A Geuneral ChurcbjROSser Theorem

Peter Aczel

We prove the Church-Rosser theorem
in a general framework. Our result
easily yields the standard result
Lor the lambda calculus but also
hag wider application.

910__The Mglq Theorem

1.1 An expression system consists of an infinite set of variables and a set

of forms. Each form has an arity i.e. a finite sequence K g 0ny K (m 2 0)
of natural numbers. If m = 0 the form is a constant. If k. = ... =k =

L m

the form is simple,
Exg;ggﬁiggg_are inductively generated using the two rules:-

1) Every variable is an expression.

2).If F 1is a torm with arity K gy km (m 2 0) apd ago.; @a are

m
. — ~% 2 4
expressions then F((% )a. ...., (xm)am) is an expression, where for
+ _& - -
io= esaaeom X o 1s a list 6f k. warizbles.
11

The expression gencrated by 2) 1s said to have form F and parts
& ss:05 8 . Free and bound occurrences ol variables are defined in the
e ==
: ; ap — :
usual way, so that occurrences of a variable in the iist X That are free
—f - f :
in  a. become bound 1n F((X JA e (xm)amJ; Alphabetic variants of
expressions are identified in the standard way-

Below we shall usuaily write P(ai,q-,, amj instead of

Ff(gi)akgau_g (E;)am), It must be kept in mind that with this sbuse of

notation a variable that is free in a.  can become bound in Bla qewa s an),
1 £ 1]

Also, an expression F(a ,..., am) may be the same as an expression

F(b1=quo, bm} while & 13 not the same as b Ear™ ol = 1 oo emi
E L

4
1,2 We shall be concerned with a partial function on the expressions which

we shall call a tuntrdclion opeératlion. An expression in the domain ot the

operation witl be calied a redex and its value under the operation will be
L

opry . s
called the contractron of the redex. We shall 1nsist that no variable is a

redex, EKach contraction operation generates a relation of dePin}ﬁjpngl equality.




S
This is the smallest invariant equivalence relation such that each redex 1s
definitionally equal Lo its contractum, Here a binary relation R isa
invariant if xRx for each variable x and o R am)RF(bl,=-~, bm)
whenever a.Rbj,.00- amRbm for each form F.

An expression is normal 1f no subexpression it a redex, where a variable
has only itself as a subexpression and F(al,,ec, am) has itself and all
the subexpressions of its parts 8150005 @ @S subexpressions.
1.3 When is a contraction operation cunsgsthE in the sense that only
identical expressions can be both normal and definitionallvy equal? The

Church-Rosser property (CRP) is the key to answering this question. A binary

relation R has the CRP 1if:=-
aRb and aRc implies bRd and cRd for some d,

LEMMA

Tf the reduction relation has CRP then the contraction operatlion is
consistent. The reduction relation is the smallest transitive invariant
relation such that each redex reduces to its contractum,

PROOF. An expression is normal if it reduces only to itself, Hence consistency

follows [rom:- a 1is derinitionally equal tec b 1f and only it 5 and b
reduce to a common expression., This is easily seen to follow from the CRP for
reduction,

1.4 The next lemma 15 easily proved and will be useful later .

LEMYA

(i) Every invariant relation is reflexive.
(1i) The transitive closure of an invariant relation is invariant.
(iii) The transitive closure of a relation with CRP also has CRP.
1.5 LeL > be the smallest invariant relation such that if F(bl,,..; bm)

i1s a redex with contractum b rthen
8, > Dyseuey a_ > b implies F(a ..., am) > b,

LEMMA

Reduction is the transictive closure of >,



i
PROOF. Let aRnb if a 1is a redex with contractum b, and let >* he the
transitive closure of >, Reduction is the smallest transitive invariant
relation containing Rye By 1.4.(ii) »>* g invariant., By 1.4(i) > is
reflexive and hence is easily seen to extend R,. Hence >* extends
reduction. But clearly reduction extends > and hence >*, Sp reduction
is 2%,
1.6 The following formal system for > will be Qery useful. The axioms are

a>a for any expression a. The axiom a > a 1is strict if a is a variable.

