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Abstract

» As scientific applications target extreme scales, energy-
related challenges are becoming dominating concerns. As a
result, it is critical to explore emerging architectures (e.g., with
multiple cores and deep memory hierarchies) and applications
(e.g., coupled simulation workflows) from an energy
perspective and investigate associated overheads and
tradeoffs. For example, energy/power-efficiency have to be
addressed in combination with quality of solution,
performance and reliability, and other objectives, and
achieving the desired levels of reduction in power
consumptions requires a comprehensive cross-layer and
application-aware strategy. In this talk | will explore these
issues and will describe recent related research efforts at the
Rutgers Discovery Informatics Institute (RDI2).




Outline

+ Power/Energy Challenges at Extreme Scale
— Research landscape

* The GreenHPC Project @ Rutgers
— Application-aware power management
— Programming support for GreenHPC
— Power/Energy-aware data management

» Concluding Remarks and Open Challenges

Rutgers Discovery Informatics Institute (RDI?)
Driving Innovation through Advanced Computing

» Established in March 2012 as New
Jersey’s Center for Advanced
Computation with an overarching goal to
create a world-class institute focused on
computational and data sciences

» Fundamentally integrate research,
education, ACI and industry
partnerships to address core CDS&E /
BigData challenges

» Broaden industry and academic access to
state-of-the-art computing technology
and expertise

» NSF Cloud and Autonomic
Computing IUCRC

» Integrate multidisciplinary research with

ACI and industry partnerships

http://rdi2.rutgers.edu
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Modern Science & Society Transformed by
Compute & Data

* New Paradigms & Practices
* End-to-end: Seamless access,
aggregation, interactions
+ Data-driven, Data/Compute-
intensive; Age of Digital
Observation
* Integrative, multi-scale, online
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* Multi-disciplinary
collaborations
* Individuals, groups, teams,
communities, networks
* New global science culture

* Unprecedented
opportunities, challenges

Advanced Computing Infrastructure

» Large scale, distributed, heterogeneous, multicore/manycore,
accelrators deep storage hierarchies, experimental systems

\ W .j | Titan - - Cray XK7
| , * 20PF/300Kcores

| « 16-core CPU + GPU
* Gemini 3D torus

XSEDE

* Worlds Largest
Grid

* 11 Resource

-+ 600TB memory Providers
Sequoia-IBMBG/Q ¢
* 20PF/1.5M cores Modern

-+ 18-core processor Datacenters
* 5D torus . ;gﬂfg(r)vl\%lsv

* 1.5PB memory

Special Purpose

- Worldwide LHC HW (Anton)
Computing Grid * >100time
* >140sites; acceleration of
.+ ~250kcores; MD
* ~100 PB disk simulations
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RUTGERS
Energy Efficiency Critical at Extreme Scales

* Power has become a critical concern
for HPC/supercomputing

— Impacts operational costs, reliability,
correctness

— End-to-end integrated power/energy
management essential

* Increasing scale towards exascale

— Using existing technology would require
gigawatts

* Multiple nuclear reactors

Worldwide IT Spending on Servers, Power and Cooling,
« >$2.5B annual power cost ("~ 1arget < 20MW !!

and Management/Administration

$200,000 Power & Cooling costs + projectsa - 46,000,000

Mgmt & Administration costs f | 40,000,000
M New Server Spending
$150,000 -k Sarver netalled Base

o Power/energy not only
from computation
m Data transfer
Memory, 1/0, HPC network
(e.g., 3D torus)

m Data storage
Disk, NVRAM, etc.

$175,000
|- 35.000000
| 30.000000
$125,000
25,000,000
$100,000
- 20,000,000

| 15,000,000
| 850,000

25,000

‘86 'S7 '98 '99 '00 ‘01 2 '03 '04 '05 V8 07 ‘08 ‘08 10 ‘11 12

Source: IDC, the Datacenter: Parvasive and Energy
Optimizaticn, Doc #DIR2009_T4_MB, Mar 2008
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Managing Energy/Power — A Wide Range of

Techniques

» Aggressive component-level power management
— CPU (e.g., DVFS), memory, disk, NIC, etc.

