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Abstract 

•  As scientific applications target extreme scales, energy-
related challenges are becoming dominating concerns. As a 
result, it is critical to explore emerging architectures (e.g., with 
multiple cores and deep memory hierarchies) and applications 
(e.g., coupled simulation workflows) from an energy 
perspective and investigate associated overheads and 
tradeoffs. For example, energy/power-efficiency have to be 
addressed in combination with quality of solution, 
performance and reliability, and other objectives, and 
achieving the desired levels of reduction in power 
consumptions requires a comprehensive cross-layer and 
application-aware strategy. In this talk I will explore these 
issues and will describe recent related research efforts at the 
Rutgers Discovery Informatics Institute (RDI2). 
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•  Power/Energy Challenges at Extreme Scale 
–  Research landscape 

•  The GreenHPC Project @ Rutgers 
–  Application-aware power management 
–  Programming support for GreenHPC 
–  Power/Energy-aware data management 

•  Concluding Remarks and Open Challenges 

Outline	




Rutgers  Discovery  Informatics  Institute  (RDI2)  
Driving  Innovation  through  Advanced  Computing   	

Ø  Established  in  March  2012  as  New  
Jersey’s  Center  for  Advanced  
Computation  with  an  overarching  goal  to  
create  a  world-‐‑class  institute  focused  on  
computational  and  data  sciences  	

Ø  Fundamentally  integrate  research,  
education,  ACI  and  industry  
partnerships  to  address  core  CDS&E  /  
BigData  challenges	

Ø  Broaden  industry  and  academic  access  to  
state-‐‑of-‐‑the-‐‑art  computing  technology  
and  expertise	

Ø  NSF  Cloud  and  Autonomic  
Computing  IUCRC	

Ø  Integrate  multidisciplinary  research  with  
ACI  and  industry  partnerships  	

hBp://rdi2.rutgers.edu	
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•  New Paradigms & Practices 
•  End-to-end: Seamless access, 

aggregation, interactions 
•  Data-driven, Data/Compute-

intensive; Age of Digital 
Observation  

•  Integrative, multi-scale, online 

•  Multi-disciplinary 
collaborations 
•  Individuals, groups, teams, 

communities, networks  
•  New global science culture 

•  Unprecedented 
opportunities, challenges 

Modern  Science  &  Society  Transformed  by  
Compute  &  Data	




•  Large scale, distributed, heterogeneous, multicore/manycore, 
accelerators,  deep storage hierarchies, experimental systems 
…. 

Titan  - Cray XK7 
•  20 PF / 300 K cores 
•  16-core CPU + GPU 
•  Gemini 3D torus 
•  600 TB memory 
Sequoia – IBM BG/Q  
•  20 PF / 1.5 M cores 
•  18-core processor 
•  5D torus 
•  1.5PB memory 

XSEDE 
•  Worlds Largest 

Grid 
•  11 Resource 

Providers 

Worldwide LHC 
Computing Grid  
•  >140 sites;  
•  ~250k cores;  
•  ~100 PB disk 

Modern 
Datacenters 
•  1M servers 
•  50-100 MW 

Special Purpose 
HW (Anton) 
•  > 100 time 

acceleration of 
MD 
simulations  

Advanced  Computing  Infrastructure	
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•  Power has become a critical concern 
for HPC/supercomputing 

–  Impacts operational costs, reliability, 
correctness 

–  End-to-end integrated power/energy 
management essential 

•  Increasing scale towards exascale 
–  Using existing technology would require 

gigawatts 
•  Multiple nuclear reactors 
•  > $2.5B annual power cost 
 

Target < 20MW !! 

p  Power/energy not only 
from computation 

n  Data transfer 
p  Memory, I/O, HPC network 

(e.g., 3D torus) 
n  Data storage 

p  Disk, NVRAM, etc. 

Energy  Efficiency  Critical  at  Extreme  Scales	




•  Aggressive component-level power management 
–  CPU (e.g., DVFS), memory, disk, NIC, etc. 

