E2GC2 Workshop, 2009/10/13 (Tue)

Power-Performance Modeling of Heterogeneous Cluster-Based Web Servers

Hiroshi Sasaki[†], Takatsugu Oya[†], Masaaki Kondo[‡], and Hiroshi Nakamura[†]

† The University of Tokyo‡ The University of Electro-Communications

Background

□ Small to Large-scale internet services everywhere

- Parallel computation of a bunch of requests
- Throughput oriented computing We focus on <u>web servers</u>
- Cluster-based web servers
 - Heterogeneous clusters are popular

Importance of *low power* computing
 Computation cost, cooling cost, ...

Characteristics of web services

D Requests

CPU-bound

♦ Dynamic files (CGI, php, Java servlets...)

Disk-bound

♦ Static files (html web pages, jpeg photos, tar balls...)

D Response time restrictions

- Guarantee comfortable web services
- Web servers must be able to handle max loads

Server configuration

Basic configuration

- Front-end: handle and distribute the requests, reconfiguration (# of nodes, level of frequencies)
- Back-end: execute the requests
- Back-end servers
 - Composed from several homogeneous clusters

Objective of this work

Power reduction of heterogeneous cluster-based web servers

Requests: CPU-bound and Disk-bound

- Satisfy the response time
- Minimize the power consumption
- Dynamically select the optimal configuration (# of nodes, levels of frequencies)

Overall picture

Overview of the proposed technique

- 1. Power-performance modeling
 - Performance model
 - ♦ How much load can a certain configuration handle within the response time restriction?
 - Power model
 - \diamond How much power will a certain configuration consume?
 - Constructing a model for a single node is enough
 - ♦ All the requests are parallel
 - ♦ Power and performance are just a sum
- 2. Derive the optimal configuration
 - Homogeneous -> heterogeneous
 - Mathematically derive from the constructed model

Modeling: load definition

□ What is a load?

- CPU-bound requests: the time to execute a page (ms)
- Disk-bound requests: the size of a page (KB)
- To handle it more effectively, we define the load as a single dimensional value
 - Actual amount of requests/max amount of requests
 - CPU-bound load: Load_c; Disk-bound load: Load_D
 - 0 <= Load <= 1

Performance modeling

□ Below are two equations a CPU should satisfy to execute both Load_c and Load_D simultaneously

■ CPU

- Performance_for_Load_(= f1(Load_c))
 - + Performance_for_Load_D(= f2(Load_D))
 - <= CPU performance
- Memory bus

Bandwidth_for_Load_c(= g1(Load_c))

- + Bandwidth_for_Load_p(= g2(Load_p))
- <= Memory bus bandwidth

Details in the paper...

Power modeling

Power = Base power + Power_for_Load_c(= F(Load_c)) + Power_for_Load_c(= G(Load_c))

Optimization (homogenous)

□ For a given amount of load, the optimal configuration is to

Distribute the load equally to every nodes All the frequencies will be the same

Details in the paper...

2009/10/13

Challenges for optimizing heterogeneous cluster

Optimization (heterogenous)

- Unknowns: Distribution ratio of the load, # of nodes and frequency within each homogeneous clusters
- Known: Load
- I. Within homogeneous clusters
 - i. Frequency (= f(Distribution ratio, # of nodes)): substitute a load (for single node) for performance model and derive the min frequency
 - ii. # of nodes (= g(Distribution ratio)):
 substitute the frequency for power model and derive the
 # of nodes which minimizes the power
- II. Derive the optimal distribution ratio that minimizes the sum of the power of each homogeneous clusters

Evaluation environment

type	Α	В
CPU	Intel Pentium M 760 (0.8-2.0 GHz)	AMD Opteron 150 (1.0-2.2 GHz)
memory	DDR2-SDRAM 1GB PC2-4300	DDR-SDRAM 1GB PC-3200
Disk	80GB 7200rpm SATA3.0GB/s seek time 8.8ms	80GB 7200rpm SATA3.0GB/s seek time 8.8ms
OS	Linux kernel-2.6.11	Linux kernel-2.6.16
ServerSW	Apache 2.2.3	Apache 2.2.3

- □ Clients: httperf 0.8 (by HP)
- □ Loads: CPU-bound (cgi), Disk-bound (html)
- Response time restriction: 200ms for both types of loads

2009/10/13

Validation: performance model

Validation: power model

□ Coefficients are in the paper

2009/10/13

Evaluation

- 1. Optimizing within homogeneous cluster
 - Best case vs. proposed (derived from the model)
- 2. Optimizing heterogeneous cluster
 - Compare the three policies below
 - 1. Conventional

Load: distribute equally Configuration: all nodes are on and max frequency

2. Model-even

Load: distribute equally Configuration: derive from the model

3. Proposed

Load: derive from the model Configuration: derive from the model

Result 1 (A: 8 nodes)

Result 2 (A: 4 nodes B: 4 nodes)

Conclusions and future work

Conclusions

- Objective: power reduction of a heterogeneous clusterbased web servers
- Constructed a power-performance model
- Derived the configuration from the model
 - ♦ Showed that proposed technique can reduce significant power

□ Future work

- Control the power and performance of other devices (HDD, DRAM Memory, ...)
- Implement our technique in the OS (power on/off, suspend, dynamic prediction, recovery from mispredictions, ...)