* Run-time power management
— System level, exploiting slack in MPI programs, etc.

» Application/workload power management
— Workload profiling/characterization, consolidation, etc.
— Application, algorithm adaptations

+ Autonomic policy adaptation
— Characterize operational state and adjust management goals

» Cooling and thermal management

— React to thermal hotspots, proactive workload placement
e ...,efc.
Can we use these together in a cross-layer,
coordinated, and consistent manner?




Green HPC: Landscape (I /I1I)

* Dynamic use of low power modes (sleep, suspend, hibernate)

» Advanced Configuration and Power Interface (ACPI)
— Pallipadi et al. [OLS'07]

» Switching on/off servers for energy conservation
— Heath el al. [PPoPP’05]

+ Dynamic scaling (usually impacts latency)

— Processor Dynamic Voltage and Frequency Scaling (DVFS)
* During communication (MPI slack)

— Kappiah et al [SC’'05], Lowenthal et al. [SC’06, SC’07], Freeh et al. [IPDPS’05,
PPOPP’06]

» Using application profiles
— Cameron et al. [SC’05, Computer'05]

* Using counters
— Hsu et al. [SC’05], Rountree [ICS’09]

Green HPC: Landscape (I1I/III)

» Dynamic scaling (contd.)

— Scaling other components/subsystems
* Dynamic memory frequency

— Delaluz et al. [[IEEE TC'01, DAC’02], Fradj et al. [DSD’06],
Bianchini et al. [ASPLOS’11]

+ Storage subsystem -- Multi-speed disks and RAIDS
— Rotem et al. [IPDPS’09], Pinheiro et al. [ICS’04]
* NVRAM — PCM/STTM, memristors, flash-based
— Caulfield et al. [ASPLOS’09, MICRO’10], Bianchini et al.
[SC11]
* Flash-based SSD
— Urgaonkar et al. [OSDI'08]
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Green HPC: Landscape (I11/III)

» Other approaches
— Architecture/Instruction-set based
» Martonosi et al. [ISCA’00, ISCA'01,HPCA’12]
Cluster-based power management controller
» Ranganathan et al. [SIRARCH’06]
Job allocation and scheduling for power conservation

» Chase et al. [SOSP’01], Pinheiro et al. [DCS-TR-440], Zong et al.
[ICPP’07]

Network power management
» Lefevre et al. [IPDPS’09, ISPA'11]
Thermal-aware
« Skadron et al. [TACO’04]
Virtualized environments, programming languages, etc.
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GreenHPC - Overarching Research Goals

* Multiple orders of magnitude power/energy reduction are
required — a cross-layer and application-aware strategy
is necessary

— Innovations necessary at multiple levels (algorithms,
programming, runtime, OS, ...)

» Energy/power-efficiency in combination with other
objectives — Tradeoffs are essential
— Quality of solution, Performance, Reliability, etc.

* Transporting, processing and analyzing increasing data
volumes and rates is becoming the dominant challenge

GreenHPC @ Rutgers — Selected Research Efforts

1. Application-aware power management
— Using application behavior for aggressive proactive management

2. Programming Support for GreenHPC

— Application-driven management using hints

3. Power-aware data management
— Managing power for end-to-end application workflows

5/13/13



5/13/13

1. Application-aware power management

Application-aware Power Management

* Objective: Use application behaviors to enable aggressive
and proactive power management

— Reactive power management is not always optimal and can result in
large overheads

— Proactive adaptation of resources based on application behavior and
requirements (e.g., subsystems demand over time)

— Maintain performance to the extent possible

» Overall approach [HIPC10, HIPC11]
— Application characterization (subsystem demand)
— Empirical quantification of possible power savings (upper bound)
— Proactive subsystem power management at system level