The rules are
225

a >5b
whenever F(al,..., am) = a and F(bl,aa,, bm) = b, Here b' = b if
B =8 o B' 38 & redus with contractum b,

It should be clear that a > b iff a3 b has a proof in the above
formal system. Moreover the proof can be chosen so that all its axioms are
striet.

1.7 With the next definition we will be able to state our main result., a
contraction operation is coherent if, for every redex Plajsoes, am) with
contractum a, a, > Bjnmisay a_ = bm implies that F(by sy bm} is a redex
with contractum b such that a s b,

THEOREM

1f the contraction operation is coherent then reduction has CRP,
PROOF. By lemmas 1.4,(1ii1) and 1,5 it suffices to show that > has CRP.

By induction on the proofs of g > by, a > ¢ we find an expression d such
that b >d and ¢ > d,

If a >b is an axiom then a =b and we can let d be ¢, Similarly
if &> ¢ dis an axiom we can Tat d be b, Hence we can assume that a > b
and a > c¢ have proofs ending with infercnces

8 > BoNoae g b Bt By oW i, g

1 1 m m. m m
and

a>h g a > ¢
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respectively, where F(al,.,., am) =iy FEDL s bm) £ 5  and e T Cm) = oy
(Note that because of our abuse of notation a proof of a > ¢ could end with
an Inference having premisses al el s aé > cé where E(d],es-s aﬁ) = a
and F(c;,.oa. cé) % c. But by relabelling the variables in the proof it can
be put in the required form.)

By induction hypothesis there are discoey dm. such that bi > di and ¢, »
for i =1,,.,, m. Now define d as follows. If F(dyse0a, dm) is a redex
let d be its contractum, otherwise let d be F(dl""’ dm) itself, 1In
cither case F(dl,..., dn) > gy SO that  Flhisuaas bn) zd and FlC]swass cn) ¥ ide

If F(bl,..., bn) is a redex then its contractum is b and as the
contraction operation is coherent b > d, But if F(bysens, hn) is not a
redex then it is equal to b so that b > d again, So b > d and similarly
c > d as required.
1.8 The lemma below will be useful when we come to applying our main thEOrem;
£ _x)= Xpsenss X ig a list of variables and ?-: Cyseses is a list of
expressions then for any expression a a[é?%j denotes the result of
simultaneously substituting c; for X, in a for i =1,,.., k (making changes

in the bound variables, where necessary, to avoid clashes). A contraction

' § 5 ; 5 . s -2 —> :
operation 1s substitution preserving if for all ¢, x as above if a 1s a

. i -
redex with contractum b then af??;] 18 a redex with contractum b[g?gj,

A binary relation R on expressions is substitution preserving if for all

> > -+ o
Cs, X as above and 4 = dl"“" dk aRb  and c Rd;,..., cdek implies that

aIEY;]Rbfgy;j.

LEMMA

Lf the contraction operation is substitution preserving then so is >.

PROOF. Let c; di for 1 =1,..., ke If a >b then it has a proof and

we can assume that all the axioms are strict. Replace each node a' > b’

h 2 Z| > b [e® h i al > hY —3a axi L
of the proot by a E&"{xl b I:cfx], where if 18 an om xl X,

it should be replaced by a proof of e > di. The result is easily seen to

bl & T e . . :
be a proof of a[ﬁf%] > hld/x|, using the assumption that the contraction

operation is substitution preserving to show that a rule in the original proof
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remains a rule under the above transformation.

§2, The lambda calculus

2.1 We show how to apply our main theorem to the lambda calculus. This is the
expression system having the two forms APP and X with arities 0, 0 and 1
respectively, We shall follow the usual convention and write a(b) and

(Ax)a instead of APP(a, b) and A((x)a) respectively. The B-contraction

operation has redexes (()x)a)(b) with contracti a{ﬁ/%].
THEDREM
B=contraction is coherent and hence R-reduction has CRP.