•  Run-time power management 
–  System level, exploiting slack in MPI programs, etc. 

•  Application/workload power management 
–  Workload profiling/characterization, consolidation, etc. 
–  Application, algorithm adaptations 

•  Autonomic policy adaptation 
–  Characterize operational state and adjust management goals 

•  Cooling and thermal management  
–  React to thermal hotspots, proactive workload placement, etc. 

•  …., etc. 
Can we use these together in a cross-layer,  
coordinated, and consistent manner? 

Managing  Energy/Power  –  A  Wide  Range  of  
Techniques	
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Green  HPC:  Landscape  (I  /III) 
•  Dynamic use of low power modes (sleep, suspend, hibernate) 

•  Advanced Configuration and Power Interface (ACPI) 
–  Pallipadi et al. [OLS’07] 

•  Switching on/off  servers for energy conservation  
–  Heath el al. [PPoPP’05] 

•  Dynamic scaling (usually impacts latency) 
–  Processor Dynamic Voltage and Frequency Scaling (DVFS) 

•  During communication (MPI slack) 
–  Kappiah et al [SC’05], Lowenthal et al. [SC’06, SC’07], Freeh et al. [IPDPS’05, 

PPOPP’06] 
•  Using application profiles 

–  Cameron et al. [SC’05, Computer’05] 
•  Using counters 

–  Hsu et al. [SC’05], Rountree [ICS’09] 




Green  HPC:  Landscape  (II/III) 

•  Dynamic scaling (contd.) 
–  Scaling other components/subsystems 

•  Dynamic memory frequency 
–  Delaluz et al. [IEEE TC’01, DAC’02], Fradj et al. [DSD’06], 

Bianchini et al. [ASPLOS’11] 
•  Storage subsystem -- Multi-speed disks and RAIDS 

–  Rotem et al. [IPDPS’09], Pinheiro et al. [ICS’04] 
•  NVRAM – PCM/STTM, memristors, flash-based 

–  Caulfield et al. [ASPLOS’09, MICRO’10], Bianchini et al. 
[SC’11] 

•  Flash-based SSD 
–  Urgaonkar et al. [OSDI’08] 
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Green  HPC:  Landscape  (III/III) 

•  Other approaches 
–  Architecture/Instruction-set based 

•  Martonosi et al. [ISCA’00, ISCA’01,HPCA’12] 
–  Cluster-based power management controller 

•  Ranganathan et al. [SIRARCH’06] 
–  Job allocation and scheduling for power conservation 

•  Chase et al. [SOSP’01], Pinheiro et al. [DCS-TR-440], Zong et al. 
[ICPP’07] 

–  Network power management 
•  Lefevre et al. [IPDPS’09, ISPA’11] 

–  Thermal-aware 
•  Skadron et al. [TACO’04] 

–  Virtualized environments, programming languages, etc. 
–  … 

 




Energy/Power  Management  at  Multiple  Layers 
•  Application Design & Execution 

–  Algorithms design, adaptive execution 

•  Power-Aware Compilers and Runtime 
Support 
–  Power-aware code generation and scheduling 
–  DVFS, programming models, abstractions 

•  Operating System level 
–  Power control (e.g., ACPI) 

•  Architecture 
–  Processor, memory, storage, and interconnect 

technologies 
–  Increased use of accelerators 
–  Power-aware architectures 

•  Infrastructure – sensing environment 
–  Infrastructure: thermal sensors, instrumentation, 

monitoring, cooling 

Application-aware & Cross-layer  

p  Cross-layer optimizations  

n  Independent optimizations may not be effective / sufficient  

p  Conflicting goals/policies/actions at different layers 

n  Need to look at entire system  

p  Multidimensional tradeoffs – energy vs. reliability vs. 

performance vs. application quality …. 

p  Application/workload-aware optimizations 

n  E.g., adapt resources to application / application to the resources 

n  Address unique challenges, leverage unique characteristics of 

typical HPDC applications  

n  Models, abstractions, mechanisms, policies, APIs,  for aware 

cross-layer management  
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•  Multiple orders of magnitude power/energy reduction are 
required – a cross-layer and application-aware strategy 
is necessary  
–  Innovations necessary at multiple levels (algorithms, 

programming, runtime, OS, …) 

•  Energy/power-efficiency in combination with other 
objectives – Tradeoffs are essential 
–  Quality of solution, Performance, Reliability, etc. 