Application Characterlzatlon
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RUTGERS

» Application profiling
— CPU utilization

— Memory utilization (L2 cache misses is
an indicator)

— Disk utilization
— Network traffic

* Proactive power management
— Based on the application profile
— Using component/subsystems low
power modes
« CPUDVFS
* Memory (e.g., switching off banks)
« Disk (spin down/up)
* NIC (sleep modes)

Component-based Power Management

Others
CPU

Network

Disk

Memory

Typical system power breakdown

5/13/13



Application-Aware Proactive Aggressive Power

Management (PAPM)

Energy consumed in an interval of time {; for a subsystem sys:

sys _ psys sys
Et,- - Pactive ti,active + Pidle ti,idle + Et(,ﬂ/(ﬂ
I . I

1 > Energy cost associate to a transition

1
=> Time duration in idle mode

1
1
1
1
1
1 -> Power if the subsystem sys is idle (low power mode)
1

L

1
1
1
1
1
1
1
: > Time duration in active mode
1

=> Power if the subsystem sys is active

where sys={mem, disk, nic} and P = Py, + Pyynamic
P dynamic =P cpu +P mem +P disk+ P, nic

PAPM Algorithm
» Idle-Condition checks if the
subsystem is going to be idle in the
next time interval

Algorithm «  Time-Condition checks if it is feasible

Input: Physical memory, disk, NIC

Output: Power state for a given subsystem to transition to any of the available

for time = 0 to i do lower power states based on the
for sys = disk, memory, NIC do latency of the subsystems and the idle
if Jdle-Condition then time between the two active periods

if Time-Condition then

if Energy-Condition_then + Energy-Condition checks if it is
PuwrSt [ Lidler ) .
end ¢ low power state and if any energy

end \ savings will be achieved

else,” > 7N

\ \
SYS SYs | AY
‘ '\P Ip \

Puwrst!= Lactive’l
/7 /7

end ~ - R, \\
end | \ N
end 1 \\ Power if the subsystem sys is idle (low power mode)
end ! \
I
v N
Current power for Power if the subsystem sys is active

subsystem sys

| PRy o, =PIy worthwhile to transition the system to a

5/13/13
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Subsystems Energy Contribution — Simulation

Energy Savings /
Benchmark | DVES | Run Time (s) | Energy (J) CPU Memory Disk NIC Total (J) %
B | G| s | oy | sy | 100 [ Sa ) 2w0r | G |G
beffio ; ;i(l)g: i:l‘zztigj yeay | SP7T| -|L gﬁ;j( 355:;:;:
bonnie++ ; :iigz 12(7)2;3 30803 | 36T | 51T 3841 17(5.677588JJ. ‘:(;3;2
Tabech | 5| 11n | Gawars |sanng | 270 [ 720 1o |00 S
RV |G | vosss | ovriey |sarsy | 2127 92| 70 | R NG

* Minimal performance penalty — 0.22% on an average

» Can improve the energy efficiency by up to ~8%, depending on
the workload profile for these benchmarks (potentially more for
other workloads)

Energy Savings — Experimental Validation

Benchmark | Configuration | Run Time (s) % Energy (J) % EDP %
Reference 1,383 s - 202824 404,975,592
HPL PAPM 1,385 s +0.14% | 2879067J [ -1.67% | 398,749,810 [ -1.53%
PAPM+SSD 1,385 s +0.14% | 281559) | -3.84% |\ 389959215/ -3.70%
Reference 12125 - 161460 J 195,689,520
b_eff_io PAPM 1217 s +041% | 1573351 -255% |\191476,695 -2.15%
PAPM+SSD 1,134 s -6.43% | 143768 ]| -10.95% | (163032912 -16.68%
Reference 1248 s - 187.533 ] - 34,041,184 -
bonnie++ PAPM 1,249 s +0.08% | 1829041 -247% 28,447,094 -239%
PAPM+SSD 1,169 s -6.33% | 168,606 ]| -10.09% 97,100414 -15.78%
Reference 1,136 s - 2444731 - 77,721,328 -
TauBench PAPM 1,139 s +0.26% | 236496 T\ -326% |[[269,368944| -3.00%
PAPM+SSD 1,137 s +0.08% | 229446 7T\ -6.14% |/260,880,102\ -6.06%
Reference 1055 s - 193,146 J - 203,769.030 -
FFTW PAPM 1057 s +0.19% | 187,677 \-2.83% /| 198,374,589 \-2.64%
PAPM+SSD 1,051 s -0.38% | 1770711 8.32% 186,101,621 8.67%