PROOF. First ohserve that R-contraction ie substitution preserving. For if

e is a redex (()\x)a)(b) then e]}?/i{] is ((Ax)a@fﬂ)(b[’c’!ﬂ]} (as long as
x 1is chosen so that it does not appear in ﬂ; and 1s not free in b, c), and
the latter is a redex with contractum aEE/%][%[EVZI/x , which 1s the same as
a[b/gfc?fgjn 5o by lemma 1.8 > 1is substitution preserving.

To show coherence, let ((ix)a)(b) be a redex and let ()x)a » a’', b > b._.

We must show that a'(b,) 1is a redex, i.e. a' has the form (Ax)a,, and
then show that afb/x] > a,[b /x].

Now consider a proof of (Xx)a > a'. We may assume that all the axioms

a4 P g
- ; 1
are strict so that the proof must end with a rule -———————— where
(Ax)a > a
(hx)al =gt As (Ax)a. 1is not a redex a' = (*x)a,. As > is substitution

preserving and b > b, a >a; it follows that alb/x] > al[il/gl as required.

2.2 n-contraction is obtained from f—contraction by adding redexes (Ax) (a(x))

(with x not free in a) having contracti a, n-reduction has the CRP but

A
the proof of this requires a slight modification of the argument of §1. Call
the redexes for B-contraction B-redexes and the new redexes n-redexes. Let

T

> be the smallest invariant relation such that (i) a, >' bl, a5 21 By
implies 31[3-2/"1 =1 bl]:bz;’xj and (ii) a »' b implies (Ax)(a(x)) >' b, if
X 1is not free in a. As in the proof of lemma 1.5 it is not hard to see that
n-reduction is the transitive closure of >»'. As in the proof of theorem 2.1

>"  can be shown to be substitution preserving, and hence B-contraction is
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coherent relative to >', i.e, if ((Mx)a)(b) is a B-redex and
(Ax)a =tah B st b, then a‘(b1) is a redex with a contractum ¢ such
that a[b/x:[ >' ¢,
Note that a formal system for >' can be set up using the axioms and
rules of the formal system for > obtained from B-contraction and the
a>' b

additional n—rulesl BT if % ie net free in g,

We are now ready to prove

THEOREM

>' has CRP and hence so does n-reduction.
PROOF. The proof follows the pattern of the proof of theorem 1.7. By induction
on proofs of a >' b, a »' c we find d such that b >' d, ¢ »' & If peither
proofs of a >' b, a »' ¢ end with an n-rule then we may argue as before.
The new case to consider is when at least one of the proofs does end with an

n-rule. By symmetry we may assume that the proof of a >' b ends with an

a. >V h
n-rule —~— T~ Mhers A s _(Ax)(al(x)) and x ig not free in a.. There
are two subcases to consider. First suppose that the proof of a >' ¢ also
a, >' ¢
ends with an n-rule Z ST - In this case we can use the induction hypothesis

to find d =suveh that B >Y d, o >' J @6nd we ave done, 1t remains to consider
agfyy =7 oy

the subcase where the proof of a >' ¢ ends with a rule P where

(lx}cI 2 c, As (I’q-:)c1 is not a B-redex c = (hx)cle BE A 6x)- &F 6.0 I8
an axiom then ¢; = a;(x) and hence a >" ¢ is an axiom and we are under a

previously considered case., Otherwise a;x) »' c, must have a proof ending

a, »t c, > x

al(x) e

with a rule where cz(x} = c,. By induction hypothesis there

1
is d such that b >' d and ¢, >' d and it only remains to show that

grEdiadn Ag cz(x) = c; either cz(x) is a B=redex with contractum =

or else c¢; = e,(x). Using the fact that a, does mot contain x free and
that >' ig substitution presecrving, we can assume that c, does not contain

¥ free. So in the first case ¢ is @x)c;; so that ¢ = (Ax)e, = ¢, and

2

hence ¢ >' d. In the second case c = (?\x)c1 = (Rx)(cz(x)) is an n-redex

and as ¢, >' d we get ¢ *' d,
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§3. Consistent sets of contraction schemes