•  Transporting, processing and analyzing increasing data 
volumes and rates is becoming the dominant challenge 

GreenHPC  –  Overarching  Research  Goals 




GreenHPC  @  Rutgers  –  Selected  Research  Efforts   

1.   Application-aware power management 
–  Using application behavior for aggressive proactive management  

2.   Programming Support for GreenHPC 
–  Application-driven management using hints 

3.  Power-aware data management 
–  Managing power for end-to-end application workflows 
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1. Application-aware power management 
 




Application-‐‑aware  Power  Management 

•  Objective: Use application behaviors to enable aggressive 
and proactive power management 
–  Reactive power management is not always optimal and can result in 

large overheads 
–  Proactive adaptation of resources based on application behavior and  

requirements (e.g., subsystems demand over time) 
–  Maintain performance to the extent possible  

•  Overall approach [HiPC10, HiPC11] 
–  Application characterization (subsystem demand) 
–  Empirical quantification of possible power savings (upper bound) 
–  Proactive subsystem power management at system level 
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HPL Bonnie++ Beff_io 

Opportunities for low power modes 

Need to be careful 

Application  Characterization	




CPU

Memory

Disk

Network

Others

Component-‐‑based  Power  Management 

•  Application profiling 
–  CPU utilization 
–  Memory utilization (L2 cache misses is 

an indicator) 
–  Disk utilization 
–  Network traffic 

•  Proactive power management 
–  Based on the application profile 
–  Using component/subsystems low 

power modes 
•  CPU DVFS 
•  Memory (e.g., switching off banks) 
•  Disk (spin down/up) 
•  NIC (sleep modes) 

Typical system power breakdown 
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Application-‐‑Aware  Proactive  Aggressive  Power  
Management  (PAPM) 
Energy consumed in an interval of time ti  for a subsystem sys: 
 

  
 
where sys={mem, disk, nic}   and  P = Pstatic + Pdynamic 

             Pdynamic = Pcpu + Pmem + Pdisk+ Pnic 

€ 

Eti
sys = Pactive

sys ⋅ ti,active + Pidle
sys ⋅ ti,idle + Eton /off

Power if the subsystem sys is idle (low power mode) 

Time duration in active mode 

Time duration in idle mode 

Power if the subsystem sys is active 

Energy cost associate to a transition 




PAPM  Algorithm 

Current power for 
 subsystem sys 

Power if the subsystem sys is active 

Power if the subsystem sys is idle (low power mode) 

•  Idle-Condition checks if the 
subsystem is going to be idle in the 
next time interval 

•  Time-Condition checks if it is feasible 
to transition to any of the available 
lower power states based on the 
latency of the subsystems and the idle 
time between the two active periods 

•  Energy-Condition checks if it is 
worthwhile to transition the system to a 
low power state and if any energy 
savings will be achieved 
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Subsystems  Energy  Contribution  –  Simulation 

•  Minimal performance penalty – 0.22% on an average 
•  Can improve the energy efficiency by up to ~8%, depending on 

the workload profile for these benchmarks (potentially more for 
other workloads) 




Energy  Savings  –  Experimental  Validation 

•  Reference: State-of-the-art DVFS 
•  PAPM: Proactive Aggressive Power Management 
•  PAPM+SSD: PAPM with the use of SSD rather than disk 
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•  Applications exhibit 
heterogeneous BW requirements 
over time 