» Reference: State-of-the-art DVFS
+ PAPM: Proactive Aggressive Power Management
« PAPM+SSD: PAPM with the use of SSD rather than disk

5/13/13
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Use Case: Multi-channel DRAM Power
Management [HiPC'11]

Applications exhibit
heterogeneous BW requirements
over time

Approach:

Apply frequency and voltage
scaling per channel

Affinity to channels: more channels
— more opportunities

Controlling channels independently
— more energy savings

Application-awareness provides
higher energy conservation with
low penalty in performance

Default: accesses clustered  Interleaved: accesses
to certain channels

o
3

% Energy Savings
IS
&

s
=)

Eonmaslt e o ®
80————————— 4 channels
I Ganged
(I3 Levels
55| C_JExhaustive
35

BT FT CG

distributed across channels

Application-aware Power Management:
Lessons Learned

Application-aware power control can lead to improved energy
efficiency without significant performance penalty

Power management at the subsystem level can not be

neglected

Low power devices and upcoming technologies (e.g., SSD,
storage-level memory) can significantly increase energy

efficiency

However, power management at a single level is not enough
A cross-layer approach is required!

5/13/13
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2. Programming Support for GreenHPC

Programming Support for GreenHPC

» Objective: Develop programming support to enable applications
to provide hints to drive runtime power management

* Overall approach [HPDC12]

— Language extensions (“hints”) to drive/tune runtime power management

— Runtime middleware for application-aware cross-layer power
management

— Implementation: PGAS applications on many-core platform (i.e., Intel
SCC)

5/13/13
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Architecture for PGAS Programming Support

Application Stack

Power Management

'y

UPC application

Application

7

v

PM application layer

v

l UPC runtime ]'<

l RCK-MPI I

7

Runtime

PM runtime layer

v

Message Passing
Buffer

Resource

* Implementation using:
— Berkeley UPC runtime
— Intel SCC platform

L2CFG unused bit

T IL “Hints'

Experimental Platform

Intel SCC platform

— Many-core prototype by Intel
Labs Tera-scale Program
— 48 x86 P54C Pentium cores
— 24-router on-die mesh
network, hardware
message-passing MCH
— Per-core 16 KB L1 cache,
256 KB L2 cache
— Metering infrastructure
— Frequency (per 2 core MCo
groups) and voltage (per 8
core groups) scaling
— Power ranges from 25W to
125W, i.e., 0.5W-2.6W per
core

7_‘ RHMIUI m ﬁ@ 5‘[375

Single Chip Cloud
30 m; N (3.5)
"G -

BRI "
ﬁ\|\' ~frequency domaml /_— d‘@—@

e

[
. T—[+m iy

I memory voltage
VRC domain | domain
N ~

MC2

5/13/13
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Application in the Loop

* Application-awareness can improve runtime power
management (in combination with system level power
controls)

+ Example: NAS FT profiling
— Only certain operations are candidate for power management
* Remote memory access (memget) and barrier (wait) operations

— Both operations have lots of very-short calls and several med-long
operations (short calls result in large overheads)

100

10000
10 short calls' very long calls'
1000 cluster

0.1
0.01
0.001

100)