3.1 We wish to generalise the example of the lambda calculus to a wide class of
contraction operations defined in terms of schemes. To formulate these schemes

we need to introduce k-ary metavariables for simple forms having arity

e E M

Oy 030005 0 for k22 0. Using these metavariables metaexpressions are generated

using the same rules as for generati&g expressions, treating k-ary metavariables
- 3 a - - H_.*\
Just like simple forms of arity O ..., O.
Let H be a metaexpression and suppose (;::.L)ai is assigned to each
- 5 4 B % —
k.-ary metavariable Zi occuring in H, where a; -1s an expression and x;
1 =
is a list of k. wvariables. Then H[(x.)a.fz.]. denotes the result ol
1 1 i i

repeatedly by replacing each subexpression Zi(Hl,”.', Yy of B By

H
.
> i 4 1
a; [Hl,“o, Hk /xij for each Zi° Note that the result will be an expression,
1

We shall need the following lemma,

LEMMA

Let R be an invariant, substitution preserving relation. Let H be a
. gl —» 2 :
metaexpression and let (xi)ai and (xi}bi be assigned to each metavariable

Zi occurring in H. Then aini for each .Zi implies HRE, where

H = H[(x“‘i)ai;z g

) <1 S = )b./2.1..
= = £ H&xl)blf 1:{i

PROOF. Assume that aini for each Zi.- ‘We prove that HRH by induction on

the way that H 1is built up.
If H is a variable x then HRH is just XRx which is true by the
Invariance of R,

If H is F(H,..., H) then H is F(y,..., H) and A is

F(Hiscoos ﬁm)' By induction hypothesis ﬁj RHj fFor 4 = lis... m and hénce,

by the invariance of R, HRH.

. i

Eﬁ 8 ce fi /;:;E and ﬁ LS
L e

1
b1. [Hl,u”, Hk-,";i:fo By induction hypothesis HJRﬁ oL ) =l ki" Also
i

If H is Z,(H,..., B ) then H is a,
1

] L

aini, so that as R is_ substitution preserving HRH.

3.2 A contraction scheme is a pair (H, H') of metaexpressions having no free

variables suclhi thial; x

(1) The metavariables occurring in H, H' are zij for



e
= laeaes 5 1% Lynsis mi

(i1) H is an expression F((?&}Hl,,.u, (;;)Hm) where for each 1

either

. =5

Ca) H: 18 Z.'A%.) apd m. = 1 or
1 5 U LR 1

) : - — = —5 - -

B S SRR e U 0 S )

F is called the defined form of the scheme and each Gi 1s a primitive form

of the scheme.
An instance of the scheme (H, H') 1is a pair (a, b) such that for some

and

: —2>—> .
assignment (X.y..)a.. to each metavariable Z.. a
1] 1]

e s
i . G - P z. -
b =H E(xlylj)al-]/ 1_]]

= r
H L(;!iyij)a /z

13721515
1

If (a) holds for a given i then j = and

g
-y : L 3
yij denotes the empty sequence., Note that if (a, b) is an Lnstance of

(] L3 0 +‘-‘P 3
(H, H') then given a choice of the xiyij the aij can be determined from
H and a only. §

A set of contraction schemes (G is consistent if

(1) no defined form of any G? —scheme 18 also a primitive form of a
G?—scheme,

(ii) if two distinct E-echemes have the same defined form then there
is an 1 such that in each of the schemes a primitive form G, 1s assigned but
these forms are different in the two schemes,

1f (a, b), (a, b") are instances of G?—schemes where é? 18 a consistent
set of contraction schemes it follows from (ii) that thev must both be
instances of the same G’-scheme (H, H'). Moreover given a choice of the
- - — el - :
X.¥.. h e = SR e (] 2 rmi

1y13’ the alJ so that a HL{lelj)aljle;jlj are uniquely determined
-
and hence both b and b' must be H'[Kg.y..)a../z,il..c Se b = Bl
il e

It follows from thie that the set of instances (a, b) of & -schemee, where &
1s a consistent set of contraction schcmes, form the graph of a contraction
operator.
THEOREM

Given a consistent set & of contraction schemes the resulting contraction

operation is coherent.