•  Approach: 
–  Apply frequency and voltage 

scaling per channel 
–  Affinity to channels: more channels 

– more opportunities 
–  Controlling channels independently 

– more energy savings 

•  Application-awareness provides 
higher energy conservation with 
low penalty in performance 

Use  Case:  Multi-‐‑channel  DRAM  Power  
Management  [HiPC’11] 

Default: accesses clustered 
to certain channels 

Interleaved: accesses 
distributed across channels 

4 channels 




Application-‐‑aware  Power  Management:  
Lessons  Learned 

•  Application-aware power control can lead to improved  energy 
efficiency without significant performance penalty 

•  Power management at the subsystem level can not be 
neglected 

•  Low power devices and upcoming technologies (e.g., SSD, 
storage-level memory) can significantly increase energy 
efficiency 

 
•  However, power management at a single level is not enough 
•  A cross-layer approach is required! 
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2. Programming Support for GreenHPC 




Programming  Support  for  GreenHPC 

•  Objective: Develop programming support to enable applications 
to provide hints to drive runtime power management  

•  Overall approach [HPDC12] 
–  Language extensions (“hints”) to drive/tune runtime power management  
–  Runtime middleware for application-aware cross-layer power 

management  
–  Implementation: PGAS applications on many-core platform (i.e., Intel 

SCC) 

 



5/13/13 

14 




Application Stack Power Management
Ru
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e
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ic

at
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n
Re

so
ur

ce

PM application layer

PM runtime layer

L2CFG unused bit

"Hints"

Architecture  for  PGAS  Programming  Support 

•  Implementation using: 
–  Berkeley UPC runtime 
–  Intel SCC platform  




Experimental  Platform 
•  Intel SCC platform 

–  Many-core prototype by Intel 
Labs Tera-scale Program 

–  48 x86 P54C Pentium cores 
–  24-router on-die mesh 

network, hardware 
message-passing 

–  Per-core 16 KB L1 cache, 
256 KB L2 cache 

–  Metering infrastructure 
–  Frequency (per 2 core 

groups) and voltage (per 8 
core groups) scaling 

–  Power ranges from 25W to 
125W, i.e., 0.5W-2.6W per 
core 
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Application  in  the  Loop 
•  Application-awareness can improve runtime power 

management (in combination with system level power 
controls) 

•  Example: NAS FT profiling 
–  Only certain operations are candidate for power management 

•  Remote memory access (memget) and barrier (wait) operations 
–  Both operations have lots of very-short calls and several med-long 

operations (short calls result in large overheads) 

1

10

100

1000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000>10000

N
um

be
ro

fc
al

ls

Length (ms)

long calls' cluster

very long calls'
cluster

short calls'
cluster




Language  Extensions  Provide  User  “hints” 

•  Analogous to processor DVFS governors at the OS level 

–  PM PERFORMANCE, maximum performance 
•  full power 

–  PM CONSERVATIVE, balance power/performance 
•  low power modes during slack 

–  PM POWER, minimum power, limited delay penalty 
•  low voltage level, regardless application’s slack periods 

–  PM AGGRESSIVE POWER, maximum energy save 
•  lowest voltage and frequency levels 
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Use  Case  1:  NAS  FT  –  UPC  implementation 

 

•  Runtime power management policy selects appropriate tradeoff 
between energy and delay 
–  Larger energy savings -> higher time penalties 

•  Energy reduction with little time penalty is possible 
–  PM CONSERVATIVE 7% results in energy savings with a 0.4% time 

penalty  
•  Language extensions provide hints to guide runtime policy selection 

–  Other hints can obtain higher energy savings (45%) with a higher time 
penalty cost 

 




Use  Case  2:  Sobel  Filter  Application 

•  Sobel filter has two different phases 
•  Two studied strategies 

–  Using the same policy during the whole application execution 
–  Using hints during the initial phase (e.g., PM_POWER) 

