators.
- Future Work
 - Extend to heterogeneous system
 - Research dynamic and adaptive algorithm