Length (s)
—
—_
Number of calls

0.0001 L

o, Y, O O G, e, L) ~ ! JuHIT ) J
b, Q":?s R @;&*% "%::%% 9 0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

%%r?‘_:f@ Length (ms)
2

Language Extensions Provide User “hints”

* Analogous to processor DVFS governors at the OS level

PM PERFORMANCE, maximum performance
 full power
PM CONSERVATIVE, balance power/performance
* low power modes during slack
PM POWER, minimum power, limited delay penalty
» low voltage level, regardless application’s slack periods
PM AGGRESSIVE POWER, maximum energy save
» lowest voltage and frequency levels

15



Use Case 1: NAS FT - UPC implementation

160
- 140
— 120

Bt - 100

Execution time (%)

--------------- . 4 80

............................. 80 2
- 60 16 &
40 40
&, &, &, A P2 < S, %, %, 2, o ) 2,
Re e e e, o,,&s Op, o, RN o g, e, Dre, 755, "6,
& 8 % %5 7, %) %, %, 5, " s
£ Eo £ S e y y, Iy, o, KA i
"ty Ty & g Wi %, %, % o o
e b, e 0, 8
N % ZN 20, o 7 0 0 e
7, o, o), e % 5, 25, o %,
v % 5 ” b v 2
ey %0,
7
o, %

* Runtime power management policy selects appropriate tradeoff
between energy and delay

— Larger energy savings -> higher time penalties
+ Energy reduction with little time penalty is possible
— PM CONSERVATIVE 7% results in energy savings with a 0.4% time
penalty
» Language extensions provide hints to guide runtime policy selection

— Other hints can obtain higher energy savings (45%) with a higher time
penalty cost

Use Case 2: Sobel Filter Application

» Sobel filter has two different phases

+ Two studied strategies
— Using the same policy during the whole application execution
— Using hints during the initial phase (e.g., PM_POWER)

* Hints avoid time delay and maintains energy savings

— The right power mode cannot be identified at runtime or system
level

100
Language extension Sobel - fix policy Sobel — dynamic policy [ 22 :d

40
Time (%) Energy (%) Time (%) Energy (%)

Power over time (Sobel)

(user hints)

20 -
0

SCC Power (W)

L L L L L L
0 200 400 600 800 1000 1200

PM_PERFORMANCE 100.0 100.0 (a) PM_LPOWER policy, base configuration
PM_POWER 147.6 75.0 101.8 79.4 ’5: ‘gg -

§ ool ————
PM_AGGRESSIVE_POWER 193.8 72.8 101.9 73.7 b :g i

g L

PM_CONSERVATIVE 118.0 75.7 101.5 73.7 %0 00 20 a0 400 0 60 700 800
(b) PM POWER policy, application-aware

5/13/13
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Programming Support for GreenHPC:
Lessons Learned

» Cross-layer power management enables a wider range of
energy and performance behaviors

* Application-awareness improves runtime power management

* Language extensions (via user-level hints) enable a better
selection of the appropriate energy/performance tradeoff

* Cross-layer decisions can help address hardware power
management limitations

— E.g., Intel SCC provides per-tile frequency scaling and per-voltage
domain voltage scaling

3. Power-aware data management

5/13/13
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Scientific Discovery through Simulations - Il

Scientific simulations running on high-end computing systems generate
huge amounts of data!

— If a single core produces 2MB/minute on average, one of these machines could
generate simulation data between ~170TB per hour -> ~700PB per day ->
~1.4EB per year

Successful scientific discovery depends on a comprehensive understanding
of this enormous simulation data

How we enable the computation scientists to
efficiently manage and explore extreme scale data:
“find the needles in haystack” ??

