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Conversely, let X be an algebraic set in 4. Then by Theorem 1 we
have X = P, for some polynomisl P: [n] — [n] of degree 1. Let A be
~the relational T-algebra structure associated with P and let A = (A4, t)
be the relational automaton with ¢ = {1}. Then by Theorem 2

o ®A = {31 =P =X
so-that X is recognizable.

17, PROOF OF THEOREM 1

We shall establish two auxiliary propositions.

Prorosition 1. Given a polynomial P: [n] — [n], there exists a poly-
nomial Q: [n] — [n] such that

© (1) The constituents of Q are preczsely the constituents of P of degree

>0.
(i), @ = P.
o PROPOSITION 2. Given a polynomial P: [n] — [n), there exists a poly-
'finomzal Q: [m] — [m], n £ m such that ' '
(1) Al constituents of Q have degree =1.

(u) Q; has the same constituents of degree 0 as P;,2 =1, --- , m,

. (1) Qi,n <7 < mhasno canstztuents of degree 0.

(1V)Q—Pforz—1 ‘
It is now clear how Theorem 1 follows from these two propositions.

i Given an algebraie set X in Ao, choose a polynomial P: [n] — [n] such .

that X = P;. Then apply both propositions consecutively and in
‘either order. There results a polynomlal Q: [m] — [m], » £ m of degree
1 such that @ =
In the proofs that follow, it will be convenient to use the symbol
+ for u and = for U, .
. Proof of Proposition 1, We represent the polynomial P in the form
P = R + M where R: [n] — [n] consists of all the constituents of P of
degree >0, while M consists of “the constituents of P of degree 0. The
morphlsmsu 1 — [n] of degree O are Jj=1, , . Thus M may be repre-
serited as the n X n matrix {M;;} whose coordmates My are 1 or 0 de-
pending on whether j: I — [n] is a constituent of M (1 e., a constituent
of P;). We now form the matrix

N=E+M+M+¢ .. +M+ ...

a8 follows: We regard ® = {0, 1} as a semi-ring with the operation table
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04+0=0, O0+1=14+0=14+1=
11=1 01=10=00=0
and regard M as a matrix with coefficients in ®. Matrices are multiplied

and added in the usual fashion. E denotes the matrix with 1 on the
diagonal and zero everywhere else. The sequence of matrices

MY =B+ M+M+ - + M

k= 0,1, - isascending and, therefore, for some k we have M® = MY
for alll = k. The matrix N is then defined as M®, for k sufficiently large.
We now define the polynomial @: [n] — [n] as @ = RN ;ie.,

Qt = ;Rkai-

Since Ni; = 1 we have E; C ;. Condition (i) of Proposition 1 is then
clearly satisfied and we now prove that @ = P.

Assume that X = (X, ---, X,) is a vector of subsets of A, such. that
XP c X.Thensince P = R + M,We must have XR € X and XM < X.
Therefore, XM* C X for all k and thus XN C X. It follows that

XQ = (XR)N c XN c X.

This proves that @ < P. To prove the converse, assume that XQ = X.
Since R < Q, we have XR C X. Since NM C N, we have

QM = RNM C-RM = Q.
Therefore,
XP=XR+XM=XR+XQM c X + QX = X.

This shows that P < Q. Thus P = §.

Proof of Proposition 2. Assume that & > 1 is the highest degree of the
constituents of P and let ¢: I — [n] be a constituent of P of degree k. We
may write

P =R + ¢M,

where R is a polynomial not containing ¢ as a constituent while
M = (M, -+, M,) is a vector with components 0,1definedby M; =1
orM; =0 dependmg on whether or not K is a constituent of P;. The
morphism ¢ has a factorization
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