PROOF. Tet Fla_...., a ) be a redex with contractum a and let a, > b,,



o 1
soos @ 7 bmu We must show that F(b,,..., by) is a redex and has contractum
b where a > b,

By assumption (F(al,o”, am), a) 1is an instance of a contraction scheme
(H, H') from the given set & . H is F((;C’I}Hl,,”, (;;)Hm) and
Py a) i BGF Ja e, il m e b (G 2572, 15

A8 8.y AL H. FHe LX) Al G0 e an. V othesmises the
1l 3 i Fe] im

5

Sa a
1
first case let biI: = bi' In the second case, as a, > bi’ it has a proof

and, as we can assume that all axioms are strict, it must end with an inference

S e sston e > b.
11 11 im- im

) 2 b..

Where G. -b, aee »
.L( T2 ; blmi 1

As Gi is a primitive form and hence cannot be a defined form it follows

that Gi(b_,,“o, bim ) cannot be a redex and hence it is the same as b,. We
o -
have now defined b.. for each 1] ®o that a., ? B,. a&5d b = H.[Ix.y_‘)b ./Z..J_
ij ij ij i 1 e T

’ o ’
Now if we let b = HFE(;{’iyij)b then (F(bl,,.n, bm}, b) 1is also an

#5/255ls
instance of the scheme (H, H') so that F(bl,”., bn) is a redex with

contractum b, As g = HE(}??)b .fZ_.],_ and a.. > b.. for all 4. %e may
1937 197 154 17 ij

use lemma 3.1 to deduce that a > h once we know that > 1is substitution
preserving, By lemma 1.8 it suffices to prove that contraction preserves.
substitution. So given €, %, let a be a redex with contractum b. Then

(a2, b) 1is an instance of some contraction scheme (H, H'). So

= ¥k R e =
a £ H[(xiyij)aij/z;j];j and b = H E(xiyij)aijfzij] ijo Then

N D T 2 _ > o
ale/x] = HE(Xj_Yij)aij [?/x_j /zij-lij and bl:c/?:l = H L(xiyij)aij le/x /Zij]ij
where we use the fact here that H and H' . contain no free variables. s

=~ ‘ : P
Thus (a[?/;cj, bG‘.’fx]) 1s also an instance of (H, H') and hence aL_?/?J
is a redex with contractum bfgf}ﬂo
3.3. The B=contraction tor the lambda calculus, considered in 52, is obtained

as above from the contraction scheme

(APP(?\((x)Z“(x), Zoghe Lo 07,00

We consider some further schemes.
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Pairing. Let PAIR be a form of arity 0, 0 and lef P, 9 be forme of arity oO.
The pairing contraction has redexes p(PAIR(a, b)) or q(PAIR(a, b)) with
contractil_a or b respectively, This con#traction comes from the consiscent

set of two contraction schemes

(o(PATRIE, . 2,10, 20

el (G(PAIR(Z 15 Z750)s Z4,). n+1

Definiﬁipn by cases. Let Rh be a form of arity 0,..., 0 (n > 0) and let

ln,;on, n_ be constants.  The n-ary definition by cases contraction has redexes

B 1. it OF sy OF n s i tracEy. A, nr ... HF a
(1s 810000, ) ‘ R (n_, a;.. a) with con . s

respectively. This contraction comes from the consistent set of n contraction

schemes:

(Rn(ln, Z )

s
girmes Laggpde oy

e ow

) ) s

(Rn(nn’ zzi,naa, a

n+l: Zn+11

Primitive Recursion. Let O be .a constant, s a form of arity O and R a form

of arity 0, O, 2, The primitive recursion contraction has redexes

R(0, b, (x, y)c) or R(s(a), b, (x, y)c) with contract%. b or
c[%, Ba, b, (x, ye)ix, i] respectively. This contraction comes from the
consistent set of two contraction schemes:

(RGO, 2., (x, ¥Zg,(x, ¥)), Z,.) and

(R(S(leJs zzla (_xs y)231{x) Y)), 231(211, R(zll’ ZZ:I.’ (x) y)zjl(xs y))))

All the schemes considered above may be combined to form a set of schemes
which is still clearly consistent. So our results show that the contraction
obtained by using all the schemes has a reduction with CRP. As in §2 this

still remains true when n-redexes and their contractg.are included.

Manchester
July 1978.