NJTGERS

Traditional Simulation -> Insight Pipelines Break Down
Storage
Servers

Simulation Raﬁ Data 8
Simulation Analysi/Visulization
Machines 8 Clusters

Simulation Raw Data 8

Figure. Traditional data analysis pipeline

Traditional simulation -> insight
pipeline: — Perform data manipulations and
analysis on mid-size clusters

— Collect experimental / observational
data

— Move to analysis sites

— Dump data on parallel disk systems — Perform comparison of experimental/

— Export data to archi’ve_s observational to validate simulation
— Move data to users’ sites — usually data

selected subsets

— Run large-scale simulations on large
supercomputers

5/13/13
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Challenges Faced by Traditional HPC Data Pipelines

i St
+ Data analysis challenge rage
» Can current data mining, manipulation 3‘“““"““&““8
and visualization algorithms still work Simulation pnalyiiuizaion
effectively on extreme scale machine? Machines Sm
. I/O cha"enge S\mulamnRawDataS

* Increasing performance gap: disks are

. Figure. Traditional data analysis pipeline
outpaced by computing speed

+ Data movement challenge

* Lots of data movement between simulation and analysis machines, between
coupled mutli-physics simulation components -> longer latencies

« Improving data locality is critical: do work where the data resides!

* Energy challenge

« Future extreme systems are designed to have low-power chips — however,
much greater power consumption will be due to memory and data movement!

The costs of data movement are increasing and dominating!

The Cost of Data Movement

* Moving data between node » The energy cost of moving data is a
memory and persistent significant concern
storage is slow!

10000

performance f_‘/._./o—o
A 9ap —

1000
\

’_‘ Access Latency (s)

10° /cache\

0
9

> 3

Q [o]

c 10° / \ 2 100

0] /local Memory\ h ——now
= 7 [T\ N H
S 10 / GPU Memory \ o 10 %2018

f—_—\

o0 / \

C 10° ’/ Remote Memory \
.g

/ \ 1 - —— -

(0] /

s N / L & N ] » & &
3] 10 / SSDs and NVRAM \ p 9 &6\ Xy\ ;}Q\ qy o““ e
£ ,/—% & ' & O & B

/ 6‘& 6‘& & <& &
1 / . . N ) d{\ \'\0 &
NEP 10 / System Wide Persistent Storage &
AN - ©
\ L
) 2
bitrate * length

Energy _move_data = - -
cross_section_area_of_wire

From K. Yelick, “Software and Algorithms for Exascale: Ten Ways to Waste an Exascale Computer”

5/13/13

19



Rethinking the Data Management Pipeline — Hybrid Staging
+ In-Situ & In-Transit Execution

Storage
Servers

Datacenter
Servers Datacenter Staging Area
(small set of dediated machines) S

raw data .

In-transit distributed in-
memory staging area and

In-situ data staging and
9ing execution of data analytic

execution of analyticin
parallel (on different cores)

+ Exploit multi-levels in-memory Hybrid Data Staging to:
— Decrease the gap between CPU and 10 speeds

— Dynamically deploy and execute data analytical or pre-processing operations
either in-situ or in-transit

— Improve |0 write performance

Data Staging over Deep Memory Hierarchy

Motivation

+ Small DRAM capacity per core — even aggregated memory on dedicated
nodes can hardly keep all coupled data (given the ratio of resource
allocations for compute nodes and dedicated nodes)

Hybrid Staging

@ Simulation cores
H{0--0000

» Spans horizontally across

@ Data staging and processing cores !

Secondary resources !

compute nodes of both primary
and secondary resources

. . .

+ Spans vertically across the multi- O} : © QO [Lrodeewels

. ....0 . OO cores :

level memory hierarchy, e.g. -_t DRAM BT rodedevel!

NVRAM !

DRAM/NVRAM/SSD, to extend S5 "5 }22,222 !

the capacity of in-memory data Staging Abstraction , |
staging 7T HPC core computation resource

5/13/13
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Deep Memory Hierarchy

* NVRAM bridges latency/performance
gap between DRAM & disk
*+ NVRAM usage modes
— 1/O staging and data “caching”

— Out-of-core computations (virtual
memory)

— “In-the-space” data manipulation and/or
reduction

* Fusion-io technology (ioDrive)

Power
! control

!
! Manage
! (computation]

S

Fusion-10
(flash storage)

Power

Manage (0) Manage

networked
memory 1
space 4

control !
:

(computation);
]

Fusion-10 Q i
(flash storage) !

