and we define

$$\bar{P}_{A} = \bigcup_{k} \emptyset P_{A}^{k}.$$

The following fact should be regarded as well known (as well as easily provable):

(15.2) \bar{P}_A is the least solution of the equation

$$XP_{A}=X$$

for $X \in A^n$, as well as the least solution of the inequality

$$XP_A \subset X$$
.

In the special case where $A = A_0$ is the initial algebra in T^{\natural} , we shall write \bar{P} instead of \bar{P}_{A_0} . This special case is all-important because of

If
$$\zeta_A : A_0 \to A$$
, then $\bar{P}_A = \zeta_A \bar{P}_\bullet$ (15.3)

Here, ζ_A denotes the mapping $\zeta_A : \widehat{A_0}^n \to \widehat{A}^n$ defined by the mapping $\zeta_A : \widehat{A_0} \to \widehat{A}$ given by the relation $\zeta_A : A_0 \to A$. The fact stated in (15.3) follows readily from the commutative diagram

$$\begin{array}{ccc}
\hat{A}_{0}^{n} & \xrightarrow{PA_{0}} & \hat{A}_{0}^{n} \\
\downarrow^{t_{A}} & & \downarrow^{t_{A}} \\
\hat{A}^{n} & \xrightarrow{PA} & \hat{A}^{n}
\end{array}$$

and the facts that

$$\zeta_A\emptyset = \emptyset, \qquad \zeta_A\bigcup_k X^k = \bigcup_k \zeta_A X^k.$$

16. ALGEBRAIC SETS

A subset X of the initial algebra A_0 for a free theory $T = S_0[\Omega]$ is called algebraic if there exists an integer n and a polynomial $P: [n] \to [n]$ such that $X = \bar{P}_1$; i.e., X is the first coordinate of the least solution of the equation $YP_{A_0} = Y$ for $Y \in \bar{A}_0^n$.

The following properties of algebraic sets should be regarded as known:

(16.1) Each element x of A_0 is an algebraic set.

al. (16.2). The empty set is algebraic.

(16.3) If X_1 and X_2 are algebraic sets, then so is $X_1 \cup X_2$.

(16.4) If $\phi: I \to [p]$ in T and X_1, \dots, X_p are algebraic sets, then so is $(X_1, \dots, X_p)\phi$.

We are now in a position to state the main results of this paper.

THEOREM 1. For each algebraic set X in the initial algebra A_0 over a free theory $T = S_0[\Omega]$, there exists an integer n > 0 and a polynomial $P: [n] \to [n]$ of degree 1 such that $X = \bar{P}_1$.

The proof will be given in section 17.

Now assume that the theory $T = S_0[\Omega]$ is free on a finite base; i.e., that each of the sets Ω_k is finite and that $\Omega_k = \emptyset$ for all but a finite number of integers $k \geq 0$.

Let A be a relational T-algebra with [n] as underlying set. We associate with A a polynomial,

$$A^p:[n] \to [n]$$

of degree 1 as follows: A morphism $\phi: I \to [n]$ of degree 1 is a composition

$$I \xrightarrow{\omega} [p] \xrightarrow{x} [n],$$

where $\omega \in \Omega_p$ and $x = (x1, \dots, xp)$, a p-tuple of elements in [n]; i.e., in A. We define $x\omega \in P_i$ if and only if $i \in (x1, \dots, xp)\omega$ according to the relational T-algebra structure A. This clearly gives a bijection between the relational T-algebra structures A on [n] and polynomials $P: [n] \to [n]$ of degree 1.

Theorem 2. If the relational T-algebra A on [n] and the polynomial $P: [n] \rightarrow [n]$ of degree 1 are related as above, then

$$\vec{P}_i = \zeta_A^{-1} i.$$

We recall here that $\zeta_A: A_0 \to A = [n]$ is a relation so that

$$\zeta_A^{-1}i = \{y \mid y \in A_0, i \in \zeta_A y\}.$$

The proof will be given in section 18.

From the two theorems asserted above, we can now prove:

THEOREM 3. If $T = S_0[\Omega]$ is a free theory on a finite base, then in the initial T-algebra A_0 the recognizable sets and the algebraic sets coincide.

Proof. Let $X \subset A_0$ be recognizable. Then $X = \Re A$ where A = (A, t) is an automaton. Since the T-algebra A is finite, we may, without loss, assume that the underlying set of A is [n] for some n > 0. Let $P: [n] \to [n]$ be the associated polynomial of degree 1. Then by Theorem 2

$$X = \mathfrak{G}A = \zeta_A^{-1}t = \bigcup_{i \in I} \zeta_A^{-1}i = \bigcup_{i \in I} \tilde{P}_i.$$

Since each \vec{P}_i is algebraic, it follows from (16.3) that X is algebraic.