•  Hints avoid time delay and maintains energy savings 
–  The right power mode cannot be identified at runtime or system 

level 

Language extension 
(user hints) 

Sobel - fix policy Sobel – dynamic policy 

Time (%) Energy (%) Time (%) Energy (%) 

PM_PERFORMANCE 100.0 100.0 

PM_POWER 147.6 75.0 101.8 79.4 

PM_AGGRESSIVE_POWER 193.8 72.8 101.9 73.7 

PM_CONSERVATIVE 118.0 75.7 101.5 73.7 
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Figure 8: Measured power in Sobel application
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Figure 9: Energy savings and time penalty of matmul with different policies and load imbalance levels

tran), (ii) implementing cross-layer optimizations between
application, compiler and runtime levels using the proposed
application level hints, (iii) using per-core performance coun-
ters in order to detect application profiles and adjust fre-
quency and/or voltage accordingly, (iv) explore other im-
balanced applications, such as unstructured graph problems
difficult to load balance, and (v) exploring distributed mem-
ory systems based on multi- and many-cores architectures.
The latest might require extending runtime libraries (e.g.,
GASNET) to bypass memory accesses to external memory.
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•  Cross-layer power management enables a wider range of 
energy and performance behaviors 

•  Application-awareness improves runtime power management 

•  Language extensions (via user-level hints) enable a better 
selection of the appropriate energy/performance tradeoff 

•  Cross-layer decisions can help address hardware power 
management limitations 
–  E.g., Intel SCC provides per-tile frequency scaling and per-voltage 

domain voltage scaling 

Programming  Support  for  GreenHPC:  
Lessons  Learned 




3. Power-aware data management 
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Scientific Discovery through Simulations - III 
•  Scientific simulations running on high-end computing systems generate 

huge amounts of data!   
–  If a single core produces 2MB/minute on average, one of these machines could 

generate simulation data between ~170TB per hour -> ~700PB per day -> 
~1.4EB per year 

•  Successful scientific discovery depends on a comprehensive understanding 
of this enormous simulation data 

How we enable the computation scientists to 
efficiently manage and explore extreme scale data: 
“find the needles in haystack” ??  




Traditional Simulation -> Insight  Pipelines Break Down 

•  Traditional simulation -> insight 
pipeline: 

–  Run large-scale simulations on large 
supercomputers 

–  Dump data on parallel disk systems 
–  Export data to archives 
–  Move data to users’ sites – usually 

selected subsets 

–  Perform data manipulations and 
analysis on mid-size clusters 

–  Collect experimental / observational 
data 

–  Move to analysis sites 
–  Perform comparison of experimental/

observational to validate simulation 
data 

Figure. Traditional data analysis pipeline 
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Challenges Faced by Traditional HPC Data Pipelines 

The costs of data movement are increasing and dominating! 

Figure. Traditional data analysis pipeline 

•  Data analysis challenge 
•  Can current data mining, manipulation 

and visualization algorithms still work 
effectively on extreme scale machine? 

•  I/O challenge 
•  Increasing performance gap: disks are 

outpaced by computing speed 

•  Data movement challenge 
•  Lots of data movement between simulation and analysis machines, between 

coupled mutli-physics simulation components -> longer latencies  
•  Improving data locality is critical: do work where the data resides! 

 
•  Energy challenge 

•  Future extreme systems are designed to have low-power chips – however, 
much greater power consumption will be due to memory and data movement!  