RDMA

1000000

Performance Gap

CPUs -
100000 Memory
Storage m
10000
Performance
1000 Gan
= 100 l
&
10
1 T T T Vl T T
7 Z pe pe Z <
%% % %% 9% % ) 2 )
2 % % 2 % % % %
- HOD
g Flash
DRAM
3
L2
8] B . Necess delay (log scale)
; S

Energy-Performance Tradeoffs in the Data Analytics

Pipeline
using benchmarks

candidate as intermediate storage

80

Energy consumption (kJ)
B
o

Characterize power/performance behaviors of deep memory hierarchy

Lessons learned: Storage-class NVRAM memory is a good

5/13/13
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Energy-Performance Tradeoffs in the Analytics Pipeline

2500

g I Execution time
Impact of data placement and movement 3, I gy consup
o Canonical system architecture n o
composed of DRAM, NVRAM, SSD 2
and disk storage levels and 5
networked staging area g s
£
o Canonical workflow architecture that = P o o
. . . . X o 0% 0%
can support in-situ and in-transit 0 e _“q\eoe@“
. w o ey
analytics © o
sit analysis every X iterations. Data (9 GB) does not fit in memory
o Lessons learned: Data placement/ I _ 100
fani Enorgy uaing 2 Sm and 2 analveer (Fuslon10)
movement patterns significantly B o 3 S and 1 analvecr (Fusion 10} 9%
impact performance and energy e ang > Sim ang 2 anabeer HoD) P
. . By g 3 S and 1 analvast (HDD)
Role of the quallty Of Solutlon Energy using 3 sim and 1 analyzer (HDD) 70
2 60 2
o Lessons learned: Frequency of F - o 2
analytics is driven by the dynamics of = e o
features of interest, but is limited by 1NVRAM/disk gap w0
node architecture. / S —
Large impact on energy 10
and execution time ) % Zs <% <% % E

Number of iterations between analysis

RUTGERS

L . L] . .
Power Behavior of In-situ Analytics Pipeline
(with J. C. Bennett, H. Kolla, J.Chen, T. Bremer, A. G. Landge, A. Gyulassy, P. McCormick, S. Pakin, V. Pascucci)
* Motivation. Coupled simulation workflows use online data processing to reduce
data movement. Need to explore energy/performance tradeoffs.
+ Use case. Combustion simulation workflow with an in-situ data analytics pipeline.
+ Energy model E = Esystem + Ecomm. =M l;lf‘"::., Peransfer
based on machine— E. =T. (p:;:'":"'” + Pj!' namicy if smp(sre;) # smp(dest;)
H idle Ecomm =
independent Pyt = (P + P, ' datas _ _
application profile  pamamic _ o pactive o pactive. Tt B W~ e ¥ Priem)
system 7 if smp(sre;) = smp(dest;)
* Model validation
on small cluster HCCI, 256 HCCl, 512 Lifted, 256 Lifted, 512 10 _ average
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» Study various co-design trade-offs
— Algorithm design choices
— Runtime application deployment
— System architecture

» Algorithm parameter impact is
quantified

\T.// N

Merge 01 )/ Merge 23 s
\ \ Phase 1: Merge
Local compute ">\ e _—7 Phase 1: Correction

