Conversely, let X be an algebraic set in A_0 . Then by Theorem 1 we have $X = \overline{P}_1$ for some polynomial $P: [n] \to [n]$ of degree 1. Let A be the relational T-algebra structure associated with P and let A = (A, t) be the relational automaton with $t = \{1\}$. Then by Theorem 2

$$6A = \xi_{-1}^{-1} 1 = \bar{P}_1 = X$$

so that X is recognizable.

17. PROOF OF THEOREM 1

We shall establish two auxiliary propositions.

PROPOSITION 1. Given a polynomial $P: [n] \to [n]$, there exists a polynomial $Q: [n] \to [n]$ such that

(i) The constituents of Q are precisely the constituents of P of degree >0.

(ii) $\bar{Q} = \bar{P}$.

PROPOSITION 2. Given a polynomial $P: [n] \to [n]$, there exists a polynomial $Q: [m] \to [m]$, $n \leq m$ such that

- (i) All constituents of Q have degree ≤ 1 .
- (ii) Q_i has the same constituents of degree 0 as P_i , $i = 1, \dots, n$.
- (iii) Q_i , n < i < m has no constituents of degree 0.
- (iv) $\bar{Q}_i = \bar{P}_i$ for $i = 1, \dots, n$.

It is now clear how Theorem 1 follows from these two propositions. Given an algebraic set X in A_0 , choose a polynomial $P: [n] \to [n]$ such that $X = \bar{P}_1$. Then apply both propositions consecutively and in either order. There results a polynomial $Q: [m] \to [m]$, $n \leq m$ of degree 1 such that $\bar{Q}_1 = X$.

In the proofs that follow, it will be convenient to use the symbol + for \mathbf{u} and Σ for U .

Proof of Proposition 1. We represent the polynomial P in the form P = R + M where $R: [n] \to [n]$ consists of all the constituents of P of degree >0, while M consists of the constituents of P of degree 0. The morphisms $j: 1 \to [n]$ of degree 0 are $j = 1, \dots, n$. Thus M may be represented as the $n \times n$ matrix $\{M_{ij}\}$ whose coordinates M_{ij} are 1 or 0 depending on whether $j: I \to [n]$ is a constituent of M_i (i.e., a constituent of P_i). We now form the matrix

$$N = E + M + M^2 + \cdots + M^k + \cdots$$

as follows: We regard $\mathfrak{B} = \{0, 1\}$ as a semi-ring with the operation table

$$0 + 0 = 0$$
, $0 + 1 = 1 + 0 = 1 + 1 = 1$
 $11 = 1$, $01 = 10 = 00 = 0$

and regard M as a matrix with coefficients in \mathfrak{B} . Matrices are multiplied and added in the usual fashion. E denotes the matrix with 1 on the diagonal and zero everywhere else. The sequence of matrices

$$M^{(k)} = E + M + M^2 + \cdots + M^k$$

 $k=0,1,\cdots$ is ascending and, therefore, for some k we have $M^{(k)}=M^{(l)}$ for all $l\geq k$. The matrix N is then defined as $M^{(k)}$, for k sufficiently large. We now define the polynomial $Q:[n]\to[n]$ as Q=RN; i.e.,

$$Q_i = \sum_k R_k N_{ki}.$$

Since $N_{ii} = 1$ we have $R_i \subset Q_i$. Condition (i) of Proposition 1 is then clearly satisfied and we now prove that $\bar{Q} = \bar{P}$.

Assume that $X = (X_1, \dots, X_n)$ is a vector of subsets of A_0 such that $XP \subset X$. Then since P = R + M, we must have $XR \subset X$ and $XM \subset X$. Therefore, $XM^k \subset X$ for all k and thus $XN \subset X$. It follows that

$$XQ = (XR)N \subset XN \subset X.$$

This proves that $\bar{Q} \subset \bar{P}$. To prove the converse, assume that XQ = X. Since $R \subset Q$, we have $XR \subset X$. Since $NM \subset N$, we have

$$QM = RNM \subset RM = Q.$$

Therefore,

$$XP = XR + XM = XR + XQM \subset X + QX = X.$$

This shows that $\bar{P} \subset \bar{Q}$. Thus $\bar{P} = \bar{Q}$.

Proof of Proposition 2. Assume that k > 1 is the highest degree of the constituents of P and let $\phi: I \to [n]$ be a constituent of P of degree k. We may write

$$P=R+\phi M,$$

where R is a polynomial not containing ϕ as a constituent while $M = (M_1, \dots, M_n)$ is a vector with components 0, 1 defined by $M_i = 1$ or $M_i = 0$ depending on whether or not ϕ is a constituent of P_i . The morphism ϕ has a factorization

$$I \xrightarrow{\omega} [p] \xrightarrow{\psi} [n]$$