 




•  The energy cost of moving data is a 
significant concern 

From K. Yelick, “Software and Algorithms for Exascale: Ten Ways to Waste an Exascale Computer”"

The  Cost  of  Data  Movement	
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•  Moving data between node 
memory and persistent 
storage is slow! 
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•  Exploit multi-levels in-memory Hybrid Data Staging to: 
–  Decrease the gap between CPU and IO speeds 
–  Dynamically deploy and execute data analytical or pre-processing operations 

either in-situ or in-transit 
–  Improve IO write performance 

Rethinking the Data Management Pipeline – Hybrid Staging 
+ In-Situ & In-Transit Execution 




Data Staging over Deep Memory Hierarchy 
Motivation 
•  Small DRAM capacity per core – even aggregated memory on dedicated 

nodes can hardly keep all coupled data (given the ratio of resource 
allocations for compute nodes and dedicated nodes) 
 Hybrid Staging 

•  Spans horizontally across 
compute nodes of both primary 
and secondary resources 

•  Spans vertically across the multi-
level memory hierarchy, e.g. 
DRAM/NVRAM/SSD, to extend 
the capacity of in-memory data 
staging 
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•  NVRAM bridges latency/performance 
gap between DRAM & disk 

•  NVRAM usage modes 
–  I/O staging and data “caching” 
–  Out-of-core computations (virtual 

memory) 
–  “In-the-space” data manipulation and/or 

reduction 
•  Fusion-io technology (ioDrive) 
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Energy-Performance Tradeoffs in the Data Analytics 
Pipeline 

Characterize power/performance behaviors of deep memory hierarchy 
using benchmarks  
Lessons learned: Storage-class NVRAM memory is a good 
candidate as intermediate storage 
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Energy-Performance Tradeoffs in the Analytics Pipeline 

Impact of data placement and movement 
p  Canonical system architecture 

composed of DRAM, NVRAM, SSD 
and disk storage levels and 
networked staging area 

p  Canonical workflow architecture that 
can support in-situ and in-transit 
analytics 

p  Lessons learned: Data placement/
movement patterns significantly 
impact performance and energy  

Role of the quality of solution 
p  Lessons learned: Frequency of 

analytics is driven by the dynamics of 
features of interest, but is limited by 
node architecture. 

Large impact on energy  
and execution time 




•  Motivation. Coupled simulation workflows use online data processing to reduce 
data movement. Need to explore energy/performance tradeoffs. 

•  Use case. Combustion simulation workflow with an in-situ data analytics pipeline. 

•  Energy model 
based on machine-
independent 
application profile 

•  Model validation 
on small cluster 

Power  Behavior  of  In-‐‑situ  Analytics  Pipeline	
(with J. C. Bennett, H. Kolla, J.Chen, T. Bremer, A. G. Landge, A. Gyulassy, P. McCormick, S. Pakin, V. Pascucci)	
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Power behavior of the in-situ analytics pipeline 

•  Study various co-design trade-offs 
–  Algorithm design choices 
–  Runtime application deployment 
–  System architecture 

•  Algorithm parameter impact is 
quantified 

Topology analysis: parallel merge tree algorithm 

       





 





 
 
 




Optimal hardware/software 

Higher inter-node communication 

(local communication) 
•  Communication 

patterns depends on: 
–  Algorithmic configuration 

(Fan-in) 
–  MPI processes mapping 

(ranks/cpu) 
–  System architecture 

(e.g., 16 cores/node vs. 
32 cores/node) 

•  Data motion energy 
depends on transfers 
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Lessons learned: Energy for data motion is impacted by algorithm and system 

Power  Behavior  of  In-‐‑situ  Analytics  Pipeline 
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Conclusions  

•  Energy-related challenges have become dominating concerns for 
scientific applications at extreme scales 

•  Costs (energy, latency) related to transporting, processing and 
analyzing increasing data volumes and rates are limiting the insights 
from extreme scale applications  

•  Multiple orders of magnitude power/energy reduction are required – a 
cross-layer and application-aware strategy is necessary  

–  Innovations necessary at multiple levels (algorithms, programming, runtime, 
OS, etc.) 

•  Energy/power-efficiency in combination with other objectives – 
understanding tradeoffs are important 

–  Quality of solution, Performance, Reliability, etc. 
•  Co-design is essential 




Not  All  Improvements  Come  from  HW/System	

Ack. David Keyes  
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Thank You! 
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