NA ¥, -

(@ Local correction N ~~< Phase 2: Merge
(Merge0123) “a - Mierg
Tree merge ~

=7 Phase 2: Correction

Topology analysis: parallel merge tree algorithm

Power behavior of the in-situ analytics pipeline

# Blocking Fan Time Energy MIPS MEM,, MPI
cores  factor in (KJ)  («10%) (GB/s) MSGs
(5,8,8) 8 559 2144 142 184 3,716
320 (5,88 16 Z ; 138 473 1,752
(5,8,8) 32 593 139 478 5,946
(15,8,8) 8 188 423 1440 10917
960  (15,8,8) 16 190 2287 420 1434 11,116
(15,8,8) 32 253 3006 334 1151 16815
(15,16,8) 8 113 2845 735 2,517 19548
1920 (15,16,8) 16 124 3100 700 2417 24,958
(15, 16, 8) 32 12.0 301.6 710 2,446 24,644
(15,16,16) 8 83 4477 1183 4,135 57424
3810 (15,16,16) 16 127 6520 864 3,070 73,367
(15,16,16) 32 82 4405 1,172 4,085 50,902
(45,16,16) 8 6.9 1,227.1 1869 6717 194,043
11520 (45,16, 16) 16 6.7 N/A  N/A 170912
(45,16,16) 32 9.9 16682 152 5593 194,596
(45,32,16) 8 157 50952 1215 4508 417,360
23040 (45,32,16) 16 7.5 28619 2457 9,106 360,422
(45,32,16) 32 180 6.060.9 1477 5641 508,704
(75,40,10) 8 80 41004 2777 10399 600,072
30000 (75,40, 10) 16 8.7 4 2497 9,360
(75,40, 10) 32 123 2,047 7,778

GERS

Power Behavior of In-situ Analytics Pipeline

ey

———
1 ranklcpu 2 rankiopu 4rankicpu 8 rankicpu 16 rankicpu serankepy | iR
° Communication f Optimal hardware/software
2 (local communication)
patterns depends on: - ) .
Algorithmic configuration >
(Fan'ln) " : L [1] [1) coe cee
— MPI processes mapping  * Higher inter-node communication
(ranks/cpu) . " i . .

System architecture
(e.g., 16 cores/node vs.
32 cores/node)

« Data motion energy
depends on transfers

16 cores/node

I

32 cores/node

Lessons learned: Energy for data motion is impacted by algorithm and system
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Conclusions

— Quality of solution, Performance, Reliability, etc.

» Co-design is essential

» Energy-related challenges have become dominating concerns for
scientific applications at extreme scales
» Costs (energy, latency) related to transporting, processing and
analyzing increasing data volumes and rates are limiting the insights
from extreme scale applications
» Multiple orders of magnitude power/energy reduction are required — a
cross-layer and application-aware strategy is necessary
— Innovations necessary at multiple levels (algorithms, programming, runtime,
OS, etc.)
» Energy/power-efficiency in combination with other objectives —
understanding tradeoffs are important

Not All Improvements Come from HW/System

10¢

109

10°

)

10

10

Effective sustained speed in equiv. gigaflops

100

1041

Magnetic Fusion Energz: “Effective speed” increases
ar

came from both faster

dware and improved algorithms

Mfift;rtz:turbulelace - Lk ‘
effective spee
| P Global MHD

Eull Earth impraved « effective speed
*—simuiatar ,TWLT - mproved

[Japan) T inear

solvers
. high-order
L glements
de\ta—‘,t
magnetc

1000 NERSC coordinates > i
Re— SF‘S processors

[typical) ayro- / S

kinetice yd Effective speed

16 processor N from hardware

—Cray gop | A o il improvements
S~ implicit alone
Cray YMP | | L )
1970 1980 1990 2000 2010

Calendar Year

Ack. David Keyes

5/13/13

24



Manish Parashar, Ph.D. Center for Plasma Bdge Shmedation
Prof., Dept. of Electrical & Computer Engr.

Rutgers Discovery Informatics Institute (RDI?) [} e
Cloud & Autonomic Computing Center (CAC) AF#=

Software

Rutgers, The State University of New Jersey Systems
Email: parashar@rutgers.edu C( C # OAK
WWW: rdi2.rutgers.edu oud and Autonomic —

g i DMLMEF—. \BIPIG E

5/13/13

25



